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Abstract. Let k, m ∈ Z, m ≥ 2, 0 < k < 2m and 2 - k. In the paper we give a
general primality criterion for numbers of the form k · 2m ± 1, which can be viewed as a
generalization of the Lucas-Lehmer test for Mersenne primes. In particular, for k = 3, 9
we obtain explicit primality tests, which are simpler than current known results. We also
give a new primality test for Fermat numbers and criteria for 9 · 24n+3 ± 1, 3 · 220n+6 ± 1
or 3 · 236n+6 ± 1 to be twin primes.

1. Introduction.
For nonnegative integers n, the numbers Fn = 22n

+1 are called the Fermat numbers.
In 1878 Pepin showed that Fn(n ≥ 1) is prime if and only if 3(Fn−1)/2 ≡ −1 (mod Fn).
For primes p, let Mp = 2p − 1. The famous Lucas-Lehmer test states that Mp is a
Mersenne prime if and only if Mp | Sp−2, where {Sn} is given by S0 = 4 and Sk+1 =
S2

k − 2 (k = 0, 1, 2, . . . ).
In [1], [2], [6] and [9], W. Borho, W. Bosma, H. Riesel and H.C. Williams extended

the above two tests to numbers of the form k · 2m ± 1, where 0 < k < 2m and k is odd.
For example, we have the following known results.

Theorem 1.1 Let p = k · 2m + 1 with m ≥ 2, 0 < k < 2m, 2 - k and D ∈ Z with
the Jacobi symbol (D

p ) = −1. Then p is prime if and only if D(p−1)/2 ≡ −1 (mod p).
In particular, if 3 - k we may take D = 3.

Let {Sn(x)} be given by S0(x) = x and Sk+1(x) = (Sk(x))2 − 2 (k ≥ 0). Then we
have

Theorem 1.2 Let p = k · 2m− 1 with m ≥ 3, 0 < k < 2m and k ≡ ±1 (mod 6), and
let x = (2 +

√
3)k + (2−√3)k. Then p is prime if and only if p | Sm−2(x).

Here we point out that the x in Theorem 1.2 is also given by x =
∑(k−1)/2

r=0
k

k−r(
k−r

r

)
(−1)r4k−2r.

In this paper we prove the following main result.
(1.1) For m ≥ 2 let p = k · 2m± 1 with 0 < k < 2m and k odd. If b is an integer such

that ( 2+b
p ) = ( 2−b

p ) = −1, then p is prime if and only if p | Sm−2(
∑(k−1)/2

r=0
k

k−r

(
k−r

r

)
(−1)rbk−2r).

As applications of (1.1) we have many new simple primality criteria for numbers of
the form k · 2m ± 1(k = 1, 3, 9). Here are some typical results.

(1.2) For n ≥ 1 the Fermat number Fn is prime if and only if Fn | S2n−2(5).
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(1.3) Let m ≥ 3 be a positive integer. If m ≡ 0 (mod 2) or m ≡ 5, 11 (mod 12), then
9 · 2m − 1 is composite. If m ≡ 1, 3, 7, 9 (mod 12), then 9 · 2m − 1 is prime if and only if
9 · 2m − 1 | Sm−2(x), where

x =





5778 if m ≡ 1, 9 (mod 12),
1330670 if m ≡ 3 (mod 12),
2186871698 if m ≡ 7 (mod 12).

(1.4) Let n be a nonnegative integer. Then 9 · 24n+3 − 1 and 9 · 24n+3 + 1 are twin
primes if and only if (9 · 24n+3)2 − 1 | S4n+1(32672 · 1067459581).

Throughout this paper we use the following notations: Z the set of integers, N the
set of positive integers, (d

p ) the Jacobi symbol, (m,n) the greatest common divisor of
m and n, Sn(x) the sequence defined by S0(x) = x and Sk+1(x) = (Sk(x))2−2(k ≥ 0).

2. Basic Lemmas.
For P,Q ∈ Z the Lucas sequences {Un(P, Q)} and {Vn(P,Q)} are defined by

U0(P, Q) = 0, U1(P, Q) = 1, Un+1(P,Q) = PUn(P, Q)−QUn−1(P, Q) (n ≥ 1)

and

V0(P, Q) = 2, V1(P, Q) = P, Vn+1(P, Q) = PVn(P, Q)−QVn−1(P, Q) (n ≥ 1).

Let D = P 2 − 4Q. It is well known that

Un(P, Q) =
1√
D

{(P +
√

D

2

)n

−
(P −√D

2

)n}
(D 6= 0) (2.1)

and

Vn(P,Q) =
(P +

√
D

2

)n

+
(P −√D

2

)n

. (2.2)

Set Un = Un(P, Q) and Vn = Vn(P, Q). From the above one can easily check that

Vn = PUn − 2QUn−1 = 2Un+1 − PUn. (2.3)

From [5] we also have

U2n = UnVn, V2n = V 2
n − 2Qn and V 2

n −DU2
n = 4Qn. (2.4)

If p is an odd prime not dividing Q, it is well known that ([5])

Up−( D
p )(P,Q) ≡ 0 (mod p) and Up(P, Q) ≡ (D

p

)
(mod p). (2.5)

Let p be an odd prime such that (Q
p ) = 1 and p - D. D. H. Lehmer proved the

following stronger congruence (see [4] or [9, p.85]):

U(p−( D
p ))/2(P, Q) ≡ 0 (mod p). (2.6)

Definition 2.1 Let P,Q ∈ Z, and p be an odd prime such that p - Q. Define rp(P,Q)
to be the smallest positive integer n such that p | Un(P,Q).

From [5, IV.17] or [9, p.87] we know that p | Um(P, Q) if and only if rp(P, Q) | m.
This can also be deduced from [9, (4.2.59), p.81]. Using (2.5) and (2.6) we have
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Lemma 2.1. Let P and Q be integers, D = P 2−4Q, and let p be an odd prime such that

p - Q. Then rp(P, Q) | p− (D
p ). Moreover, if (Q

p ) = 1 and p - D, then rp(P, Q) | p−( D
p )

2 .

From (2.4) and induction we have

Lemma 2.2. Let P, Q ∈ Z, Q 6= 0 and n ∈ N. Then Sn( P√
Q

) = Q−2n−1
V2n(P, Q).

Lemma 2.3. Let P, Q ∈ Z and n ∈ N. Let p be an odd prime such that p - Q(P 2−4Q)
and Sn(P/

√
Q) ≡ 0 (mod p). Then p ≡ (P 2−4Q

p ) (mod 2n+(3+( Q
p ))/2).

Proof. In view of Lemma 2.2 we have p | V2n(P, Q) and so p | U2n+1(P, Q) by (2.4).
From (2.4) we see that p - U2n(P,Q). Thus, rp(P, Q) = 2n+1. This together with
Lemma 2.1 gives the result.

Lemma 2.4. Let P,Q ∈ Z and n ∈ N, and let p > 1 be an odd integer such that
(p,Q(P 2 − 4Q)) = 1 and Sn(P/

√
Q) ≡ 0 (mod p). Let α = n + 2 or n + 1 according as

Q is a square or not. If p < (2α − 1)2, then p is prime.

Proof. If p is composite, then p has a prime divisor q such that q ≤ √
p. Since q | p

and Sn(P/
√

Q) ≡ 0 (mod p) we see that Sn(P/
√

Q) ≡ 0 (mod q). It follows from
Lemma 2.3 that q ≡ (P 2−4Q

q ) (mod 2n+(3+( Q
q ))/2) and so q ≥ 2n+(3+( Q

q ))/2 − 1. Thus,

p ≥ q2 ≥ (2n+(3+( Q
q ))/2 − 1)2. This contradicts the assumption. So p must be prime.

Let [x] denote the greatest integer not exceeding x. Using induction one can easily
prove

Lemma 2.5 ([9, (4.2.36)]). Let P,Q ∈ Z and n ∈ N. Then

Vn(P, Q) =
[n/2]∑
r=0

n

n− r

(
n− r

r

)
Pn−2r(−Q)r.

3. The general primality test for numbers of the form k · 2m ± 1.

Lemma 3.1. Let P, Q ∈ Z and D = P 2−4Q. Let p be an odd prime such that p - QD.
Suppose

(
Q
p

)
= 1 and so c2 ≡ Q (mod p) for some integer c. Then

(i) V p−( D
p

)

2

(P, Q) ≡ 2
(P + 2c

p

)
c

1−( D
p

)

2 (mod p),

(ii) V p+( D
p

)

2

(P, Q) ≡ P
(P + 2c

p

)
c

( D
p

)−1

2 (mod p).

Proof. For b, c ∈ Z it is clear that

(b±√b2 − 4bc

2

)2

= b · b− 2c±
√

(b− 2c)2 − 4c2

2
.
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Thus, applying (2.2) we see that

V2n(b, bc) = bnVn(b− 2c, c2). (3.1)

Hence, if p is an odd prime such that p - b2 − 4bc and ε = ( b2−4bc
p ), by [9, (4.3.4)] we

obtain

V p−ε
2

(b−2c, c2) = b−
p−ε
2 Vp−ε(b, bc) ≡ b−

p−ε
2 ·2(bc)

1−ε
2 = 2b−

p−1
2 c

1−ε
2 ≡ 2

( b

p

)
c

1−ε
2 (mod p).

Now suppose b = P + 2c and c2 ≡ Q (mod p). Then b2 − 4bc = P 2 − 4c2 ≡
P 2 − 4Q (mod p) and so ε =

(
D
p

)
. From the above we see that

V p−ε
2

(P,Q) ≡ V p−ε
2

(b− 2c, c2) ≡ 2
(P + 2c

p

)
c

1−ε
2 (mod p).

This proves (i).
From (2.1) and (2.2) we see that

V(p+( D
p ))/2(P, Q) =

1

2Q(1−( D
p ))/2

{
PV(p−( D

p ))/2(P,Q) +
(D

p

)
DU(p−( D

p ))/2(P, Q)
}

.

Thus, by (i) and (2.6) we obtain

V(p+( D
p ))/2(P, Q) ≡ 1

2Q(1−( D
p ))/2

· 2P
(P + 2c

p

)
c

1−( D
p

)

2 ≡ P
(P + 2c

p

)
c

( D
p

)−1

2 (mod p).

This proves (ii) and hence the proof is complete.
Remark 3.1 Lemma 3.1 can also be easily deduced from [7, Lemma 3.4] or [8, Lemma
3.1].

Lemma 3.2. Let P, Q ∈ Z and p be an odd prime with p - Q(P 2 − 4Q). Suppose(
Q
p

)
= 1 and so c2 ≡ Q (mod p) for some integer c. Then

V p−(−1
p

)

4

(P,Q) ≡ 0 (mod p) if and only if
(2Q + cP

p

)
=

(2Q− cP

p

)
= −1.

Proof. From Lemma 3.1 we have

V p−(−1
p

)

2

(P, Q) ≡





2
(

P+2c
p

)
c

1−(−1
p

)

2 (mod p) if
(

4Q−P 2

p

)
= 1,

P
(

P+2c
p

)
c−

1+(−1
p

)

2 (mod p) if
(

4Q−P 2

p

)
= −1.
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Thus, applying (2.4) we obtain

V 2
p−(−1

p
)

4

(P, Q) = V p−(−1
p

)

2

(P, Q) + 2Q
p−(−1

p
)

4 ≡ V p−(−1
p

)

2

(P, Q) + 2c
1−(−1

p
)

2

( c

p

)

≡





2c
1−(−1

p
)

2
{(

P+2c
p

)
+

(
c
p

)}
(mod p) if

(
4Q−P 2

p

)
= 1,

c−
1+(−1

p
)

2
{
P

(
P+2c

p

)
+ 2c

(
c
p

)}
(mod p) if

(
4Q−P 2

p

)
= −1.

Since p - P 2 − 4Q and c2 ≡ Q (mod p) we see that P (P+2c
p ) 6≡ −2c( c

p ) (mod p). Hence,

p
∣∣∣ V p−(−1

p
)

4

(P, Q) ⇐⇒
(4Q− P 2

p

)
= 1 and

(P + 2c

p

)
= −

( c

p

)

⇐⇒
(2Q + cP

p

)
=

(2Q− cP

p

)
= −1.

This proves the lemma.

Lemma 3.3. Suppose P,Q, k, n ∈ Z with k, n ≥ 0. Then

Vkn(P, Q) = Vn(Vk(P, Q), Qk).

Proof. Set Vm = Vm(P, Q). From [9, (4.2.8)] we know that

Vr+k = VkVr −QkVr−k and so Vk(m+1) = VkVkm −QkVk(m−1).

Now we prove the result by induction on n. Clearly the result is true for n = 0, 1.
Suppose the result holds for 1 ≤ n ≤ m. By the above and the inductive hypothesis we
have

Vk(m+1) = VkVm(Vk, Qk)−QkVm−1(Vk, Qk) = Vm+1(Vk, Qk).

So the result holds for n = m + 1. Hence, the lemma is proved by induction.

Theorem 3.1. For m ∈ {2, 3, 4, . . . } let p = k · 2m ± 1 with 0 < k < 2m and k odd.
If b, c ∈ Z, (p, c) = 1 and (2c+b

p ) = ( 2c−b
p ) = −( c

p ), then p is prime if and only if

p | Sm−2(x), where x = c−kVk(b, c2) =
∑(k−1)/2

r=0
k

k−r

(
k−r

r

)
(−1)r(b/c)k−2r.

Proof. Set Un = Un(b, c2) and Vn = Vn(b, c2). From Lemmas 3.3, 2.2 and 2.5 we
have

V(p−(−1
p ))/4 = Vk·2m−2 = V2m−2(Vk, c2k) = ck·2m−2

Sm−2(Vk/ck) = ck·2m−2
Sm−2(x).

If p is prime, it follows from Lemma 3.2 that p | V(p−(−1
p ))/4. So Sm−2(x) ≡ 0 (mod p).

Now suppose Sm−2(x) = Sm−2(Vk/ck) ≡ 0 (mod p). From (2.4) we have V 2
n −

(b2 − 4c2)U2
n = 4c2n. Thus, (Un, Vn) | 4c2n. As (p, 2c) = 1 and p | Vk·2m−2 we find

(p, Uk·2m−2) = 1. It is well known that (see [5] and [9]) Ur | Urn for any positive integers
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r and n. Thus, Uk | Uk·2m−2 and so (p, Uk) = 1. Hence, (p, V 2
k − 4c2k) = 1 by (2.4). Set

P = Vk, Q = c2k and n = m−2. If 0 < k < 2m−2, then clearly p = k·2m±1 < (2m−1)2.
By Lemma 2.4, p is prime. If p = (2m − 1)2m ± 1 is composite, by Lemma 2.3 we know
that any prime divisor q of p satisfying q ≡ ±1 (mod 2m). It is easy to check that
p 6= (2m ± 1)2. Thus p ≥ (2m − 1)(2m + 1). This is impossible. So p is prime. This
completes the proof.

Taking b = 4 and c = 1 in Theorem 3.1 we obtain the Lucas-Lehmer test for Mersenne
primes and Theorem 1.2.

From Theorem 3.1 we also have the following criterion for Fermat primes, which is
similar to the Lucas-Lehmer test.

Corollary 3.1. For n ∈ N the Fermat number Fn is prime if and only if Fn | S2n−2(5).

Proof. Since Fn ≡ 2 (mod 3) and Fn ≡ 3, 5 (mod 7) we see that

(
−3
Fn

) = (
Fn

3
) = −1 and (

7
Fn

) = (
Fn

7
) = −1.

Thus putting p = Fn, k = 1, b = 5 and c = 1 in Theorem 3.1 we obtain the result.
Remark 3.2 In 1960 K. Inkeri[3] showed that the Fermat number Fn (n ≥ 2) is prime
if and only if Fn | S2n−2(8).

4. The primality criterion for numbers of the form 9 · 2m ± 1.
In the section we use Theorem 3.1 to obtain explicit primality criterion for numbers

of the form 9 · 2m ± 1.

Theorem 4.1. Let m ≥ 3 be a positive integer. If m ≡ 0 (mod 2) or m ≡ 5, 11 (mod 12),
then 9 · 2m − 1 is composite. If m ≡ 1, 3, 7, 9 (mod 12), then 9 · 2m − 1 is prime if and
only if 9 · 2m − 1 | Sm−2(x), where

x =





5778 if m ≡ 1, 9 (mod 12),
1330670 if m ≡ 3 (mod 12),
2186871698 if m ≡ 7 (mod 12).

Proof. Clearly the result is true for m = 3. Now assume m ≥ 4. If m = 2n for some
integer n, then 9 · 2m − 1 = (3 · 2n + 1)(3 · 2n − 1) and so 9 · 2m − 1 is composite. If
m ≡ 5, 11 (mod 12), then 7 | 9 · 2m − 1 since 23 ≡ 1 (mod 7). If m ≡ 1, 3, 7, 9 (mod 12),
once setting

b =





3 if m ≡ 1, 9 (mod 12),
5 if m ≡ 3 (mod 12),
11 if m ≡ 7 (mod 12)

one can easily check that
( 2 + b

9 · 2m − 1

)
=

( 2− b

9 · 2m − 1

)
= −1.

From Lemma 2.5 we know that

V9(b, 1) = b9 − 9b7 + 27b5 − 30b3 + 9b = (b3 − 3b)((b3 − 3b)2 − 3) = x.

Applying Theorem 3.1 in the case c = 1 we get the result.
In a similar way, applying Theorem 3.1 we have
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Theorem 4.2. Let m ≥ 3 be a positive integer. If m ≡ 0 (mod 4), then 5 | 9 · 2m + 1.
If m ≡ 10 (mod 12), then 13 | 9 · 2m + 1. If m ≡ 5 (mod 8), then 17 | 9 · 2m + 1. If
m 6≡ 0 (mod 4), m 6≡ 10 (mod 12) and m 6≡ 5 (mod 8), then 9 · 2m + 1 is prime if and
only if 9 · 2m + 1 | Sm−2(x), where x is given by Table 4.1.

Table 4.1

m b x = V9(b, 1) = (b3 − 3b)((b3 − 3b)2 − 3)
m ≡ 1, 9 (mod 24) 37 50542 · 2554493761
m ≡ 2 (mod 12) 28 21868 · 478209421
m ≡ 3, 6, 7 (mod 12) 12 1692 · 2862861
m ≡ 11 (mod 12) 32 32672 · 1067459581
m ≡ 17, 65 (mod 72) 150 3374550 · (33745502 − 3)
m ≡ 41 (mod 72) 2167 (21673 − 6501) · ((21673 − 6501)2 − 3)

Remark 4.1 For m ≥ 4 let p = 9 · 2m + 1 and

D =





5 if m ≡ 0, 2, 3 (mod 4),
7 if m ≡ 1, 9, 13, 21 (mod 24),
17 if m ≡ 5 (mod 24),
241 if m ≡ 17 (mod 24).

In [2] W. Bosma showed that p is prime if and only if D(p−1)/2 ≡ −1 (mod p).

Theorem 4.3. Let n be a positive integer. Then 9 ·24n+3−1 and 9 ·24n+3 +1 are twin
primes if and only if (9 · 24n+3)2 − 1 | S4n+1(32672 · 1067459581).

Proof. Let b = 32. Then 2 + b = 2 · 17 and 2 − b = −2 · 3 · 5. Since
(

2
9·24n+3±1

)
=(

3
9·24n+3±1

)
= 1 and 24 ≡ −1 (mod 17) we find

( 2 + b

9 · 24n+3 ± 1

)
=

( 17
9 · 24n+3 ± 1

)
=

(9 · 24n+3 ± 1
17

)
=

(4(−1)n ± 1
17

)
= −1,

( 2− b

9 · 24n+3 ± 1

)
=

( −5
9 · 24n+3 ± 1

)
= ±

(9 · 24n+3 ± 1
5

)
= ±

(72± 1
5

)
= −1.

Thus, applying Theorem 3.1 we see that 9 ·24n+3±1 is prime if and only if 9 ·24n+3±1 |
S4n+1(V9(b, 1)). To see the result, we note that (9 ·24n+3 +1, 9 ·24n+3−1) = 1 and that

V9(b, 1) = b9 − 9b7 + 27b5 − 30b3 + 9b = (b3 − 3b)((b3 − 3b)2 − 3) = 32672 · 1067459581.

Remark 4.2 If 9 · 2m ± 1(m > 1) are twin primes, then m ≡ 3 (mod 4). If m ≡
11 (mod 12), then 7 | 9·2m−1 and so 9·2m±1 cannot be twin primes. If m ≡ 3 (mod 12),
by taking b = 12 and c = 1 in Theorem 3.1 we can prove that 9 ·2m−1 and 9 ·2m +1 are
twin primes if and only if (9 · 2m)2 − 1 | Sm−2(4843960812). It is known that 9 · 2m − 1
and 9 · 2m + 1 are twin primes when m = 1, 3, 7, 43, 63, 211. Do there exist only finitely
many such twin primes?
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5. The primality criterion for numbers of the form 3 · 2m ± 1.

Theorem 5.1. Let m ≥ 3 be a positive integer such that m 6≡ −2 (mod 10080). If
m ≡ 1 (mod 4), m ≡ 46 (mod 72) or m ≡ 862 (mod 1440), then 3 ·2m−1 is composite.
If m 6≡ 1 (mod 4), m 6≡ 46 (mod 72) and m 6≡ 862 (mod 1440), then 3 · 2m− 1 is prime
if and only if 3 · 2m − 1 | Sm−2(x), where x is given by Table 5.1.

Table 5.1
m b x = V3(b, 1) = b3 − 3b

m ≡ 0, 3 (mod 4) 3 18
m ≡ 2, 6 (mod 12) 5 110
m ≡ 10 (mod 24) 15 3330
m ≡ 22 (mod 72) 17 4862
m ≡ 70 (mod 144) 192 7077312
m ≡ 142 (mod 288) 65535 655353 − 3 · 65535
m ≡ 286, 574 (mod 1440) 9 702
m ≡ 1150 (mod 1440) 29 24302
m ≡ 1438, 2878, 4318, 7198 (mod 10080) 27 19602
m ≡ 5758 (mod 10080) 41 68798
m ≡ 8638 (mod 10080) 125 1952750

Proof. If m ≡ 1 (mod 4), then 5 | 3 ·2m−1; if m ≡ 46 (mod 72), then 37 | 3 ·2m−1; if
m ≡ 862 (mod 1440), then 11 | 3·2m−1. Now suppose m 6≡ 1 (mod 4), m 6≡ 46 (mod 72)
and m 6≡ 862 (mod 1440). Let b be given by Table 5.1. One can easily check that

( 2 + b

3 · 2m − 1

)
=

( 2− b

3 · 2m − 1

)
= −1.

Thus the result follows from Theorem 3.1 by taking c = 1 and p = 3 · 2m − 1.
Remark 5.1 If m ∈ N and m ≡ 0, 2 (mod 3), in 1993 W. Bosma[2] showed that 3·2m−1
is prime if and only if 3 · 2m − 1 | Sm−2(10054 · 23m).

In a similar way, using Theorem 3.1 we can prove

Theorem 5.2. Let m ≥ 3 be a positive integer such that 180 - m. If m ≡ 1 (mod 3),
then 7 | 3 · 2m + 1; if m ≡ 3 (mod 4), then 5 | 3 · 2m + 1; if m ≡ 2 (mod 12), then
13 | 3 · 2m + 1; if m ≡ 144 (mod 180), then 61 | 3 · 2m + 1. If m 6≡ 1 (mod 3),
m 6≡ 3 (mod 4), m 6≡ 2 (mod 12) and m 6≡ 144 (mod 180), then 3 · 2m + 1 is prime if
and only if 3 · 2m + 1 | Sm−2(x), where x is given by Table 5.2.

Table 5.2
m b x = V3(b, 1) = b3 − 3b

m ≡ 5 (mod 12) 12 1692
m ≡ 6 (mod 12) 28 21868
m ≡ 8 (mod 12) 37 50542
m ≡ 9 (mod 12) 32 32672
m ≡ 12, 24 (mod 36) 150 3374550
m ≡ 36 (mod 180) 207 8869122
m ≡ 72 (mod 180) 64 261952
m ≡ 108 (mod 180) 5282 5282 · 27899521
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Theorem 5.3. Let n be a nonnegative integer. Then 3 · 220n+6 − 1 and 3 · 220n+6 + 1
are twin primes if and only if (3 · 220n+6)2 − 1 | S20n+4(73962).

Proof. Let b = 42. Then 2 + b = 44 and 2 − b = −40. Since
(

2
3·220n+6±1

)
= 1 and

25 ≡ −1 (mod 11) we find

( 2 + b

3 · 220n+6 ± 1

)
=

( 11
3 · 220n+6 ± 1

)
= ±

(3 · 220n+6 ± 1
11

)
= ±

(−6± 1
11

)
= −1,

( 2− b

3 · 220n+6 ± 1

)
= ±

( 5
3 · 220n+6 ± 1

)
= ±

(3 · 220n+6 ± 1
5

)
= ±

(12± 1
5

)
= −1.

Thus, applying Theorem 3.1 in the case b = 42 and c = 1 we see that 3 · 220n+6 ± 1
is prime if and only if 3 · 220n+6 ± 1 | S20n+4(V3(b, 1)). To see the result, we note that
(3 · 220n+6 + 1, 3 · 220n+6 − 1) = 1 and that V3(b, 1) = b3 − 3b = 423 − 3 · 42 = 73962.

In the same way, putting b = 17 and c = 1 in Theorem 3.1 we get

Theorem 5.4. Let n be a nonnegative integer. Then 3 · 236n+6 − 1 and 3 · 236n+6 + 1
are twin primes if and only if (3 · 236n+6)2 − 1 | S36n+4(4862).
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