Some further properties of even and odd sequences

Zhi-Hong Sun

School of Mathematical Sciences
Huaiyin Normal University,
Huaian, Jiangsu 223300, P.R. China
zhsun@hytc.edu.cn
Received 6 April 2016
Accepted 21 July 2016
Published 19 January 2017

Abstract

In this paper we continue to investigate the properties of those sequences $\left\{a_{n}\right\}$ satisfying the condition $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}= \pm a_{n}(n \geq 0)$. As applications we deduce some recurrence relations and congruences for Bernoulli and Euler numbers.

Keywords: even sequence; odd sequence; congruence; Bernoulli number; Euler number; Fibonacci number.

Mathematics Subject Classification 2010: 11B83, 11B37, 11B65, 11A07, 11B39, 11B68, 05A15, 05A19

1. Introduction

The classical binomial inversion formula states that $a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} b_{k} \quad(n=$ $0,1,2, \ldots)$ if and only if $b_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}(n=0,1,2, \ldots)$. Following [10] we continue to study those sequences $\left\{a_{n}\right\}$ with the property $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}= \pm a_{n}(n=0,1,2, \ldots)$.

Definition 1.1. If a sequence $\left\{a_{n}\right\}$ satisfies the relation

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}=a_{n} \quad(n=0,1,2, \ldots)
$$

we say that $\left\{a_{n}\right\}$ is an even sequence. If $\left\{a_{n}\right\}$ satisfies the relation

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}=-a_{n} \quad(n=0,1,2, \ldots)
$$

we say that $\left\{a_{n}\right\}$ is an odd sequence.

From [10, Theorem 3.2] we know that $\left\{a_{n}\right\}$ is an even (odd) sequence if and only if $\mathrm{e}^{-x / 2} \sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}$ is an even (odd) function. Throughout this paper, S^{+}denotes the set of even sequences, and S^{-}denotes the set of odd sequences. In [10] the author stated that

$$
\left\{\frac{1}{2^{n}}\right\},\left\{\binom{n+2 m-1}{m}^{-1}\right\},\left\{\binom{2 n}{n} 2^{-2 n}\right\},\left\{(-1)^{n} \int_{0}^{-1}\binom{x}{n} d x\right\} \in S^{+}
$$

Let $\left\{B_{n}\right\}$ be the Bernoulli numbers given by $B_{0}=1$ and $\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0(n \geq 2)$. It is well known that $B_{1}=-\frac{1}{2}$ and $B_{2 m+1}=0$ for $m \geq 1$. Thus,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \cdot(-1)^{k} B_{k}=B_{n}+\sum_{k=0}^{n-1}\binom{n}{k} B_{k}=(-1)^{n} B_{n}
$$

and so $\left\{(-1)^{n} B_{n}\right\} \in S^{+}$as claimed in [10]. It is also known that $\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!}=\frac{x}{\mathrm{e}^{x}-1}$ $(|x|<2 \pi)$. Thus, for $|x|<2 \pi$,

$$
\sum_{n=0}^{\infty}(-1)^{n}\left(2^{n}-1\right) B_{n} \frac{x^{n}}{n!}=\frac{-2 x}{\mathrm{e}^{-2 x}-1}-\frac{-x}{\mathrm{e}^{-x}-1}=\frac{x}{\mathrm{e}^{-x}+1}
$$

Since $\mathrm{e}^{-x / 2} x /\left(\mathrm{e}^{-x}+1\right)$ is an odd function, we deduce that $\left\{(-1)^{n}\left(2^{n}-1\right) B_{n}\right\} \in S^{-}$.
The Euler numbers $\left\{E_{n}\right\}$ is defined by $\frac{2 \mathrm{e}^{t}}{\mathrm{e}^{2 t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!}\left(|t|<\frac{\pi}{2}\right)$, which is equivalent to (see [4]) $E_{0}=1, E_{2 n-1}=0$ and $\sum_{r=0}^{n}\binom{2 n}{2 r} E_{2 r}=0(n \geq 1)$. It is clear that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{E_{n}-1}{2^{n}} \cdot \frac{t^{n}}{n!} & =\sum_{n=0}^{\infty} E_{n} \frac{(t / 2)^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(t / 2)^{n}}{n!} \\
& =\frac{2 \mathrm{e}^{\frac{t}{2}}}{\mathrm{e}^{t}+1}-\mathrm{e}^{\frac{t}{2}}=\mathrm{e}^{\frac{t}{2}} \cdot \frac{1-\mathrm{e}^{t}}{1+\mathrm{e}^{t}} \quad(|t|<\pi)
\end{aligned}
$$

As $\frac{1-\mathrm{e}^{-t}}{1+\mathrm{e}^{-t}}=\frac{\mathrm{e}^{t}-1}{\mathrm{e}^{t}+1}$, we see that $\mathrm{e}^{-\frac{t}{2}} \sum_{n=0}^{\infty} \frac{E_{n}-1}{2^{n}} \cdot \frac{t^{n}}{n!}$ is an odd function. Thus $\left\{\frac{E_{n}-1}{2^{n}}\right\}$ is an odd sequence.

For two numbers b and c, let $\left\{U_{n}(b, c)\right\}$ and $\left\{V_{n}(b, c)\right\}$ be the Lucas sequences given by

$$
U_{0}(b, c)=0, U_{1}(b, c)=1, U_{n+1}(b, c)=b U_{n}(b, c)-c U_{n-1}(b, c)(n \geq 1)
$$

and

$$
V_{0}(b, c)=2, V_{1}(b, c)=b, \quad V_{n+1}(b, c)=b V_{n}(b, c)-c V_{n-1}(b, c)(n \geq 1)
$$

It is well known that (see [14])

$$
U_{n}(b, c)= \begin{cases}\frac{1}{\sqrt{b^{2}-4 c}}\left\{\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{n}-\left(\frac{b-\sqrt{b^{2}-4 c}}{2}\right)^{n}\right\} & \text { if } b^{2}-4 c \neq 0 \\ n\left(\frac{b}{2}\right)^{n-1} & \text { if } b^{2}-4 c=0\end{cases}
$$

and

$$
V_{n}(b, c)=\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{n}+\left(\frac{b-\sqrt{b^{2}-4 c}}{2}\right)^{n} .
$$

From this one can easily see that for $b \neq 0,\left\{U_{n}(b, c) / b^{n}\right\}$ is an odd sequence and $\left\{V_{n}(b, c) / b^{n}\right\}$ is an even sequence. We note that $F_{n}=U_{n}(1,-1)$ is the Fibonacci sequence and $n=U_{n}(2,1)$.

Let $\left\{A_{n}\right\}$ be an even sequence or an odd sequence. In Section 2 we deduce new recurrence formulas for $\left\{A_{n}\right\}$ and give a criterion for polynomials $P_{m}(x)$ with the property $P_{m}(1-x)=(-1)^{m} P_{m}(x)$, in Section 3 we establish a transformation formula for $\sum_{k=0}^{n}\binom{n}{k} A_{k}$, in Section 4 we give congruences for $\sum_{k=1}^{p-1} \frac{A_{k+1}}{k}, \sum_{k=1}^{p-1} \frac{A_{k}}{k}$ and $\sum_{k=0}^{p-2} \frac{A_{k}}{k+1}$ modulo p^{2}, where p is an odd prime. As applications we establish some recurrence formulas for Bernoulli and Euler numbers. Here are some typical results:
\star If $\left\{A_{n}\right\}$ is an odd sequence, then $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{2 n-k}=0$. If $\left\{A_{n}\right\}$ is an even sequence, then $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(2 n-k) A_{2 n-k-1}=0$.
\star If $\left\{A_{k}\right\}$ is an even sequence and n is odd, then

$$
\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{k} A_{k}=0
$$

and

$$
\sum_{\substack{k=0 \\ 3 \mid k}}^{n}\binom{n}{k} A_{n-k}=\frac{1}{3} \sum_{k=0}^{n}\binom{n}{k} A_{k}
$$

\star Let m be a positive integer and $P_{m}(x)=\sum_{k=0}^{m} a_{k} x^{m-k}$. Then

$$
P_{m}(1-x)=(-1)^{m} P_{m}(x) \Longleftrightarrow \sum_{k=0}^{n}\binom{n}{k} \frac{a_{k}}{\binom{m}{k}}=(-1)^{n} \frac{a_{n}}{\binom{m}{n}}(n=0,1, \ldots, m)
$$

\star Let p be an odd prime, and let $\left\{A_{k}\right\}$ be an odd sequence of rational p-integers. Then

$$
2 A_{p+1}-A_{p} \equiv A_{1}-p \sum_{k=1}^{p-1} \frac{A_{k+1}}{k} \quad\left(\bmod p^{2}\right) \quad \text { and } \quad \sum_{k=1}^{p-1} \frac{A_{k}}{p+k} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

In addition to the above notation, throughout this paper we use the following notation: $[x]$ - the greatest integer not exceeding x, \mathbb{N} - the set of positive integers, \mathbb{R} - the set of real numbers, \mathbb{Z}_{p} — the set of those rational numbers whose denominator is coprime to p, $\left(\frac{a}{p}\right)$ —the Legendre symbol.

2. Recurrence formulas for even and odd sequences

Suppose that $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k}= \pm a_{n}$ for $n=0,1,2, \ldots$ Then clearly

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} k a_{k-1}=-n \sum_{r=0}^{n-1}\binom{n-1}{r}(-1)^{r} a_{r}=\mp n a_{n-1}
$$

and

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{a_{k+1}-a_{0} / 2}{k+1} & =-\frac{1}{n+1} \sum_{k=0}^{n}\binom{n+1}{k+1}(-1)^{k+1}\left(a_{k+1}-a_{0} / 2\right) \\
& =-\frac{1}{n+1}\left(\sum_{r=0}^{n+1}\binom{n+1}{r}(-1)^{r}\left(a_{r}-a_{0} / 2\right)-\left(a_{0}-a_{0} / 2\right)\right)
\end{aligned}
$$

$$
=-\frac{1}{n+1}\left(\pm a_{n+1}-a_{0} / 2\right)=\mp \frac{a_{n+1} \mp a_{0} / 2}{n+1} .
$$

Thus,

$$
\begin{equation*}
\left\{a_{n}\right\} \in S^{+} \quad \text { implies } \quad\left\{n a_{n-1}\right\},\left\{\frac{a_{n+1}-a_{0} / 2}{n+1}\right\} \in S^{-} \tag{2.1}
\end{equation*}
$$

When $\left\{a_{n}\right\} \in S^{-}$, we have $a_{0}=-a_{0}$ and so $a_{0}=0$. Therefore, from the above we deduce that

$$
\begin{equation*}
\left\{a_{n}\right\} \in S^{-} \quad \text { implies } \quad\left\{n a_{n-1}\right\},\left\{\frac{a_{n+1}}{n+1}\right\} \in S^{+} \tag{2.2}
\end{equation*}
$$

For $x, y \in \mathbb{R}$ and $n \in\{0,1,2, \ldots\}$ it is well known that $([2,(3.1)])$

$$
\sum_{k=0}^{n}\binom{x}{k}\binom{y}{n-k}=\binom{x+y}{n}
$$

This is called Vandermonde's identity. Let $a_{n}=\sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} b_{n-k} \quad(n=0,1,2, \ldots)$. Using Vandermonde's identity we see that

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} a_{n-k} \\
& =\sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} \sum_{j=0}^{n-k}\binom{n-k-m}{j}(-1)^{n-k-j} b_{n-k-j} \\
& =\sum_{s=0}^{n}\binom{n-m}{n-s}(-1)^{s} \sum_{j=0}^{s}\binom{s-m}{j}(-1)^{s-j} b_{s-j} \\
& =\sum_{s=0}^{n}\binom{n-m}{n-s} \sum_{r=0}^{s}\binom{m-r-1}{s-r} b_{r}=\sum_{r=0}^{n} \sum_{s=r}^{n}\binom{n-m}{n-s}\binom{m-r-1}{s-r} b_{r} \\
& =\sum_{r=0}^{n}\binom{n-r-1}{n-r} b_{r}=b_{n} \quad(n=0,1,2, \ldots) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
a_{n} & =\sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} b_{n-k} \quad(n=0,1,2, \ldots) \\
& \Longleftrightarrow b_{n}=\sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} a_{n-k} \quad(n=0,1,2, \ldots) \tag{2.3}
\end{align*}
$$

Lemma 2.1. Let $m, p \in \mathbb{R}$ and $\sum_{k=0}^{n}\binom{n-m}{k}(-1)^{n-k} a_{n-k}= \pm a_{n}$ for $n=0,1,2, \ldots$ Then

$$
\sum_{k=0}^{n}\binom{n-p-m}{k}(-1)^{n-k} a_{n-k}= \pm \sum_{k=0}^{n}\binom{p}{k}(-1)^{k} a_{n-k} \quad \text { for } \quad n=0,1,2, \ldots
$$

Proof. Using Vandermonde's identity we see that

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n-p-m}{k}(-1)^{n-k} a_{n-k} \\
& =\sum_{k=0}^{n}\binom{n-p-m}{n-k}(-1)^{k} a_{k} \\
& = \pm \sum_{k=0}^{n}\binom{n-p-m}{n-k}(-1)^{k} \sum_{r=0}^{k}\binom{k-m}{k-r}(-1)^{r} a_{r} \\
& = \pm \sum_{r=0}^{n}\left\{\sum_{k=r}^{n}\binom{n-p-m}{n-k}(-1)^{k-r}\binom{k-m}{k-r}\right\} a_{r} \\
& = \pm \sum_{r=0}^{n}\left\{\sum_{k=r}^{n}\binom{n-p-m}{n-k}\binom{m-1-r}{k-r}\right\} a_{r} \\
& = \pm \sum_{r=0}^{n}\left\{\sum_{s=0}^{n-r}\binom{n-p-m}{n-r-s}\binom{m-1-r}{s}\right\} a_{r} \\
& = \pm \sum_{r=0}^{n}\binom{n-p-r-1}{n-r} a_{r}= \pm \sum_{r=0}^{n}\binom{p}{n-r}(-1)^{n-r} a_{r} \\
& = \pm \sum_{k=0}^{n}\binom{p}{k}(-1)^{k} a_{n-k} .
\end{aligned}
$$

So the lemma is proved.
Theorem 2.1. If $\left\{A_{n}\right\}$ is an odd sequence, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{2 n-k}=0 \quad \text { for } \quad n=0,1,2, \ldots
$$

If $\left\{A_{n}\right\}$ is an even sequence, for $n=0,1,2, \ldots$ we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(2 n-k) A_{2 n-k-1}=0 \text { and } \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{A_{2 n-k+1}}{2 n-k+1}=\frac{(-1)^{n} A_{0}}{2(2 n+1)\binom{2 n}{n}}
$$

Moreover, for given even sequence $\left\{A_{k}\right\}$ we also have

$$
\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}=0 \quad \text { for } \quad n=1,3,5, \ldots
$$

Proof. We first assume that $\left\{A_{n}\right\}$ is an odd sequence. Putting $m=0, p=n / 2$ and $a_{n}=A_{n}$ in Lemma 2.1 we see that

$$
\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{n-k} A_{n-k}=-\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}
$$

Thus, for even n we have

$$
\sum_{k=0}^{n / 2}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}=\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}=0
$$

Replacing n with $2 n$ we get $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{2 n-k}=0$ for $n=0,1,2, \ldots$
Now we assume that $\left\{A_{n}\right\} \in S^{+}$. By (2.1), $\left\{n A_{n-1}\right\} \in S^{-}$and $\left\{\frac{A_{n+1}-A_{0} / 2}{n+1}\right\} \in S^{-}$. Applying the above we find that

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(2 n-k) A_{2 n-k-1}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{A_{2 n-k+1}-A_{0} / 2}{2 n-k+1}=0
$$

By $[2,(1.40)]$,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{1}{k+z}=\frac{1}{\binom{n+z}{n} z}
$$

Thus,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{1}{2 n+1-k}=\frac{1}{(2 n+1)\binom{n-2 n-1}{n}}=\frac{(-1)^{n}}{(2 n+1)\binom{2 n}{n}}
$$

Hence

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{A_{2 n-k+1}}{2 n-k+1}=\frac{(-1)^{n} A_{0}}{2(2 n+1)\binom{2 n}{n}}
$$

If n is odd, taking $m=0, p=n / 2$ and $a_{n}=A_{n}$ in Lemma 2.1 we deduce that $\sum_{k=0}^{n}\binom{\frac{n}{2}}{k}(-1)^{k} A_{n-k}=0$. This completes the proof.

Since $\left\{\frac{E_{n}-1}{2^{n}}\right\}$ is an odd sequence and $E_{2 k-1}=0$ for $k \geq 1$, from Theorem 2.1 we see that $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{E_{2 n-k}-1}{2^{2 n-k}}=0$ and so

$$
\sum_{k=0}^{[n / 2]}\binom{n}{2 k} \frac{E_{2 n-2 k}}{2^{2 n-2 k}}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{E_{2 n-k}}{2^{2 n-k}}=\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{2^{2 n-k}}=\frac{(-1)^{n}}{2^{2 n}}
$$

That is,

$$
\begin{equation*}
\sum_{k=0}^{[n / 2]}\binom{n}{2 k} 2^{2 k} E_{2 n-2 k}=(-1)^{n} \quad \text { for } \quad n=0,1,2, \ldots \tag{2.4}
\end{equation*}
$$

Since $\left\{(-1)^{n} B_{n}\right\}$ is an even sequence, from Theorem 2.1 we have $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(2 n-$ $k)(-1)^{2 n-k-1} B_{2 n-k-1}=0$. As $B_{2 m+1}=0$ for $m>1$, we obtain

$$
\begin{equation*}
\sum_{r=1}^{\left[\frac{n+1}{2}\right]}\binom{n}{2 r-1}(2 n-2 r+1) B_{2 n-2 r}=0 \quad \text { for } \quad n=3,4,5, \ldots \tag{2.5}
\end{equation*}
$$

From Theorem 2.1 we also have

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n / 2}{k} B_{n-k}=0 \quad \text { for } \quad n=1,3,5, \ldots \tag{2.6}
\end{equation*}
$$

Theorem 2.2. Let $\left\{a_{k}\right\}$ be a given sequence. Then

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}\left(a_{k}-(-1)^{n-k} \sum_{s=0}^{k}\binom{k}{s} a_{s}\right)=0 \quad \text { for } \quad n=0,1,2, \ldots
$$

Hence, if $\left\{A_{n}\right\}$ is an even sequence and n is odd, or if $\left\{A_{n}\right\}$ is an odd sequence and n is even, then

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{k} A_{k}=0
$$

Proof. Since $\binom{-x}{k}=(-1)^{k}\binom{x+k-1}{k}$, using Vandermonde's identity we see that for $m \in\{0,1, \ldots, n\}$,

$$
\begin{aligned}
& \sum_{k=m}^{n}\binom{n-m}{k-m}(-1)^{n-k}\binom{n+k}{k} \\
& =\sum_{k=0}^{n}\binom{n-m}{n-k}(-1)^{n}\binom{-n-1}{k}=(-1)^{n}\binom{-m-1}{n}=\binom{m+n}{n} .
\end{aligned}
$$

Note that $\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}$. Applying the above we deduce that

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}\left(a_{k}-(-1)^{n-k} \sum_{s=0}^{k}\binom{k}{s} a_{s}\right) \\
& =\sum_{m=0}^{n} a_{m}\left(\binom{n}{m}\binom{n+m}{m}-\sum_{k=m}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k}\binom{k}{m}\right) \\
& =\sum_{m=0}^{n} a_{m}\left(\binom{n}{m}\binom{n+m}{m}-\binom{n}{m} \sum_{k=m}^{n}\binom{n-m}{k-m}(-1)^{n-k}\binom{n+k}{k}\right) \\
& =\sum_{m=0}^{n} a_{m} \cdot 0=0 .
\end{aligned}
$$

Putting $a_{k}=(-1)^{k} A_{k}$ in the above formula we obtain the remaining result.
As an example, taking $A_{k}=(-1)^{k} B_{k}$ in Theorem 2.2 we obtain

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} B_{k}=0 \quad \text { for } \quad n=1,3,5, \ldots \tag{2.7}
\end{equation*}
$$

Let $\left\{F_{n}\right\}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}(n \geq$ 1). As $\left\{F_{n}\right\}$ is an odd sequence, taking $A_{k}=F_{k}$ in Theorem 2.2 we get

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{k} F_{k}=0 \quad \text { for } \quad n=0,2,4, \ldots \tag{2.8}
\end{equation*}
$$

Lemma 2.2. Suppose that m is a nonnegative integer. Then

$$
\sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}= \pm a_{n} \quad(n=0,1,2, \ldots)
$$

if and only if

$$
\sum_{k=0}^{n}\binom{n}{k} \frac{a_{k}}{\binom{m}{k}}= \pm(-1)^{n} \frac{a_{n}}{\binom{m}{n}}(n=0,1, \ldots, m)
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} a_{k+m+1}= \pm(-1)^{m+1} a_{n+m+1}(n=0,1,2, \ldots)
$$

Proof. For $n=0,1, \ldots, m$ we have $\binom{m}{n} \neq 0$. Set $A_{n}=(-1)^{n} \frac{a_{n}}{\binom{m}{n}}$. As $\binom{n-m-1}{k}\binom{m}{n-k}=$ $(-1)^{k}\binom{n}{k}\binom{m}{n}$, we see that

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k} \\
& =\sum_{k=0}^{n}\binom{n-m-1}{k}\binom{m}{n-k} A_{n-k}=\binom{m}{n} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{n-k} \\
& =(-1)^{n}\binom{m}{n} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}= \pm a_{n} \Longleftrightarrow \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}= \pm A_{n} \tag{2.9}
\end{equation*}
$$

This together with the fact that

$$
\begin{aligned}
& \sum_{k=0}^{n+m+1}\binom{n+m+1-m-1}{k}(-1)^{n+m+1-k} a_{n+m+1-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k+m+1} a_{n-k+m+1} \\
& =\sum_{r=0}^{n}\binom{n}{r}(-1)^{r+m+1} a_{r+m+1} \quad(n=0,1,2, \ldots)
\end{aligned}
$$

yields the result.
Lemma 2.3. Let $\left\{a_{n}\right\}$ be a given sequence, $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $m \in \mathbb{R}$. Then

$$
\begin{aligned}
& (1-x)^{m} a\left(\frac{x}{x-1}\right)= \pm a(x) \\
& \Longleftrightarrow \sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}= \pm a_{n}(n=0,1,2, \ldots)
\end{aligned}
$$

Proof. Clearly, for $|x|<1$,

$$
(1-x)^{m} a\left(\frac{x}{x-1}\right)=\sum_{r=0}^{\infty}(-1)^{r} a_{r} x^{r}(1-x)^{m-r}
$$

$$
\begin{aligned}
& =\sum_{r=0}^{\infty}(-1)^{r} a_{r} x^{r} \sum_{k=0}^{\infty}\binom{m-r}{k}(-x)^{k} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(-1)^{n-k} a_{n-k}\binom{m-(n-k)}{k}(-1)^{k}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}\right) x^{n}
\end{aligned}
$$

Thus the result follows.
Theorem 2.3. Let $m \in \mathbb{N}, P_{m}(x)=\sum_{k=0}^{m} a_{k} x^{m-k}$ and $P_{m}^{*}(x)=\sum_{k=0}^{m} a_{k} x^{k}$. Then the following statements are equivalent:
(a) $(1-x)^{m} P_{m}^{*}\left(\frac{x}{x-1}\right)= \pm P_{m}^{*}(x)$.
(b) $P_{m}(1-x)= \pm(-1)^{m} P_{m}(x)$.
(c) For $n=0,1, \ldots, m$ we have $\sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}= \pm a_{n}$.
(d) Set $a_{n}=0$ for $n>m$. Then $\sum_{k=0}^{n}\binom{n-m-1}{k}(-1)^{n-k} a_{n-k}= \pm a_{n} \quad(n=0,1,2, \ldots)$.
(e) For $n=0,1, \ldots, m$ we have

$$
\sum_{k=0}^{n}\binom{n}{k} \frac{a_{k}}{\binom{m}{k}}= \pm(-1)^{n} \frac{a_{n}}{\binom{m}{n}}
$$

Proof. Since $P_{m}^{*}(x)=x^{m} P_{m}\left(\frac{1}{x}\right)$ we see that

$$
\begin{aligned}
(1-x)^{m} P_{m}^{*}\left(\frac{x}{x-1}\right)= \pm P_{m}^{*}(x) & \Longleftrightarrow(-x)^{m} P_{m}\left(1-\frac{1}{x}\right)= \pm x^{m} P_{m}\left(\frac{1}{x}\right) \\
& \Longleftrightarrow(-1)^{m} P_{m}\left(1-\frac{1}{x}\right)= \pm P_{m}\left(\frac{1}{x}\right) \\
& \Longleftrightarrow P_{m}(1-x)= \pm(-1)^{m} P_{m}(x)
\end{aligned}
$$

So (a) and (b) are equivalent. By Lemma 2.3, (a) is equivalent to (d). Assume $a_{n+m+1}=0$ for $n \geq 0$. Then

$$
\begin{aligned}
a_{n+m+1} & =0=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k+m+1} a_{m+1+n-k} \\
& =\sum_{k=0}^{m+n+1}\binom{m+n+1-m-1}{k}(-1)^{m+n+1-k} a_{m+n+1-k}
\end{aligned}
$$

So (c) is equivalent to (d). To complete the proof, we note that (d) is equivalent to (e) by Lemma 2.2.

Remark 2.1. Let $\left\{B_{n}(x)\right\}$ and $\left\{E_{n}(x)\right\}$ be the Bernoulli polynomials and Euler polynomials given by

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k} \quad \text { and } \quad E_{n}(x)=\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}(2 x-1)^{n-k} E_{k}
$$

It is well known that $([4]) B_{n}(1-x)=(-1)^{n} B_{n}(x)$ and $E_{n}(1-x)=(-1)^{n} E_{n}(x)$.

Theorem 2.4. Let $\left\{A_{n}\right\} \in S^{+}$with $A_{0}=\ldots=A_{l-1}=0$ and $A_{l} \neq 0(l \geq 1)$. Then

$$
\left\{\frac{A_{n+l}}{(n+1)(n+2) \cdots(n+l)}\right\} \in S^{+}
$$

Proof. Assume $a_{n}=A_{n+l}$. Let $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $A(x)=\sum_{n=0}^{\infty} A_{n} x^{n}$. Then clearly $A(x)=x^{l} a(x)$. Since $A_{l}=\sum_{k=0}^{l}\binom{l}{k}(-1)^{k} A_{k}=(-1)^{l} A_{l}$ we see that $2 \mid l$. Thus, applying Lemma 2.3 and (2.9) we see that

$$
\begin{aligned}
\left\{A_{n}\right\} \in S^{+} & \Leftrightarrow A\left(\frac{x}{x-1}\right)=(1-x) A(x) \Leftrightarrow a\left(\frac{x}{x-1}\right)=(1-x)^{l+1} a(x) \\
& \Leftrightarrow \sum_{k=0}^{n}\binom{n+l}{k}(-1)^{n-k} a_{n-k}=a_{n}(n=0,1,2, \ldots) \Leftrightarrow\left\{\frac{(-1)^{n} a_{n}}{\binom{-l-1}{n}}\right\} \in S^{+} .
\end{aligned}
$$

Note that

$$
(-1)^{n} \frac{a_{n}}{\binom{-l-1}{n}}=\frac{a_{n}}{\binom{n+l}{l}}=\frac{A_{n+l}}{(n+1)(n+2) \cdots(n+l)} \cdot l!.
$$

We then obtain the result.
Corollary 2.1. Suppose that $\left\{a_{n}\right\} \in S^{+}$with $a_{0} \neq 0$ and $A_{n}=\frac{1}{(n+1)(n+2)} \sum_{k=0}^{n} a_{k}$ $(n \geq 0)$. Then $\left\{A_{n}\right\} \in S^{+}$.

Proof. Let $b_{0}=b_{1}=0$ and $b_{n}=\sum_{k=0}^{n-2} a_{k}(n \geq 2)$. By [10, Corollary 3.2], $\left\{b_{n}\right\} \in S^{+}$. Now applying Theorem 2.4 we find that $\left\{\frac{b_{n+2}}{(n+1)(n+2)}\right\} \in S^{+}$. That is, $\left\{A_{n}\right\} \in S^{+}$.

Theorem 2.5. Let F be a given function. If $\left\{A_{n}\right\}$ is an even sequence, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}\left(\sum_{s=0}^{k}\binom{k}{s}(-1)^{s}(F(s)-F(n-s))\right)=0 \quad(n=0,1,2, \ldots) .
$$

If $\left\{A_{n}\right\}$ is an odd sequence, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}\left(\sum_{s=0}^{k}\binom{k}{s}(-1)^{s}(F(s)+F(n-s))\right)=0 \quad(n=0,1,2, \ldots) .
$$

Proof. Suppose that $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}= \pm A_{n}$ for $n=0,1,2, \ldots$. From [9, Lemma 2.1] we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) A_{k}= \pm \sum_{k=0}^{n}\binom{n}{k}\left(\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} F(n-k+r)\right) A_{k},
$$

where $f(k)=\sum_{s=0}^{k}\binom{k}{s}(-1)^{s} F(s)$. Thus

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}\left(f(k) \mp \sum_{s=0}^{k}\binom{k}{s}(-1)^{s} F(n-s)\right)=0
$$

This yields the result.
Corollary 2.2. If $\left\{A_{n}\right\} \in S^{+}$, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}(1+x)^{k}\left(1-(-1)^{n} x^{n-k}\right)=0 \quad \text { for } \quad n=0,1,2, \ldots .
$$

If $\left\{A_{n}\right\} \in S^{-}$, then

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}(1+x)^{k}\left(1+(-1)^{n} x^{n-k}\right)=0 \quad \text { for } \quad n=0,1,2, \ldots
$$

Proof. Taking $F(s)=(-x)^{s}$ in Theorem 2.5 and then applying the binomial theorem we obtain the result.

Remark 2.2. From [9, (2.5)] we know that

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(m+k)=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} F(n+k)
$$

where $F(r)=\sum_{s=0}^{r}\binom{r}{s}(-1)^{s} f(s)$. Hence for any nonnegative integers m and n we have

$$
\begin{align*}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k+m}=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} A_{k+n} \quad \text { for } \quad\left\{A_{k}\right\} \in S^{+}, \tag{2.10}\\
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k+m}=-\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} A_{k+n} \quad \text { for } \quad\left\{A_{k}\right\} \in S^{-} . \tag{2.11}
\end{align*}
$$

3. A transformation formula for $\sum_{k=0}^{n}\binom{n}{k} A_{n}$

Lemma 3.1 ([10, Theorems 4.1 and 4.2]). Let f be a given function and $n \in \mathbb{N}$.
(i) If $\left\{A_{n}\right\}$ is an even sequence, then

$$
\sum_{k=0}^{n}\binom{n}{k}\left(f(k)-(-1)^{n-k} \sum_{s=0}^{k}\binom{k}{s} f(s)\right) A_{n-k}=0
$$

(ii) If $\left\{A_{n}\right\}$ is an odd sequence, then

$$
\sum_{k=0}^{n}\binom{n}{k}\left(f(k)+(-1)^{n-k} \sum_{s=0}^{k}\binom{k}{s} f(s)\right) A_{n-k}=0
$$

We remark that a simple proof of Lemma 3.1 was given by Wang[13].
Theorem 3.1. Let $n \in \mathbb{N}$. If $\left\{A_{m}\right\}$ is an even sequence and n is odd, or if $\left\{A_{m}\right\}$ is an odd sequence and n is even, then

$$
\sum_{\substack{k=0 \\ 3 \mid k}}^{n}\binom{n}{k} A_{n-k}=\sum_{\substack{k=0 \\ 3 \mid n-k}}^{n}\binom{n}{k} A_{k}=\frac{1}{3} \sum_{k=0}^{n}\binom{n}{k} A_{k}
$$

Proof. Set $\omega=(-1+\sqrt{-3}) / 2$. If $\left\{A_{m}\right\}$ is an even sequence and n is odd, or if $\left\{A_{m}\right\}$ is an odd sequence and n is even, putting $f(k)=\omega^{k}$ in Lemma 3.1 we obtain

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\omega^{k}+(-1)^{k}(1+\omega)^{k}\right) A_{n-k}=0
$$

As $1+\omega=-\omega^{2}$, we have $\sum_{k=0}^{n}\binom{n}{k}\left(\omega^{k}+\omega^{2 k}\right) A_{n-k}=0$. Therefore,

$$
\begin{aligned}
& 3 \sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k} A_{n-k}-\sum_{k=0}^{n}\binom{n}{k} A_{k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(1+\omega^{k}+\omega^{2 k}\right) A_{n-k}-\sum_{k=0}^{n}\binom{n}{k} A_{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(\omega^{k}+\omega^{2 k}\right) A_{n-k}=0 .
\end{aligned}
$$

This proves the theorem.
Corollary 3.1 (Ramanujan [7]). For $n=3,5,7, \ldots$ we have

$$
\sum_{\substack{k=0 \\ 6 \mid k-3}}^{n}\binom{n}{k} B_{n-k}= \begin{cases}-\frac{n}{6} & \text { if } n \equiv 1 \quad(\bmod 6), \\ \frac{n}{3} & \text { if } n \equiv 3,5 \quad(\bmod 6) .\end{cases}
$$

Proof. As $\left\{(-1)^{n} B_{n}\right\} \in S^{+}, B_{1}=-\frac{1}{2}$ and $B_{2 m+1}=0$ for $m \geq 1$, taking $A_{n}=$ $(-1)^{n} B_{n}$ in Theorem 3.1 we obtain

$$
\begin{aligned}
\sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k}(-1)^{n-k} B_{n-k} & =\frac{1}{3} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} B_{k}=\frac{1}{3}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}+n\right) \\
& =\frac{1}{3}\left(n+B_{n}\right)=\frac{n}{3} .
\end{aligned}
$$

To see the result, we note that

$$
\sum_{\substack{k=0 \\ 3 \mid k}}^{n}\binom{n}{k}(-1)^{n-k} B_{n-k}-\sum_{\substack{k=0 \\ 6 \mid k-3}}^{n}\binom{n}{k} B_{n-k}= \begin{cases}-n B_{1}=\frac{n}{2} & \text { if } n \equiv 1 \quad(\bmod 6), \\ 0 & \text { if } n \equiv 3,5 \quad(\bmod 6) .\end{cases}
$$

Corollary 3.2 (Ramanujan [7]). For $n=0,2,4, \ldots$ we have

$$
\frac{1}{3}\left(2^{n}-1\right) B_{n}+\sum_{k=0}^{[n / 6]}\binom{n}{6 k}\left(2^{n-6 k}-1\right) B_{n-6 k}= \begin{cases}-\frac{n}{6} & \text { if } n \equiv 4 \quad(\bmod 6), \\ \frac{n}{3} & \text { if } n \equiv 0,2 \quad(\bmod 6) .\end{cases}
$$

Proof. Since $\left\{(-1)^{n}\left(2^{n}-1\right) B_{n}\right\}$ is an odd sequence, $B_{1}=-\frac{1}{2}$ and $B_{2 m+1}=0$ for $m \geq 1$, applying Theorem 3.1 we see that for even n,

$$
\begin{aligned}
& \sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k}(-1)^{n-k}\left(2^{n-k}-1\right) B_{n-k} \\
& =\frac{1}{3} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(2^{k}-1\right) B_{k}=\frac{1}{3}\left(\sum_{k=0}^{n}\binom{n}{k}\left(2^{k}-1\right) B_{k}+n\right) \\
& =\frac{1}{3}\left(-(-1)^{n}\left(2^{n}-1\right) B_{n}+n\right)=\frac{n}{3}-\frac{1}{3}\left(2^{n}-1\right) B_{n} .
\end{aligned}
$$

On the other hand, for even n,

$$
\begin{aligned}
& \sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k}(-1)^{n-k}\left(2^{n-k}-1\right) B_{n-k}-\sum_{\substack{k=0 \\
6 \mid k}}^{n}\binom{n}{k}\left(2^{n-k}-1\right) B_{n-k} \\
& = \begin{cases}-n B_{1}=\frac{n}{2} & \text { if } 6 \mid n-4, \\
0 & \text { if } 6 \nmid n-4 .\end{cases}
\end{aligned}
$$

Now combining all the above yields the result.
Corollary 3.3 (Lehmer [3]). For $n=0,2,4, \ldots$ we have

$$
E_{n}+3 \sum_{k=1}^{[n / 6]}\binom{n}{6 k} 2^{6 k-2} E_{n-6 k}=\frac{1+(-3)^{n / 2}}{2}
$$

Proof. Since $\left\{\left(E_{n}-1\right) / 2^{n}\right\}$ is an odd sequence and $E_{2 k+1}=0$, from Theorem 3.1 and the binomial theorem we see that for even n,

$$
\begin{aligned}
\sum_{\substack{k=0 \\
6 \mid k}}^{n}\binom{n}{k} \frac{E_{n-k}}{2^{n-k}}-\sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k} \frac{1}{2^{n-k}} & =\sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k} \frac{E_{n-k}-1}{2^{n-k}}=\frac{1}{3} \sum_{k=0}^{n}\binom{n}{k} \frac{E_{k}-1}{2^{k}} \\
& =\frac{1}{3}\left\{\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{E_{k}-1}{2^{k}}+\left(1-\frac{1}{2}\right)^{n}-\left(1+\frac{1}{2}\right)^{n}\right\} \\
& =\frac{1}{3}\left\{-\frac{E_{n}-1}{2^{n}}+\frac{1-3^{n}}{2^{n}}\right\}=\frac{2-3^{n}-E_{n}}{3 \cdot 2^{n}} .
\end{aligned}
$$

For even n we also have

$$
\begin{aligned}
\sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{n}{k} 2^{k} & =\sum_{k=0}^{n}\binom{n}{k} 2^{k} \cdot \frac{1}{3}\left(1+\omega^{k}+\omega^{2 k}\right) \\
& =\frac{1}{3}\left((1+2)^{n}+(1+2 \omega)^{n}+\left(1+2 \omega^{2}\right)^{n}\right) \\
& =\frac{1}{3}\left(3^{n}+(\sqrt{-3})^{n}+(-\sqrt{-3})^{n}\right)=\frac{1}{3}\left(3^{n}+2 \cdot(-3)^{\frac{n}{2}}\right)
\end{aligned}
$$

Hence

$$
\frac{1}{3} E_{n}+\sum_{\substack{k=0 \\ 6 \mid k}}^{n}\binom{n}{k} 2^{k} E_{n-k}=\frac{2-3^{n}}{3}+\frac{3^{n}+2 \cdot(-3)^{\frac{n}{2}}}{3}=\frac{2}{3}\left(1+(-3)^{\frac{n}{2}}\right) .
$$

This yields the result.
Remark 3.1 Compared with known proofs of Corollaries 3.1-3.3 (see [1,3,7]), our proofs are simple and natural.

4. Congruences involving even and odd sequences

Let p be an odd prime. For $k \in\{1,2, \ldots, p-1\}$ we see that

$$
\begin{equation*}
\binom{p}{k}=\frac{p(p-1) \cdots(p-(k-1))}{k!} \equiv(-1)^{k-1} \frac{p}{k} \quad\left(\bmod p^{2}\right) . \tag{4.1}
\end{equation*}
$$

If $\left\{A_{n}\right\}$ is an even sequence and $A_{0}, A_{1}, \ldots, A_{p-2}, p A_{p-1}, A_{p} \in \mathbb{Z}_{p}$, applying (4.1) we see that

$$
\begin{aligned}
A_{p} & =\sum_{k=0}^{p}\binom{p}{k}(-1)^{k} A_{k}=A_{0}+p A_{p-1}-A_{p}+\sum_{k=1}^{p-2}\binom{p}{k}(-1)^{k} A_{k} \\
& \equiv A_{0}+p A_{p-1}-A_{p}-p \sum_{k=1}^{p-2} \frac{A_{k}}{k}\left(\bmod p^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 A_{p}-p A_{p-1} \equiv A_{0}-p \sum_{k=1}^{p-2} \frac{A_{k}}{k} \quad\left(\bmod p^{2}\right) \quad \text { for } \quad\left\{A_{n}\right\} \in S^{+} . \tag{4.2}
\end{equation*}
$$

If $\left\{A_{n}\right\}$ is an odd sequence and $A_{0}, A_{1}, \ldots, A_{p} \in \mathbb{Z}_{p}$, using (4.1) we see that

$$
-A_{p}=\sum_{k=0}^{p}\binom{p}{k}(-1)^{k} A_{k} \equiv A_{0}-A_{p}-p \sum_{k=1}^{p-1} \frac{A_{k}}{k} \quad\left(\bmod p^{2}\right)
$$

Since $A_{0}=-A_{0}$ we have $A_{0}=0$ and so

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{A_{k}}{k} \equiv 0 \quad(\bmod p) \quad \text { for } \quad\left\{A_{n}\right\} \in S^{-} \tag{4.3}
\end{equation*}
$$

We note that (4.3) was first obtained by Mattarei and Tauraso[5] via a complicated method.

For an odd prime p and $a \in \mathbb{Z}_{p}$ let $\langle a\rangle_{p} \in\{0,1, \ldots p-1\}$ be given by $\langle a\rangle_{p} \equiv a(\bmod p)$. Let p be an odd prime, $a \in \mathbb{Z}_{p}$ and $A_{0}, A_{1}, \ldots, A_{p-1} \in \mathbb{Z}_{p}$. By [11, Theorem 2.4], if $\langle a\rangle_{p}$ is odd and $\left\{A_{n}\right\}$ is an even sequence, or if $\langle a\rangle_{p}$ is even and $\left\{A_{n}\right\}$ is an odd sequence, then

$$
\begin{equation*}
\sum_{k=0}^{p-1}\binom{a}{k}\binom{-1-a}{k} A_{k} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{4.4}
\end{equation*}
$$

In the case $a=-\frac{1}{2}$, (4.4) was given by the author in an earlier unpublished preprint. Inspired by the author, Z.W. Sun deduced (4.4) in the cases $a=-\frac{1}{3},-\frac{1}{4},-\frac{1}{6}$. See [12, Theorem 1.4].

Now we establish new congruences for sums involving even or odd sequences.
Theorem 4.1. Let p be an odd prime. If $\left\{A_{n}\right\} \in S^{+}$and $A_{1}, \ldots, A_{p-2}, p A_{p-1}, A_{p} \in$ \mathbb{Z}_{p}, then

$$
A_{p}-\frac{p A_{p-1}}{2} \equiv(p+1) A_{1}-p \sum_{k=1}^{p-3} \frac{A_{k+1}}{k} \quad\left(\bmod p^{2}\right)
$$

If $\left\{A_{n}\right\} \in S^{-}$and $A_{1}, A_{2}, \ldots, A_{p+1} \in \mathbb{Z}_{p}$, then

$$
2 A_{p+1}-A_{p} \equiv A_{1}-p \sum_{k=1}^{p-1} \frac{A_{k+1}}{k} \quad\left(\bmod p^{2}\right)
$$

Proof. If $\left\{A_{n}\right\} \in S^{+}$, from [10, Corollary 3.1(a)] we have $\left\{2 A_{n+1}-A_{n}\right\} \in S^{-}$. Thus,

$$
\begin{aligned}
A_{p}-2 A_{p+1} & =\sum_{k=0}^{p}\binom{p}{k}(-1)^{k}\left(2 A_{k+1}-A_{k}\right)=2 \sum_{k=0}^{p}\binom{p}{k}(-1)^{k} A_{k+1}-A_{p} \\
& =2\left(A_{1}-A_{p+1}+\sum_{k=1}^{p-1}\binom{p}{k}(-1)^{k} A_{k+1}\right)-A_{p} .
\end{aligned}
$$

Hence applying (4.1) we deduce that

$$
\begin{aligned}
A_{p} & =A_{1}+p A_{p}-\frac{p(p-1)}{2} A_{p-1}+\sum_{k=1}^{p-3}\binom{p}{k}(-1)^{k} A_{k+1} \\
& \equiv A_{1}+p A_{p}-\frac{p(p-1)}{2} A_{p-1}-p \sum_{k=1}^{p-3} \frac{A_{k+1}}{k}\left(\bmod p^{2}\right) .
\end{aligned}
$$

This yields the first part. If $\left\{A_{n}\right\} \in S^{-}$, from [10, Corollary 3.1(a)] we have $\left\{2 A_{n+1}-\right.$ $\left.A_{n}\right\} \in S^{+}$. Thus,

$$
\begin{aligned}
2 A_{p+1}-A_{p} & =\sum_{k=0}^{p}\binom{p}{k}(-1)^{k}\left(2 A_{k+1}-A_{k}\right)=2 \sum_{k=0}^{p}\binom{p}{k}(-1)^{k} A_{k+1}+A_{p} \\
& =2\left(A_{1}-A_{p+1}+\sum_{k=1}^{p-1}\binom{p}{k}(-1)^{k} A_{k+1}\right)+A_{p} .
\end{aligned}
$$

Hence applying (4.1) we obtain

$$
A_{p+1}-A_{p}=A_{1}-A_{p+1}+\sum_{k=1}^{p-1}\binom{p}{k}(-1)^{k} A_{k+1} \equiv A_{1}-A_{p+1}-p \sum_{k=1}^{p-1} \frac{A_{k+1}}{k} \quad\left(\bmod p^{2}\right) .
$$

This yields the remaining result. The proof is now complete.
Corollary 4.1. Let p be an odd prime. Then

$$
p B_{p-1} \equiv-p-1+2 p \sum_{k=1}^{(p-3) / 2} \frac{B_{2 k}}{2 k-1} \quad\left(\bmod p^{2}\right) .
$$

Proof. Since $\left\{(-1)^{n} B_{n}\right\} \in S^{+}, B_{1}=-\frac{1}{2}$ and $B_{2 m+1}=0$ for $m>1$, taking $A_{n}=$ $(-1)^{n} B_{n}$ in Theorem 4.1 yields the result.

Corollary 4.2. Let p be an odd prime and $b, c \in \mathbb{Z}_{p}$ with $b \not \equiv 0(\bmod p)$. Then

$$
V_{p}(b, c) \equiv b^{p}\left(1-p \sum_{k=1}^{p-1} \frac{U_{k+1}(b, c)}{k b^{k}}\right) \quad\left(\bmod p^{2}\right) .
$$

Proof. Since $\left\{\frac{U_{n}(b, c)}{b^{n}}\right\} \in S^{-}$and $V_{p}(b, c)=2 U_{p+1}(b, c)-b U_{p}(b, c)$, from Theorem 4.1 we deduce the result.

Theorem 4.2. Let p be an odd prime. If $\left\{A_{n}\right\} \in S^{+}$and $A_{0}, A_{1}, \ldots, A_{p-2} \in \mathbb{Z}_{p}$, then

$$
\sum_{k=0}^{p-2} A_{k} \equiv p \sum_{k=0}^{p-2} \frac{A_{k}}{k+1} \quad\left(\bmod p^{2}\right)
$$

If $\left\{A_{n}\right\} \in S^{-}$and $A_{0}, A_{1}, \ldots, A_{p-1} \in \mathbb{Z}_{p}$, then

$$
\sum_{k=0}^{p-2} A_{k} \equiv-2 A_{p-1}-p \sum_{k=0}^{p-2} \frac{A_{k}}{k+1} \quad\left(\bmod p^{2}\right)
$$

Proof. Since

$$
\sum_{k=0}^{p-1}\binom{p-1-p}{k}(-1)^{p-1-k} A_{p-1-k}=\sum_{k=0}^{p-1} A_{p-1-k}=\sum_{k=0}^{p-1} A_{k}
$$

and

$$
\sum_{k=0}^{p-1}\binom{p}{k}(-1)^{k} A_{p-1-k}=A_{p-1}+\sum_{k=0}^{p-2}\binom{p}{k+1}(-1)^{k} A_{k}
$$

putting $m=0$ and $n=p-1$ in Lemma 2.1 and then applying (4.1) we see that if $\left\{A_{n}\right\} \in S^{+}$, then

$$
\sum_{k=0}^{p-2} A_{k}=\sum_{k=0}^{p-2}\binom{p}{k+1}(-1)^{k} A_{k} \equiv p \sum_{k=0}^{p-2} \frac{A_{k}}{k+1} \quad\left(\bmod p^{2}\right) ;
$$

if $\left\{A_{n}\right\} \in S^{-}$, then

$$
\sum_{k=0}^{p-1} A_{k}=-A_{p-1}-\sum_{k=0}^{p-2}\binom{p}{k+1}(-1)^{k} A_{k} \equiv-A_{p-1}-p \sum_{k=0}^{p-2} \frac{A_{k}}{k+1} \quad\left(\bmod p^{2}\right) .
$$

This yields the result.
Corollary 4.3. Let $p>3$ be a prime and $b, c \in \mathbb{Z}_{p}$ with $b c \not \equiv 0(\bmod p)$. Then

$$
V_{p}(b, c) \equiv b^{p}-\frac{p c}{b} \sum_{k=0}^{p-2} \frac{V_{k}(b, c)}{(k+1) b^{k}} \quad\left(\bmod p^{2}\right) .
$$

Proof. It is well known that $V_{k}(b, c)=\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{k}+\left(\frac{b-\sqrt{b^{2}-4 c}}{2}\right)^{k}$. Thus,

$$
\begin{aligned}
\sum_{k=0}^{p-2} \frac{V_{k}(b, c)}{b^{k}} & =\sum_{k=0}^{p-2}\left(\frac{b+\sqrt{b^{2}-4 c}}{2 b}\right)^{k}+\sum_{k=0}^{p-2}\left(\frac{b-\sqrt{b^{2}-4 c}}{2 b}\right)^{k} \\
& =\frac{1-\left(\frac{b+\sqrt{b^{2}-4 c}}{2 b}\right)^{p-1}}{1-\frac{b+\sqrt{b^{2}-4 c}}{2 b}}+\frac{1-\left(\frac{b-\sqrt{b^{2}-4 c}}{2 b}\right)^{p-1}}{1-\frac{b-\sqrt{b^{2}-4 c}}{2 b}} \\
& =\frac{4 b^{2}}{4 c}\left(1-\frac{V_{p}(b, c)}{b^{p}}\right)=\frac{b^{p}-V_{p}(b, c)}{b^{p-2} c} .
\end{aligned}
$$

Since $\left\{\frac{V_{n}(b, c)}{b^{n}}\right\} \in S^{+}$, from the above and Theorem 4.2 we deduce the result.
Theorem 4.3. Let p be an odd prime, and let $\left\{A_{n}\right\}$ be an odd sequence. Suppose $A_{1}, A_{2}, \ldots, A_{p-1} \in \mathbb{Z}_{p}$. Then

$$
\sum_{k=1}^{p-1} \frac{A_{k}}{k} \equiv p \sum_{k=1}^{p-1} \frac{A_{k}}{k^{2}} \quad\left(\bmod p^{2}\right)
$$

Proof. Taking $n=p-1$ in Theorem 2.2 we get $\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{p-1+k}{k}(-1)^{k} A_{k}=0$. For $k=1,2, \ldots, p-1$ we see that

$$
\begin{aligned}
\binom{p-1}{k}\binom{p-1+k}{k} & =\frac{(p-1)(p-2) \cdots(p-k)}{k!} \cdot \frac{p(p+1) \cdots(p+k-1)}{k!} \\
& =\frac{p}{p+k} \cdot \frac{\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right) \cdots\left(p^{2}-k^{2}\right)}{k!^{2}} \equiv(-1)^{k} \frac{p}{p+k} \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Since $A_{0}=-A_{0}$ we have $A_{0}=0$. Now, from all the above we deduce that

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{A_{k}}{p+k} \equiv 0 \quad\left(\bmod p^{2}\right) \quad \text { for } \quad\left\{A_{n}\right\} \in S^{-} \tag{4.5}
\end{equation*}
$$

For $k=1,2, \ldots, p-1$ we have $\frac{1}{k+p}=\frac{k-p}{k^{2}-p^{2}} \equiv \frac{k-p}{k^{2}}=\frac{1}{k}-\frac{p}{k^{2}}\left(\bmod p^{2}\right)$. Thus the result follows.

Let $F_{n}=U_{n}(1,-1)$ and $L_{n}=V_{n}(1,-1)$ be the Fibonacci and Lucas sequences, respectively. From Theorem 4.3 we have the following corollary.

Corollary 4.4. Let $p>5$ be a prime. Then

$$
\sum_{k=1}^{p-1} \frac{F_{k}}{k} \equiv-\left(\frac{p}{5}\right) \frac{5 p}{4}\left(\frac{F_{p-\left(\frac{p}{5}\right)}}{p}\right)^{2} \quad\left(\bmod p^{2}\right)
$$

Proof. Recently Pan and Sun ([6, Remark 3.3]) proved that

$$
\sum_{k=1}^{p-1} \frac{F_{k}}{k^{2}} \equiv-\frac{1}{5}\left(\frac{p}{5}\right)\left(\frac{L_{p}-1}{p}\right)^{2} \quad(\bmod p)
$$

It is known that $([8]) F_{p-\left(\frac{p}{5}\right)} \equiv 0(\bmod p)$ and $L_{p-\left(\frac{p}{5}\right)} \equiv 2\left(\frac{p}{5}\right)\left(\bmod p^{2}\right)$. Also, $5 F_{n}=$ $2 L_{n+1}-L_{n}=L_{n}+2 L_{n-1}$. Thus

$$
5 F_{p-\left(\frac{p}{5}\right)}=2 L_{p}-\left(\frac{p}{5}\right) L_{p-\left(\frac{p}{5}\right)} \equiv 2\left(L_{p}-1\right) \quad\left(\bmod p^{2}\right)
$$

and so

$$
\sum_{k=1}^{p-1} \frac{F_{k}}{k^{2}} \equiv-\frac{1}{5}\left(\frac{p}{5}\right)\left(\frac{5 F_{p-\left(\frac{p}{5}\right)}}{2 p}\right)^{2} \quad\left(\bmod p^{2}\right)
$$

Since $\left\{F_{k}\right\}$ is an odd sequence, applying Theorem 4.3 we deduce the result.
Theorem 4.4. Let p be a prime greater than 3, and let $\left\{A_{n}\right\}$ be an even sequence. Suppose that $A_{0}, A_{1}, \ldots, A_{p-2}, A_{p}, p A_{p-1} \in \mathbb{Z}_{p}$. Then

$$
\sum_{k=1}^{p-2} \frac{A_{k}}{k} \equiv-p \sum_{k=1}^{p-2} \frac{A_{k}}{k^{2}}+\frac{A_{0}+p A_{p-1}-2 A_{p}}{p} \quad\left(\bmod p^{2}\right)
$$

Proof. Taking $n=p$ in Theorem 2.2 we get $\sum_{k=0}^{p}\binom{p}{k}\binom{p+k}{k}(-1)^{k} A_{k}=0$. For $k=$ $1,2, \ldots, p-1$ we see that

$$
\binom{p}{k}\binom{p+k}{k}=\frac{p(p-1) \cdots(p-k+1)}{k!} \cdot \frac{(p+1) \cdots(p+k)}{k!}
$$

$$
=\frac{p}{p-k} \cdot \frac{\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right) \cdots\left(p^{2}-k^{2}\right)}{k!^{2}} \equiv(-1)^{k} \frac{p}{p-k} \quad\left(\bmod p^{3}\right)
$$

Thus,

$$
\begin{aligned}
& A_{0}-\binom{2 p}{p} A_{p}+\binom{p}{p-1}\binom{2 p-1}{p-1} A_{p-1}+\sum_{k=1}^{p-2} \frac{p}{p-k} A_{k} \\
& \equiv \sum_{k=0}^{p}\binom{p}{k}\binom{p+k}{k}(-1)^{k} A_{k}=0 \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

Hence

$$
\sum_{k=1}^{p-2} \frac{A_{k}}{p-k} \equiv \frac{2\binom{2 p-1}{p-1} A_{p}-p\binom{2 p-1}{p-1} A_{p-1}-A_{0}}{p} \quad\left(\bmod p^{2}\right)
$$

The famous Wolstenholme's congruence $([15])$ states that $\binom{2 p-1}{p-1} \equiv 1\left(\bmod p^{3}\right)$. Thus

$$
\begin{equation*}
\sum_{k=1}^{p-2} \frac{A_{k}}{p-k} \equiv \frac{2 A_{p}-A_{0}-p A_{p-1}}{p} \quad\left(\bmod p^{2}\right) \quad \text { for } \quad\left\{A_{n}\right\} \in S^{+} \tag{4.6}
\end{equation*}
$$

For $k=1,2, \ldots, p-2$ we have $\frac{1}{k-p}=\frac{k+p}{k^{2}-p^{2}} \equiv \frac{k+p}{k^{2}}=\frac{1}{k}+\frac{p}{k^{2}}\left(\bmod p^{2}\right)$. Hence the result follows.

Corollary 4.5. Let $p>5$ be a prime. Then

$$
\sum_{k=1}^{p-1} \frac{L_{k}}{k} \equiv \frac{2\left(1-L_{p}\right)}{p} \quad\left(\bmod p^{2}\right)
$$

Proof. In [6] Pan and Sun proved that $\sum_{k=1}^{p-1} \frac{L_{k}}{k^{2}} \equiv 0(\bmod p)$, which was conjectured by R. Tauraso. Since $\left\{L_{n}\right\} \in S^{+}$, taking $A_{k}=L_{k}$ in Theorem 4.4 we see that

$$
\begin{aligned}
\sum_{k=1}^{p-2} \frac{L_{k}}{k} & \equiv-p\left(\sum_{k=1}^{p-1} \frac{L_{k}}{k^{2}}-\frac{L_{p-1}}{(p-1)^{2}}\right)+\frac{2+p L_{p-1}-2 L_{p}}{p} \\
& \equiv(p+1) L_{p-1}+\frac{2\left(1-L_{p}\right)}{p} \equiv-\frac{L_{p-1}}{p-1}+\frac{2\left(1-L_{p}\right)}{p} \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

This yields the result.
Corollary 4.6. Let p be a prime greater than 3 . Then

$$
\sum_{k=1}^{(p-3) / 2} \frac{B_{2 k}}{p-2 k} \equiv \frac{p+1}{2}-\frac{p B_{p-1}+1}{p} \quad\left(\bmod p^{2}\right) .
$$

Proof. It is well known that $B_{0}, B_{1}, \ldots, B_{p-2}, B_{p}, p B_{p-1} \in \mathbb{Z}_{p}$. Taking $A_{k}=(-1)^{k} B_{k}$ in (4.6) and applying the fact $B_{2 k+1}=0$ for $k \geq 1$ we deduce the result.

Corollary 4.7. Let $p>3$ be a prime, $b, c \in \mathbb{Z}_{p}$ and $b \not \equiv 0(\bmod p)$. Then

$$
\sum_{k=1}^{p-1} \frac{V_{k}(b, c)}{(p-k) b^{k}} \equiv \frac{2\left(V_{p}(b, c)-b^{p}\right)}{p b^{p}} \quad\left(\bmod p^{2}\right)
$$

Proof. Taking $A_{k}=V_{k}(b, c) / b^{k}$ in (4.6) yields the result.
Theorem 4.5. Let p be an odd prime and $A_{0}, A_{1}, \ldots, A_{\frac{p-1}{2}} \in \mathbb{Z}_{p}$. If $\left\{A_{n}\right\} \in S^{+}$and $p \equiv 3(\bmod 4)$, or if $\left\{A_{n}\right\} \in S^{-}$and $p \equiv 1(\bmod 4)$, then

$$
\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k} \frac{A_{k}}{2^{k}} \equiv 0 \quad(\bmod p)
$$

Proof. Since $\left\{\frac{1}{2^{n}}\right\} \in S^{+}$, by Lemma 3.1 (i) we have

$$
\begin{aligned}
& \sum_{k=0}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k}(-1)^{k} A_{k} \frac{2}{2^{\frac{p-1}{2}-k}} \\
& =\sum_{k=0}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k}\left((-1)^{k} A_{k}-(-1)^{\frac{p-1}{2}-k} \sum_{s=0}^{k}\binom{k}{s}(-1)^{s} A_{s}\right) \frac{1}{2^{\frac{p-1}{2}-k}}=0 .
\end{aligned}
$$

Note that $\binom{\frac{p-1}{2}}{k} \equiv\binom{-\frac{1}{2}}{k}=\frac{1}{(-4)^{k}}\binom{2 k}{k}(\bmod p)$ by $[2$, p.90]. From the above we deduce the result.

Theorem 4.6. Let p be an odd prime and $A_{0}, A_{1}, \ldots, A_{p} \in \mathbb{Z}_{p}$. If $\left\{A_{n}\right\}$ is an odd sequence, then

$$
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}}{4^{k}} A_{\frac{p-1}{2}-k} \equiv-(-1)^{\frac{p-1}{2}} A_{\frac{p-1}{2}}+(-1)^{\frac{p-1}{2}} \frac{p}{2} \sum_{k=1}^{(p-1) / 2} \frac{A_{\frac{p-1}{2}-k}}{k} \quad\left(\bmod p^{2}\right)
$$

and

$$
\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k} \frac{A_{p-1-k}}{4^{k}} \equiv 0 \quad(\bmod p)
$$

If $\left\{A_{n}\right\}$ is an even sequence, then

$$
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}}{4^{k}} A_{\frac{p-1}{2}-k} \equiv(-1)^{\frac{p-1}{2}} A_{\frac{p-1}{2}}-(-1)^{\frac{p-1}{2}} \frac{p}{2} \sum_{k=1}^{(p-1) / 2} \frac{A_{\frac{p-1}{2}-k}}{k} \quad\left(\bmod p^{2}\right)
$$

and

$$
\frac{A_{p}-A_{0} / 2}{p} \equiv-A_{0} \frac{2^{p-1}-1}{p}+\sum_{k=1}^{(p-1) / 2} \frac{\binom{2 k}{k}}{4^{k} \cdot k} A_{p-k} \quad(\bmod p)
$$

Proof. Putting $m=0, p=-\frac{1}{2}$ in Lemma 2.1 and noting that $\binom{-\frac{1}{2}}{k}=\binom{2 k}{k}(-4)^{-k}$ we see that if $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}= \pm A_{n}$ for $n \geq 0$, then

$$
\begin{aligned}
\sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}}{4^{k}} A_{\frac{p-1}{2}-k} & =\sum_{k=0}^{(p-1) / 2}\binom{-\frac{1}{2}}{k}(-1)^{k} A_{\frac{p-1}{2}-k}= \pm \sum_{k=0}^{(p-1) / 2}\binom{\frac{p}{2}}{k}(-1)^{\frac{p-1}{2}-k} A_{\frac{p-1}{2}-k} \\
& \equiv \pm(-1)^{\frac{p-1}{2}}\left(A_{\frac{p-1}{2}}-\sum_{k=1}^{(p-1) / 2} \frac{p}{2 k} A_{\frac{p-1}{2}-k}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

where in the last step we use the fact $\binom{a p}{k}=\frac{a p}{k}\binom{a p-1}{k-1} \equiv \frac{a p}{k}\binom{-1}{k-1}=(-1)^{k-1} \frac{a p}{k}\left(\bmod p^{2}\right)$ for $1 \leq k \leq p-1$.

Note that $\binom{\frac{p-1}{2}}{k} \equiv\binom{-\frac{1}{2}}{k}=\frac{1}{(-4)^{k}}\binom{2 k}{k}(\bmod p)$. If $\left\{A_{n}\right\}$ is an odd sequence, taking $n=\frac{p-1}{2}$ in Theorem 2.1 and applying the above we deduce that $\sum_{k=0}^{(p-1) / 2}\binom{2 k}{k} \frac{A_{p-1-k}}{4^{k}} \equiv 0$ $(\bmod p)$. Now assume that $\left\{A_{n}\right\}$ is an even sequence. Since $p \left\lvert\,\binom{ p}{k}\right.$ for $k=1,2, \ldots, p-1$, we see that $A_{p}=\sum_{k=0}^{p}\binom{p}{k}(-1)^{k} A_{k} \equiv A_{0}-A_{p}(\bmod p)$ and so $A_{p} \equiv A_{0} / 2(\bmod p)$. By Theorem 2.1,

$$
\frac{A_{p}}{p}+\sum_{k=1}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k}(-1)^{k} \frac{A_{p-k}}{p-k}=(-1)^{\frac{p-1}{2}} \frac{A_{0} / 2}{p\binom{p-1}{(p-1) / 2}}
$$

Since $\binom{(p-1) / 2}{k} \equiv\binom{2 k}{k} /(-4)^{k}(\bmod p)$, we deduce that

$$
\frac{A_{p}\binom{p-1}{(p-1) / 2}-(-1)^{(p-1) / 2} A_{0} / 2}{p\binom{p-1}{(p-1) / 2}} \equiv \sum_{k=1}^{(p-1) / 2} \frac{\binom{2 k}{k} A_{p-k}}{4^{k} \cdot k} \quad(\bmod p)
$$

It is well known that (see [8, Corollary 1.2] or [9, Theorem 5.2]) $\sum_{k=1}^{(p-1) / 2} \frac{1}{k} \equiv-\frac{2^{p}-2}{p}$ $(\bmod p)$. Thus,

$$
\begin{aligned}
\binom{p-1}{\frac{p-1}{2}} & =\frac{(p-1)(p-2) \cdots\left(p-\frac{p-1}{2}\right)}{\frac{p-1}{2}!} \equiv(-1)^{\frac{p-1}{2}}\left(1-p \sum_{k=1}^{(p-1) / 2} \frac{1}{k}\right) \\
& \equiv(-1)^{\frac{p-1}{2}}\left(2^{p}-1\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{A_{p}\binom{p-1}{(p-1) / 2}-(-1)^{(p-1) / 2} A_{0} / 2}{p\binom{p-1}{(p-1) / 2}} & \equiv \frac{A_{p}\left(1+2^{p}-2\right)-A_{0} / 2}{p\left(1+2^{p}-2\right)} \equiv \frac{A_{p}-A_{0} / 2}{p}+\frac{2^{p}-2}{p} A_{p} \\
& \equiv \frac{A_{p}-A_{0} / 2}{p}+A_{0} \frac{2^{p-1}-1}{p} \quad(\bmod p)
\end{aligned}
$$

Combining all the above proves the theorem.
Added Remark. Let p be an odd prime and $A_{0}, A_{1}, \ldots, A_{\frac{p-1}{2}} \in \mathbb{Z}_{p}$. Observe that $\binom{-\frac{1}{2}}{k}=\binom{2 k}{k}(-4)^{-k}$ and $\binom{p / 2}{k}=\frac{p}{2 k}\binom{p / 2-1}{k-1} \equiv \frac{p}{2 k}\binom{-1}{k-1}=-\frac{(-1)^{k}}{2 k} p\left(\bmod p^{2}\right)$ for $k \in \mathbb{N}$. Putting $m=0, p=-\frac{1}{2}, n=\frac{p-1}{2}$ in Lemma 2.1 and then applying the above we deduce that if $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} A_{k}= \pm A_{n}$ for $n \geq 0$, then

$$
\begin{aligned}
& \sum_{k=0}^{(p-1) / 2} \frac{\binom{2 k}{k}}{4^{k}} A_{\frac{p-1}{2}-k}= \pm \sum_{k=0}^{(p-1) / 2}\binom{\frac{p}{2}}{k}(-1)^{\frac{p-1}{2}-k} A_{\frac{p-1}{2}-k} \\
& \equiv \pm(-1)^{\frac{p-1}{2}}\left(A_{\frac{p-1}{2}}-\frac{p}{2} \sum_{k=1}^{(p-1) / 2} \frac{A_{\frac{p-1}{2}-k}}{k}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Acknowledgments

The author is supported by the National Natural Science Foundation of China (Grant No. 11371163).

References

[1] M. Chellali, Accélération de calcul de nombres de Bernoulli, J. Number Theory 28(1988), 347-362.
[2] H. W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia University, Morgantown, WV, 1972.
[3] D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Ann. Math. 36(1935), 637-649.
[4] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (3rd Edition), Springer-Verlag, New York, 1966, 25-32.
[5] S. Mattarei and R. Tauraso, Congruences of multiple sums involving sequences invariant under the binomial transform, J. Integer Seq. 13(2010), Art. 10.5.1, 12pp.
[6] H. Pan and Z.W. Sun, Proof of three conjectures on congruences, Sci. China Math. 57(2014), 2091-2102.
[7] S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc. 3(1911), 219-234.
[8] Z. H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory I, J. Nanjing Univ. Math. Biquarterly 9(1992), 227-240.
[9] Z. H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105(2000), 193-223.
[10] Z. H. Sun, Invariant sequences under binomial transformation, Fibonacci Quart. 39(2001), 324-333.
[11] Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory 143(2014), 293-319.
[12] Z. W. Sun, Supercongruences involving products of two binomial coefficients, Finite Fields Appl. 22(2013), 24-44.
[13] Y. Wang, Self-inverse sequences related to a binomial inverse pair, Fibonacci Quart. 43(2005), 46-52.
[14] H. C. Williams, Édouard Lucas and Primality Testing, Canadian Mathematical Society Series of Monographs and Advanced Texts (Vol.22), Wiley, New York, 1998, pp.73-93.
[15] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5(1862), 35-39.

