RAMSEY NUMBERS FOR TREES II

Zhi-Hong Sun, Huaian

Received July 24, 2019. Published online March 5, 2021.

Abstract. Let $r\left(G_{1}, G_{2}\right)$ be the Ramsey number of the two graphs G_{1} and G_{2}. For $n_{1} \geqslant n_{2} \geqslant 1$ let $S\left(n_{1}, n_{2}\right)$ be the double star given by $V\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0}, v_{1}, \ldots, v_{n_{1}}, w_{0}\right.$, $\left.w_{1}, \ldots, w_{n_{2}}\right\}$ and $E\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n_{1}}, v_{0} w_{0}, w_{0} w_{1}, \ldots, w_{0} w_{n_{2}}\right\}$. We determine $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)$ under certain conditions. For $n \geqslant 6$ let $T_{n}^{3}=S(n-5,3), T_{n}^{\prime \prime}=$ $\left(V, E_{2}\right)$ and $T_{n}^{\prime \prime \prime}=\left(V, E_{3}\right)$, where $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, E_{2}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}\right.$, $\left.v_{1} v_{n-2}, v_{2} v_{n-1}\right\}$ and $E_{3}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{2} v_{n-2}, v_{3} v_{n-1}\right\}$. We also obtain explicit formulas for $r\left(K_{1, m-1}, T_{n}\right), r\left(T_{m}^{\prime}, T_{n}\right)(n \geqslant m+3), r\left(T_{n}, T_{n}\right), r\left(T_{n}^{\prime}, T_{n}\right)$ and $r\left(P_{n}, T_{n}\right)$, where $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}, P_{n}$ is the path on n vertices and T_{n}^{\prime} is the unique tree with n vertices and maximal degree $n-2$.

Keywords: Ramsey number; tree; Turán's problem
MSC 2020: 05C55, 05C05, 05C35

1. Introduction

In this paper, all graphs are simple graphs. For a graph $G=(V(G), E(G))$ let $e(G)=|E(G)|$ be the number of edges in G, and let $\Delta(G)$ and $\delta(G)$ denote the maximal degree and minimal degree of G, respectively.

For a graph G, as usual \bar{G} denotes the complement of G. Let G_{1} and G_{2} be two graphs. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest positive integer n such that, for every graph G with n vertices, either G contains a copy of G_{1} or \bar{G} contains a copy of G_{2}.

Let \mathbb{N} be the set of positive integers. For $n \in \mathbb{N}$ with $n \geqslant 6$ let T_{n} be a tree on n vertices. As mentioned in [8], recently Zhao proved that $r\left(T_{n}, T_{n}\right) \leqslant 2 n-2$, which was conjectured by Burr and Erdős, see [1].

The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).

Let $m, n \in \mathbb{N}$. For $n \geqslant 3$ let $K_{1, n-1}$ denote the unique tree on n vertices with $\Delta\left(K_{1, n-1}\right)=n-1$, and for $n \geqslant 4$ let T_{n}^{\prime} denote the unique tree on n vertices with $\Delta\left(T_{n}^{\prime}\right)=n-2$. In 1972, Harary in [6] showed that for $m, n \geqslant 3$,

$$
r\left(K_{1, m-1}, K_{1, n-1}\right)= \begin{cases}m+n-3 & \text { if } 2 \nmid m n \tag{1.1}\\ m+n-2 & \text { if } 2 \mid m n .\end{cases}
$$

From [2], page 72, if G is a graph with $\delta(G) \geqslant n-1$, then G contains every tree on n vertices. Using this fact, in 1995, Guo and Volkmann in [5] proved that for $n>m \geqslant 4$,

$$
r\left(K_{1, m-1}, T_{n}^{\prime}\right)= \begin{cases}m+n-3 & \text { if } 2 \mid m(n-1), \tag{1.2}\\ m+n-4 & \text { if } 2 \nmid m(n-1) .\end{cases}
$$

In 2012 the author in [9] evaluated the Ramsey number $r\left(T_{m}, T_{n}^{*}\right)$ for $T_{m} \in$ $\left\{P_{m}, K_{1, m-1}, T_{m}^{\prime}, T_{m}^{*}\right\}$, where P_{m} is a path on m vertices and T_{n}^{*} is the tree on n vertices with $V\left(T_{n}^{*}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E\left(T_{n}^{*}\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}\right.$, $\left.v_{n-3} v_{n-2}, v_{n-2} v_{n-1}\right\}$. In particular, he proved that for $n>m \geqslant 7$,

$$
r\left(K_{1, m-1}, T_{n}^{*}\right)= \begin{cases}m+n-3 & \text { if } m-1 \mid n-3 \tag{1.3}\\ m+n-4 & \text { if } m-1 \nmid n-3\end{cases}
$$

For $n \geqslant 5$ let $T_{n}^{1}=\left(V, E_{1}\right)$ and $T_{n}^{2}=\left(V, E_{2}\right)$ be the trees on n vertices with $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, E_{1}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-4} v_{n-2}, v_{n-3} v_{n-1}\right\}$ and $E_{2}=$ $\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-3}, v_{n-3} v_{n-2}, v_{n-3} v_{n-1}\right\}$. Then $\Delta\left(T_{n}^{1}\right)=\Delta\left(T_{n}^{2}\right)=\Delta\left(T_{n}^{*}\right)=n-3$. In [12], Sun, Wang and Wu proved that

$$
\begin{equation*}
r\left(K_{1, m-1}, T_{n}^{1}\right)=r\left(K_{1, m-1}, T_{n}^{2}\right)=m+n-4 \quad \text { for } n>m \geqslant 7 \text { and } 2 \mid m n \tag{1.4}
\end{equation*}
$$

For $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \geqslant n_{2}$, let $S\left(n_{1}, n_{2}\right)$ be the double star given by

$$
\begin{aligned}
& V\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0}, v_{1}, \ldots, v_{n_{1}}, w_{0}, w_{1}, \ldots, w_{n_{2}}\right\} \\
& E\left(S\left(n_{1}, n_{2}\right)\right)=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n_{1}}, v_{0} w_{0}, w_{0} w_{1}, \ldots, w_{0} w_{n_{2}}\right\}
\end{aligned}
$$

We say that v_{0} and w_{0} are centers of $S\left(n_{1}, n_{2}\right)$. In [4], Grossman, Harary and Klawe evaluated the Ramsey number $r\left(S\left(n_{1}, n_{2}\right), S\left(n_{1}, n_{2}\right)\right)$ under certain conditions. In particular, they showed that for odd n_{1} and $n_{2}=1,2$,

$$
\begin{equation*}
r\left(S\left(n_{1}, n_{2}\right), S\left(n_{1}, n_{2}\right)\right)=\max \left\{2 n_{1}+1, n_{1}+2 n_{2}+2\right\} \tag{1.5}
\end{equation*}
$$

It is clear that $T_{n}^{\prime}=S(n-3,1)$ and $T_{n}^{2}=S(n-4,2)$. In this paper, we prove the following general result:

$$
\begin{align*}
& r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \tag{1.6}\\
& \quad= \begin{cases}m+n_{1} & \text { if } 2 \mid m n_{1}, n_{1} \geqslant m-2 \geqslant n_{2} \geqslant 2 \\
m-1+n_{1} & \text { if } 2 \nmid m n_{1}, n_{1} \geqslant m-2>n_{2} \\
& \text { and } n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)\left(n_{2}-2\right)}{m-1-n_{2}}, \\
& \text { and } n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)^{2}}{m-2-n_{2}}\end{cases}
\end{align*}
$$

Also,

$$
\begin{equation*}
r\left(K_{1, m-1}, T_{n}^{1}\right)=m+n-5 \quad \text { for } n \geqslant m+2 \geqslant 7 \text { and } 2 \nmid m n . \tag{1.7}
\end{equation*}
$$

For $n \geqslant 6$ let $T_{n}^{3}=S(n-5,3), T_{n}^{\prime \prime}=\left(V, E_{2}\right)$ and $T_{n}^{\prime \prime \prime}=\left(V, E_{3}\right)$, where

$$
\begin{gathered}
V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, \quad E_{2}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{1} v_{n-2}, v_{2} v_{n-1}\right\}, \\
E_{3}=\left\{v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-3}, v_{2} v_{n-2}, v_{3} v_{n-1}\right\} .
\end{gathered}
$$

Then $\Delta\left(T_{n}^{3}\right)=\Delta\left(T_{n}^{\prime \prime}\right)=\Delta\left(T_{n}^{\prime \prime \prime}\right)=n-4$. In this paper, we evaluate $r\left(K_{1, m-1}, T_{n}\right)$ and $r\left(T_{m}^{\prime}, T_{n}\right)$ for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. In particular, we show that

$$
\begin{align*}
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right)= & r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right) \tag{1.8}\\
& = \begin{cases}m+n-5 & \text { if } 2 \mid m(n-1), m \geqslant 7, n \geqslant 15 \\
& \text { and } n>m+1+\frac{8}{m-6}, \\
m+n-6 & \text { if } 2 \nmid m(n-1) \text { and } n \geqslant m+3 \geqslant 9,\end{cases}
\end{align*}
$$

and that for $m \geqslant 9$ and $n>m+2+\max \{0,(20-m) /(m-8)\}$,

$$
r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{3}\right)= \begin{cases}m+n-5 & \text { if } m-1 \mid n-5 \tag{1.9}\\ m+n-6 & \text { if } m-1 \nmid n-5\end{cases}
$$

We also prove that for $m \geqslant 11, n \geqslant(m-3)^{2}+4$ and $m-1 \nmid n-5$,

$$
\begin{equation*}
r\left(G_{m}, T_{n}\right)=m+n-6 \text { for } G_{m} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\} \text { and } T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\} \tag{1.10}
\end{equation*}
$$

Online first

In addition, we establish the following results:

$$
\begin{aligned}
& r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime \prime \prime}\right)= \begin{cases}2 n-9 & \text { if } 2 \mid n \text { and } n>29, \\
2 n-8 & \text { if } 2 \nmid n \text { and } n>22,\end{cases} \\
& r\left(T_{n}^{3}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{3}\right)=2 n-8 \quad \text { for } n>22, \\
& r\left(T_{n}^{\prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime}\right)=2 n-5 \quad \text { for } n \geqslant 10, \\
& r\left(T_{n}^{\prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{3}, T_{n}^{i}\right)=2 n-7 \quad \text { for } n>16 \text { and } i=1,2, \\
& r\left(P_{n}, T_{n}^{\prime \prime}\right)=r\left(P_{n}, T_{n}^{\prime \prime \prime}\right)=r\left(P_{n}, T_{n}^{3}\right)=2 n-9 \quad \text { for } n \geqslant 33 .
\end{aligned}
$$

In addition to the above notation, throughout this paper, we use the following notation: [x]-the greatest integer not exceeding $x, d(v)$-the degree of the vertex v in a graph, $d(u, v)$ - the distance between the two vertices u and v in a graph, K_{n}-the complete graph on n vertices, $G\left[V_{1}\right]$-the subgraph of G induced by vertices in the set $V_{1}, G-V_{1}$-the subgraph of G obtained by deleting vertices in V_{1} and all edges incident with them, $\Gamma(v)$-the set of vertices adjacent to the vertex $v, e\left(V_{1} V_{1}^{\prime}\right)$-the number of edges with one endpoint in V_{1} and the other endpoint in V_{1}^{\prime}.

2. Basic lemmas

For a forbidden graph L let ex $(p ; L)$ be the maximal number of edges in a graph of order p not containing any copies of L. The corresponding Turán's problem is to evaluate $\operatorname{ex}(p ; L)$. Let $p, n \in \mathbb{N}$ with $p \geqslant n \geqslant 2$. For a given tree T_{n} on n vertices, it is difficult to determine the value of $\operatorname{ex}\left(p ; T_{n}\right)$. The famous Erdős-Sós conjecture asserts that $\operatorname{ex}\left(p ; T_{n}\right) \leqslant \frac{1}{2}(n-2) p$. Write $p=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. In 1975 Faudree and Schelp in [3] showed that

$$
\begin{equation*}
\operatorname{ex}\left(p ; P_{n}\right)=k\binom{n-1}{2}+\binom{r}{2}=\frac{(n-2) p-r(n-1-r)}{2} \tag{2.1}
\end{equation*}
$$

In [10], [11], [12], the author and his coauthors determined $\operatorname{ex}\left(p ; T_{n}\right)$ for $T_{n} \in$ $\left\{T_{n}^{\prime}, T_{n}^{*}, T_{n}^{1}, T_{n}^{2}, T_{n}^{3}, T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$.

Lemma 2.1 ([9], Lemma 2.1). Let G_{1} and G_{2} be two graphs. Suppose that $p \in \mathbb{N}$, $p \geqslant \max \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}$ and $\operatorname{ex}\left(p ; G_{1}\right)+\operatorname{ex}\left(p ; G_{2}\right)<\binom{p}{2}$. Then $r\left(G_{1}, G_{2}\right) \leqslant p$.

Proof. Let G be a graph of order p. If $e(G) \leqslant \operatorname{ex}\left(p ; G_{1}\right)$ and $e(\bar{G}) \leqslant \operatorname{ex}\left(p ; G_{2}\right)$, then $\operatorname{ex}\left(p ; G_{1}\right)+\operatorname{ex}\left(p ; G_{2}\right) \geqslant e(G)+e(\bar{G})=\binom{p}{2}$. This contradicts the assumption. Hence, either $e(G)>\operatorname{ex}\left(p ; G_{1}\right)$ or $e(\bar{G})>\operatorname{ex}\left(p ; G_{2}\right)$. Therefore, G contains a copy of G_{1} or \bar{G} contains a copy of G_{2}. This shows that $r\left(G_{1}, G_{2}\right) \leqslant|V(G)|=p$. So the lemma is proved.

Lemma 2.2. Let $k, p \in \mathbb{N}$ with $p \geqslant k+1$. Then there exists a k-regular graph of order p if and only if $2 \mid k p$.

This is a known result. See for example [11], Corollary 2.1.

Lemma 2.3 ([9], Lemma 2.3). Let G_{1} and G_{2} be two graphs with $\Delta\left(G_{1}\right)=d_{1} \geqslant 2$ and $\Delta\left(G_{2}\right)=d_{2} \geqslant 2$. Then:
(i) $r\left(G_{1}, G_{2}\right) \geqslant d_{1}+d_{2}-\frac{1}{2}\left(1-(-1)^{\left(d_{1}-1\right)\left(d_{2}-1\right)}\right)$.
(ii) Suppose that G_{1} is a connected graph of order m and $d_{1}<d_{2} \leqslant m$. Then $r\left(G_{1}, G_{2}\right) \geqslant 2 d_{2}-1 \geqslant d_{1}+d_{2}$.
(iii) Suppose that G_{1} is a connected graph of order m and $d_{2}>m$. If one of the conditions
(1) $2 \mid\left(d_{1}+d_{2}-m\right)$,
(2) $d_{1} \neq m-1$,
(3) G_{2} has two vertices u and v such that $d(v)=\Delta\left(G_{2}\right)$ and $d(u, v)=3$ holds, then $r\left(G_{1}, G_{2}\right) \geqslant d_{1}+d_{2}$.

Lemma 2.4. Let $p, n \in \mathbb{N}$ with $p \geqslant n-1 \geqslant 1$. Then $\operatorname{ex}\left(p ; K_{1, n-1}\right)=\left[\frac{1}{2}(n-2) p\right]$.
This is a known result. See for example [11], Theorem 2.1.

Lemma 2.5 ([11], Theorem 3.1). Let $p, n \in \mathbb{N}$ with $p \geqslant n \geqslant 5$, and let $r \in$ $\{0,1, \ldots, n-2\}$ be given by $p \equiv r(\bmod n-1)$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{\prime}\right)= \begin{cases}{\left[\frac{(n-2)(p-1)-r-1}{2}\right]} & \text { if } n \geqslant 7 \text { and } 2 \leqslant r \leqslant n-4 \\ \frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise }\end{cases}
$$

Lemma 2.6 ([12], Theorems 2.1 and 3.1). Suppose that $p, n \in \mathbb{N}, p \geqslant n-1 \geqslant 4$ and $p=k(n-1)+r$, where $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. For $i=1$ or 2 ,

$$
\begin{aligned}
& \operatorname{ex}\left(p ; T_{n}^{i}\right)=\max \left\{\left[\frac{(n-2) p}{2}\right]-(n-1+r), \frac{(n-2) p-r(n-1-r)}{2}\right\} \\
& = \begin{cases}{\left[\frac{(n-2) p}{2}\right]-(n-1+r)} & \text { if } n \geqslant 16 \text { and } 3 \leqslant r \leqslant n-6 \\
& \text { or if } 13 \leqslant n \leqslant 15 \text { and } 4 \leqslant r \leqslant n-7, \\
\frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Lemma 2.7 ([10], Theorems 3.1 and 5.1). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 10, p=$ $k(n-1)+r, k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Then

$$
\begin{aligned}
\operatorname{ex}\left(p ; T_{n}^{\prime \prime}\right)=\operatorname{ex}\left(p ; T_{n}^{\prime \prime \prime}\right)= & \frac{(n-2) p-r(n-1-r)}{2} \\
& +\max \left\{0,\left[\frac{r(n-4-r)-3(n-1)}{2}\right]\right\}
\end{aligned}
$$

Lemma 2.8 ([10], Lemmas 4.6 and 4.7). Let $n \in \mathbb{N}$ with $n \geqslant 15$. Then

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

and

$$
\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)=n^{2}-9 n+29+\max \left\{\left[\frac{n-37}{4}\right], 0\right\}
$$

Lemma 2.9 ([10], Theorems 4.1-4.5). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 10, p=k(n-1)+r$, $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$.
(i) If $r \in\{0,1,2, n-6, n-5, n-4, n-3, n-2\}$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-r(n-1-r)}{2}
$$

(ii) If $n \geqslant 15$ and $r \in\{3,4, \ldots, n-9\}$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-r(n-1-r)}{2}+\max \left\{0,\left[\frac{r(n-4-r)-3(n-1)}{2}\right]\right\}
$$

(iii) If $n \geqslant 15$ and $r=n-8$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-7 n+30}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

(iv) If $n \geqslant 15$ and $r=n-7$, then

$$
\operatorname{ex}\left(p ; T_{n}^{3}\right)=\frac{(n-2) p-6(n-7)}{2}+\max \left\{\left[\frac{n-37}{4}\right], 0\right\} .
$$

Lemma 2.10. Let $n \in \mathbb{N}, n \geqslant 10$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $p=$ $k(n-1)+r$ with $k \in \mathbb{N}$ and $r \in\{0,1, \ldots, n-2\}$. Then

$$
\operatorname{ex}\left(p ; T_{n}\right) \leqslant \frac{(n-2) p}{2}-\min \left\{n-1+r, \frac{r(n-1-r)}{2}\right\}
$$

Proof. This is immediate from [10], Lemmas 2.8, 3.1, 4.1 and 5.1.

Lemma 2.11 ([11], Theorems 4.1-4.3). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 6$ and $p=$ $k(n-1)+r$ with $k \in \mathbb{N}$ and $r \in\{0,1, n-5, n-4, n-3, n-2\}$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}\frac{(n-2)(p-2)}{2}+1 & \text { if } n>6 \text { and } r=n-5 \\ \frac{(n-2) p-r(n-1-r)}{2} & \text { otherwise. }\end{cases}
$$

Lemma 2.12 ([11], Theorem 4.4). Let $p, n \in \mathbb{N}, p \geqslant n \geqslant 11, r \in\{2,3, \ldots, n-6\}$ and $p \equiv r(\bmod n-1)$. Let $t \in\{0,1, \ldots, r+1\}$ be given by $n-3 \equiv t(\bmod r+2)$. Then

$$
\operatorname{ex}\left(p ; T_{n}^{*}\right)= \begin{cases}{\left[\frac{(n-2)(p-1)-2 r-t-3}{2}\right]} & \text { if } r \geqslant 4 \text { and } 2 \leqslant t \leqslant r-1 \\ \frac{(n-2)(p-1)-t(r+2-t)-r-1}{2} & \text { otherwise }\end{cases}
$$

3. FORMULAS FOR $r\left(T_{n}, T_{n}^{\prime \prime}\right), r\left(T_{n}, T_{n}^{\prime \prime \prime}\right)$ AND $r\left(T_{n}, T_{n}^{3}\right)$

Theorem 3.1. Let $n \in \mathbb{N}$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime \prime \prime}\right)= \begin{cases}2 n-9 & \text { if } 2 \mid n \text { and } n>29 \\ 2 n-8 & \text { if } 2 \nmid n \text { and } n>22\end{cases}
$$

Proof. Suppose that $T_{n}, T_{n}^{0} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$. By Lemma 2.7,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; T_{n}\right) & =\frac{(2 n-9)(n-5)-(n-29)}{2}+\max \left\{0,\left[\frac{n-29}{2}\right]\right\} \\
& =\left[\frac{(2 n-9)(n-5)}{2}\right] \text { for } n \geqslant 29
\end{aligned}
$$

Hence, for $n \in\{30,32,34, \ldots\}$,
$\operatorname{ex}\left(2 n-9 ; T_{n}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{0}\right)=2\left[\frac{(2 n-9)(n-5)}{2}\right]=(2 n-9)(n-5)-1<\binom{2 n-9}{2}$.
Online first

Applying Lemma 2.1 yields $r\left(T_{n}, T_{n}^{0}\right) \leqslant 2 n-9$. On the other hand, appealing to Lemma 2.3 (i),

$$
r\left(T_{n}, T_{n}^{0}\right) \geqslant n-4+n-4-\frac{1-(-1)^{(n-5)(n-5)}}{2}=2 n-9 .
$$

Therefore $r\left(T_{n}, T_{n}^{0}\right)=2 n-9$ for $n \in\{30,32,34, \ldots\}$.
Now assume that $2 \nmid n$ and $n>22$. By Lemma 2.7,

$$
\operatorname{ex}\left(2 n-8 ; T_{n}\right)=\frac{(n-2)(2 n-8)-6(n-7)}{2}=n^{2}-9 n+29
$$

Thus,

$$
\operatorname{ex}\left(2 n-8 ; T_{n}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}^{0}\right)=2\left(n^{2}-9 n+29\right)<2 n^{2}-17 n+36=\binom{2 n-8}{2}
$$

Hence, $r\left(T_{n}, T_{n}^{0}\right) \leqslant 2 n-8$ by Lemma 2.1. By Lemma 2.2, we may construct a regular graph G of order $2 n-9$ with degree $n-5$. Clearly \bar{G} is also a regular graph with degree $n-5$. Since $\Delta\left(T_{n}\right)=\Delta\left(T_{n}^{0}\right)=n-4$, both G and \bar{G} do not contain any copies of T_{n} and T_{n}^{0}. Therefore, $r\left(T_{n}, T_{n}^{0}\right)>2 n-9$ and so $r\left(T_{n}, T_{n}^{0}\right)=2 n-8$. This completes the proof.

Theorem 3.2. Let $n \in \mathbb{N}$ with $n>22$. Then

$$
r\left(T_{n}^{3}, T_{n}^{\prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n}^{3}, T_{n}^{3}\right)=2 n-8
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. When n is odd, using Lemma 2.3 (i) we see that $r\left(T_{n}^{3}, T_{n}\right) \geqslant n-4+n-4=2 n-8$. When n is even, we may construct a regular graph H with degree $n-10$ and $V(H)=\left\{v_{1}, \ldots, v_{n-6}\right\}$. Let G_{0} be a graph given by

$$
V\left(G_{0}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-4}, u_{1}, \ldots, u_{n-6}\right\}
$$

and

$$
\begin{aligned}
E\left(G_{0}\right)=E(H) \cup\{ & v_{0} v_{1}, \ldots, v_{0} v_{n-4}, v_{1} v_{n-5}, \ldots, v_{n-6} v_{n-5}, v_{1} v_{n-4}, \ldots, v_{n-5} v_{n-4}, v_{1} u_{1}, \\
& v_{1} u_{2}, v_{2} u_{1}, v_{2} u_{2}, \ldots, v_{n-7} u_{n-7}, v_{n-7} u_{n-6}, v_{n-6} u_{n-7}, v_{n-6} u_{n-6}, \\
& \left.u_{1} u_{2}, \ldots, u_{1} u_{n-6}, u_{2} u_{3}, \ldots, u_{2} u_{n-6}, u_{3} u_{n-6}, \ldots, u_{n-7} u_{n-6}\right\} .
\end{aligned}
$$

Then $d\left(v_{0}\right)=d\left(v_{n-5}\right)=d\left(v_{n-4}\right)=n-4$ and $d\left(v_{1}\right)=\ldots=d\left(v_{n-6}\right)=d\left(u_{1}\right)=\ldots=$ $d\left(u_{n-6}\right)=n-5$. Clearly $\left|V\left(G_{0}\right)\right|=2 n-9$ and G_{0} does not contain any copies of T_{n}^{3}. Since $\Delta\left(\bar{G}_{0}\right)=n-5$ and $\Delta\left(T_{n}\right)=n-4, \bar{G}_{0}$ does not contain any copies of T_{n}. Thus, $r\left(T_{n}^{3}, T_{n}\right) \geqslant\left|V\left(G_{0}\right)\right|+1=2 n-8$.

From Lemma 2.7, $\operatorname{ex}\left(2 n-8 ; T_{n}^{\prime \prime}\right)=\operatorname{ex}\left(2 n-8 ; T_{n}^{\prime \prime \prime}\right)=n^{2}-9 n+29$. By Lemma 2.8, $\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)=n^{2}-9 n+29+\max \left\{0,\left[\frac{1}{4}(n-37)\right]\right\}$. Thus,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}\right) & \leqslant 2 n^{2}-18 n+58+2 \max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& <2 n^{2}-18 n+58+n-22=\binom{2 n-8}{2}
\end{aligned}
$$

Hence, applying Lemma 2.1 gives $r\left(T_{n}^{3}, T_{n}\right) \leqslant 2 n-8$ and so $r\left(T_{n}^{3}, T_{n}\right)=2 n-8$ as claimed.

Theorem 3.3. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{\prime}\right)=r\left(T_{n}^{3}, T_{n}^{\prime}\right)=2 n-5 .
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(T_{n}^{\prime}\right)=n-2$, using Lemma 2.3 (ii) we see that $r\left(T_{n}, T_{n}^{\prime}\right) \geqslant 2(n-2)-1=2 n-5$. By Lemmas 2.5, 2.7 and 2.9,

$$
\begin{aligned}
& \operatorname{ex}\left(2 n-5 ; T_{n}\right)+\operatorname{ex}\left(2 n-5 ; T_{n}^{\prime}\right) \\
&=\frac{(n-2)(2 n-5)-3(n-4)}{2}+\left[\frac{(n-2)(2 n-6)-(n-3)}{2}\right] \\
&=\left[\frac{4 n^{2}-23 n+37}{2}\right]<\frac{4 n^{2}-22 n+30}{2}=\binom{2 n-5}{2} .
\end{aligned}
$$

Hence, $r\left(T_{n}, T_{n}^{\prime}\right) \leqslant 2 n-5$ by Lemma 2.1. Therefore, $r\left(T_{n}, T_{n}^{\prime}\right)=2 n-5$ as claimed.

Theorem 3.4. Let $n \in \mathbb{N}, n>16$ and $i \in\{1,2\}$. Then

$$
r\left(T_{n}^{\prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{\prime \prime \prime}, T_{n}^{i}\right)=r\left(T_{n}^{3}, T_{n}^{i}\right)=2 n-7
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(T_{n}^{i}\right)=n-3$, using Lemma 2.3 (ii) we see that $r\left(T_{n}, T_{n}^{i}\right) \geqslant 2(n-3)-1=2 n-7$. From Lemmas 2.6, 2.7 and 2.9,

$$
\begin{aligned}
& \operatorname{ex}\left(2 n-7 ; T_{n}\right)+\operatorname{ex}\left(2 n-7 ; T_{n}^{i}\right) \\
& \quad=\frac{(n-2)(2 n-7)-5(n-6)}{2}+\left[\frac{(n-2)(2 n-7)}{2}\right]-(2 n-7) \\
& \quad=\left[\frac{4 n^{2}-31 n+72}{2}\right]<\frac{4 n^{2}-30 n+56}{2}=\binom{2 n-7}{2}
\end{aligned}
$$

Hence, $r\left(T_{n}, T_{n}^{i}\right) \leqslant 2 n-7$ by Lemma 2.1. Therefore, $r\left(T_{n}, T_{n}^{i}\right)=2 n-7$ as claimed.

Theorem 3.5. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then $r\left(T_{n}, T_{n}^{*}\right)=2 n-5$ for $T_{n} \in$ $\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$.

Proof. By Lemmas 2.7 and 2.9, ex $\left(2 n-5 ; T_{n}\right)=\frac{1}{2}((n-2)(2 n-5)-3(n-4))=$ $n^{2}-6 n+11<n^{2}-5 n+4$. Thus the result follows from [9], Lemma 3.1.

Remark 3.1. By [9], Theorem 6.3 with $m=n$ and $a=2, r\left(T_{n}, K_{1, n-1}\right)=2 n-3$ for $n \geqslant 6$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$.

Theorem 3.6. Let $n \in \mathbb{N}$. Then $r\left(P_{n}, T_{n}^{\prime \prime}\right)=r\left(P_{n}, T_{n}^{\prime \prime \prime}\right)=2 n-9$ for $n \geqslant 30$ and $r\left(P_{n}, T_{n}^{3}\right)=2 n-9$ for $n \geqslant 33$.

Proof. Suppose that $n \geqslant 30$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{n}\right)=n-4$ and $\Delta\left(P_{n}\right)=2$, appealing to Lemma 2.3 (ii) we obtain $r\left(P_{n}, T_{n}\right) \geqslant 2(n-4)-1=2 n-9$. By (2.1) and Lemma 2.7 for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$,

$$
\begin{aligned}
& \operatorname{ex}\left(2 n-9 ; P_{n}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}\right) \\
&=\frac{(n-2)(2 n-9)-7(n-8)}{2}+\left[\frac{(2 n-9)(n-5)}{2}\right] \\
&=\left[\frac{4 n^{2}-39 n+119}{2}\right]<\frac{4 n^{2}-38 n+90}{2}=\binom{2 n-9}{2} .
\end{aligned}
$$

Hence, applying Lemma 2.1 gives $r\left(P_{n}, T_{n}\right) \leqslant 2 n-9$ and so $r\left(P_{n}, T_{n}\right)=2 n-9$.
Now assume that $n \geqslant 33$. From (2.1) and Lemma 2.8,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; P_{n}\right)+\operatorname{ex} & \left(2 n-9 ; T_{n}^{3}\right) \\
& =\frac{(n-2)(2 n-9)-7(n-8)}{2}+n^{2}-10 n+24+\left[\frac{n}{2}\right] \\
& =2 n^{2}-20 n+61+\left[\frac{n}{2}\right]<2 n^{2}-19 n+45=\binom{2 n-9}{2}
\end{aligned}
$$

Hence, $r\left(P_{n}, T_{n}^{3}\right) \leqslant 2 n-9$ by Lemma 2.1 and so $r\left(P_{n}, T_{n}^{3}\right)=2 n-9$.
4. Formulas for $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right), r\left(K_{1, m-1}, T_{n}^{1}\right)$,

$$
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right) \text { AND } r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right)
$$

Theorem 4.1. Let $m, n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \geqslant m-2 \geqslant n_{2} \geqslant 2$ and $2 \mid m n_{1}$. If $n_{1}>m-5+n_{2}+\left(n_{2}-1\right)\left(n_{2}-2\right) /\left(m-1-n_{2}\right)$, then $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)=m+n_{1}$.

Proof. Since $\Delta\left(S\left(n_{1}, n_{2}\right)\right)=n_{1}+1$, from Lemma 2.3 (i) we see that

$$
r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \geqslant m-1+n_{1}+1-\frac{1-(-1)^{(m-2) n_{1}}}{2}=m+n_{1}
$$

Now we show that $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m+n_{1}$. Let G be a graph of order $m+n_{1}$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. That is, $\Delta(\bar{G}) \leqslant m-2$. We show that G contains a copy of $S\left(n_{1}, n_{2}\right)$. Clearly

$$
\delta(G)=m+n_{1}-1-\Delta(\bar{G}) \geqslant m+n_{1}-1-(m-2)=n_{1}+1 .
$$

Suppose that $\Delta(G)=n_{1}+1+s, v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G), \Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n_{1}+1+s}\right\}$, $V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}$. Then $\left|V_{1}^{\prime}\right|=m-2-s$. For $i=1,2, \ldots, n_{1}+$ $1+s$, we have

$$
\left|V_{1}^{\prime}\right|+1+\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant d\left(v_{i}\right) \geqslant \delta(G) \geqslant n_{1}+1
$$

and so

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-\left|V_{1}^{\prime}\right|=n_{1}-(m-2)+s \geqslant s
$$

For $s \geqslant n_{2}$ we have $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s \geqslant n_{2}$ and $\left|\Gamma\left(v_{0}\right)\right|-n_{2}=n_{1}+1+s-n_{2} \geqslant n_{1}+1$. Hence $G\left[V_{1}\right]$ contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}.

Now assume that $s<n_{2}$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, \ldots, u_{m-2-s}\right\}$. It is clear that for $i=1,2, \ldots, m-2-s$,

$$
m-3-s+\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|=\left|V_{1}^{\prime}\right|-1+\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant d\left(u_{i}\right) \geqslant \delta(G) \geqslant n_{1}+1
$$

and so $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-(m-4-s)$. It then follows that $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-2-s) \times$ $\left(n_{1}-(m-4-s)\right)$. By the assumption,

$$
n_{1}>m-5+n_{2}+\frac{\left(n_{2}-2\right)\left(n_{2}-1\right)}{m-1-n_{2}} \geqslant m-5+n_{2}-2 s+\frac{\left(n_{2}-2\right)\left(n_{2}-1-s\right)}{m-1-n_{2}} .
$$

Thus, $\left(m-1-n_{2}\right) n_{1}>(m-2-s)(m-4-s)+(s+1)\left(n_{2}-s-1\right)$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant$ $(m-2-s)\left(n_{1}-(m-4-s)\right)>\left(n_{1}+1+s\right)\left(n_{2}-s-1\right)$. Therefore, $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant n_{2}-s$ for some $v_{i} \in \Gamma\left(v_{0}\right)$. From the above, $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s$. Thus, G contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}. Therefore $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m+n_{1}$ and so the theorem is proved.

Corollary 4.1. Let $m, n \in \mathbb{N}, n-2 \geqslant m \geqslant 4$ and $2 \mid m n$. Then $r\left(K_{1, m-1}, T_{n}^{2}\right)=$ $m+n-4$.

Proof. Since $T_{n}^{2}=S(n-4,2)$, putting $n_{1}=n-4$ and $n_{2}=2$ in Theorem 4.1 yields the result.

Corollary 4.2. Let $m, n \in \mathbb{N}, m \geqslant 5, n>m+3+2 /(m-4)$ and $2 \mid m(n-1)$. Then $r\left(K_{1, m-1}, T_{n}^{3}\right)=m+n-5$.

Proof. Since $T_{n}^{3}=S(n-5,3)$, taking $n_{1}=n-5$ and $n_{2}=3$ in Theorem 4.1 gives the result.

Theorem 4.2. Let $m, n_{1}, n_{2} \in \mathbb{N}, n_{1} \geqslant m-2>n_{2}$ and $2 \nmid m n_{1}$. If $n_{1}>$ $m-5+n_{2}+\left(n_{2}-1\right)^{2} /\left(m-2-n_{2}\right)$, then $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right)=m-1+n_{1}$.

Proof. Since $\Delta\left(S\left(n_{1}, n_{2}\right)\right)=n_{1}+1$, from Lemma 2.3 (i) we see that

$$
r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \geqslant m-1+n_{1}+1-\frac{1-(-1)^{(m-2) n_{1}}}{2}=m-1+n_{1} .
$$

Now we show that $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m-1+n_{1}$. Let G be a graph of order $m-1+n_{1}$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. We need to show that G contains a copy of $S\left(n_{1}, n_{2}\right)$. Clearly $\Delta(\bar{G}) \leqslant m-2$ and so $\delta(G)=m-2+$ $n_{1}-\Delta(\bar{G}) \geqslant n_{1}$. Since $2 \nmid m n_{1}$, there is no regular graph of order $m-1+n_{1}$ with degree n_{1} by Euler's theorem. Hence $\Delta(G) \geqslant \delta(G)+1 \geqslant n_{1}+1$. Suppose that $\Delta(G)=n_{1}+1+s, v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G), \Gamma\left(v_{0}\right)=\left\{v_{1}, \ldots, v_{n_{1}+1+s}\right\}$, $V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}$. Then $\left|V_{1}^{\prime}\right|=m-3-s$. For $v_{i} \in \Gamma\left(v_{0}\right)$, $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n_{1}$ and so $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+1+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n_{1}$. Thus,

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-1-\left|V_{1}^{\prime}\right|=n_{1}-(m-2)+s \geqslant s
$$

Hence, $G\left[V_{1}\right]$ contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i} for $s \geqslant n_{2}$.
Now assume that $s<n_{2}$ and $V_{1}^{\prime}=\left\{u_{1}, \ldots, u_{m-3-s}\right\}$. As $d\left(u_{i}\right) \geqslant n_{1}$, we see that $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n_{1}-(m-4-s)$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3-s)\left(n_{1}-(m-4-s)\right)$. Since

$$
n_{1}>m-5+n_{2}+\frac{\left(n_{2}-1\right)^{2}}{m-2-n_{2}} \geqslant m-5+n_{2}-2 s+\frac{\left(n_{2}-1\right)\left(n_{2}-1-s\right)}{m-2-n_{2}},
$$

we get $\left(m-2-n_{2}\right) n_{1}>(m-3-s)(m-4-s)+(s+1)\left(n_{2}-s-1\right)$. Hence,

$$
\begin{aligned}
e\left(V_{1} V_{1}^{\prime}\right) & \geqslant(m-3-s)\left(n_{1}-(m-4-s)\right) \\
& >(m-3-s) n_{1}-\left(m-2-n_{2}\right) n_{1}+(s+1)\left(n_{2}-s-1\right) \\
& =\left(n_{1}+1+s\right)\left(n_{2}-s-1\right)
\end{aligned}
$$

Therefore, we have $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant n_{2}-s$ for some $v_{i} \in \Gamma\left(v_{0}\right)$. From the above, $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant s$. Thus, G contains a copy of $S\left(n_{1}, n_{2}\right)$ with centers v_{0} and v_{i}. Consequently, $r\left(K_{1, m-1}, S\left(n_{1}, n_{2}\right)\right) \leqslant m-1+n_{1}$ and so the theorem is proved.

Corollary 4.3. Let $m, n \in \mathbb{N}, m \geqslant 5, n>m+1+1 /(m-4)$ and $2 \nmid m n$. Then $r\left(K_{1, m-1}, T_{n}^{2}\right)=m+n-5$.

Proof. Since $T_{n}^{2}=S(n-4,2)$, putting $n_{1}=n-4$ and $n_{2}=2$ in Theorem 4.2 yields the result.

Corollary 4.4. Let $m, n \in \mathbb{N}, m \geqslant 6, n>m+3+4 /(m-5)$ and $2 \nmid m(n-1)$. Then $r\left(K_{1, m-1}, T_{n}^{3}\right)=m+n-6$.

Proof. Since $T_{n}^{3}=S(n-5,3)$, putting $n_{1}=n-5$ and $n_{2}=3$ in Theorem 4.2 we deduce the result.

Theorem 4.3. Let $m, n \in \mathbb{N}, n \geqslant m+2 \geqslant 7$ and $2 \nmid m n$. Then $r\left(K_{1, m-1}, T_{n}^{1}\right)=$ $m+n-5$.

Proof. Since $n>m$ and $2 \nmid m n$, we have $n \geqslant m+2$. Let G be a graph of order $m+n-5$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. We show that G contains a copy of T_{n}^{1}. Clearly $\Delta(\bar{G}) \leqslant m-2$ and so $\delta(G)=m+n-6-\Delta(\bar{G}) \geqslant n-4$. If $\Delta(G)=n-4$, then G is a regular graph of order $m+n-5$ with degree $n-4$ and so $(m+n-5)(n-4)=2 e(G)$. Since $m+n-5$ and $n-4$ are odd, we get a contradiction. Thus, $\Delta(G) \geqslant n-3$. Assume that $v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G)=n-3+c, \Gamma\left(v_{0}\right)=$ $\left\{v_{1}, \ldots, v_{n-3+c}\right\}, V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{m-3-c}\right\}$. Since $\delta(G) \geqslant n-4$ for $v_{i} \in \Gamma\left(v_{0}\right)$ we have $1+\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n-4$ and so $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-(m-3-c)=n-m-2+c \geqslant c$.

We first assume that $\left|V_{1}^{\prime}\right|=m-3-c \geqslant 2$. For $i=1,2$ we have $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+$ $\left|V_{1}^{\prime}\right|-1 \geqslant d\left(u_{i}\right) \geqslant \delta(G) \geqslant n-4$ and so $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-4+1-(m-3-c)=$ $n-m+c \geqslant 2$. Hence G contains a copy of T_{n}^{1}. If $\left|V_{1}^{\prime}\right|=1$, then $c=m-4 \geqslant 1$. Since $d\left(u_{1}\right) \geqslant n-4>1$, we have $u_{1} v_{j} \in E(G)$ for some $v_{j} \in \Gamma\left(v_{0}\right)$. Recall that $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant c \geqslant 1$ for $v_{i} \in \Gamma\left(v_{0}\right) . G$ must contain a copy of T_{n}^{1}. Now assume that $\left|V_{1}^{\prime}\right|=0$. That is, $c=m-3$ and $G=G\left[V_{1}\right]$. Since $d\left(v_{0}\right)=n-3+m-3 \geqslant n-3+2$ and $d\left(v_{i}\right) \geqslant n-4 \geqslant 3$ for $v_{i} \in \Gamma\left(v_{0}\right)$, we see that $G\left[\Gamma\left(v_{0}\right)\right]$ contains a copy of $2 K_{2}$ and so G contains a copy of T_{n}^{1}.

By the above, G contains a copy of T_{n}^{1}. Therefore $r\left(K_{1, m-1}, T_{n}^{1}\right) \leqslant m+n-5$. From Lemma 2.3,

$$
r\left(K_{1, m-1}, T_{n}^{j}\right) \geqslant m-1+n-3-\frac{1-(-1)^{(m-2)(n-4)}}{2}=m+n-5 .
$$

Hence $r\left(K_{1, m-1}, T_{n}^{1}\right)=m+n-5$ as claimed.
Lemma 4.1. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7, n>m+1+8 /(m-6)$ and $T_{n} \in$ $\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Let G_{m} be a connected graph of order m such that $\operatorname{ex}\left(m+n-5 ; G_{m}\right) \leqslant$ $\frac{1}{2}(m-2)(m+n-5)$. Then $r\left(G_{m}, T_{n}\right) \leqslant m+n-5$. Moreover, if $m-1 \mid n-5$, then $r\left(G_{m}, T_{n}\right)=m+n-5$.

Proof. If $T_{n} \neq T_{n}^{3}$ or $m \notin\{n-3, n-4\}$, appealing to Lemmas 2.7 and 2.9 we have

$$
\begin{aligned}
\operatorname{ex}\left(m+n-5 ; T_{n}\right)= & \frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\max \left\{0,\left[\frac{(m-4)(n-m)-3(n-1)}{2}\right]\right\} \\
= & \frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\max \left\{0,\left[\frac{(m-7)(n-m-3)-18}{2}\right]\right\} .
\end{aligned}
$$

Thus, if $(m-7)(n-m-3) \geqslant 18$, then

$$
\begin{aligned}
\operatorname{ex}(m+ & \left.n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}\right) \\
\leqslant & \frac{(m-2)(m+n-5)}{2}+\frac{(n-2)(m+n-5)-(m-4)(n-m+3)}{2} \\
& +\frac{(m-7)(n-m-3)-18}{2} \\
= & \frac{(m+n-5)(m+n-7)}{2}<\binom{m+n-5}{2} .
\end{aligned}
$$

If $(m-7)(n-m-3)<18$, since $n>m+1+8 /(m-6)$ we see that $(m-6) n>$ $m^{2}-5 m+2,(m-4)(n-m+3)>2(m+n-5)$ and so

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}\right) \\
& \quad \leqslant \frac{(m-2+n-2)(m+n-5)-(m-4)(n-m+3)}{2}<\binom{m+n-5}{2}
\end{aligned}
$$

Hence, $r\left(G_{m}, T_{n}\right) \leqslant m+n-5$ by Lemma 2.1.
For $m=n-3$, using Lemma 2.8 we see that

$$
\begin{aligned}
\operatorname{ex}(m+n-5 ; & \left.G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}^{3}\right)=\operatorname{ex}\left(2 n-8 ; G_{n-3}\right)+\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right) \\
& \leqslant \frac{(2 n-8)(n-5)}{2}+n^{2}-9 n+29+\max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& =2 n^{2}-18 n+49+\max \left\{0,\left[\frac{n-37}{4}\right]\right\} \\
& <2 n^{2}-17 n+36=\binom{m+n-5}{2}
\end{aligned}
$$

For $m=n-4$, appealing to Lemma 2.8,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-5 ; G_{m}\right)+\operatorname{ex}\left(m+n-5 ; T_{n}^{3}\right)=\operatorname{ex}\left(2 n-9 ; G_{n-4}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right) \\
& \leqslant \frac{(2 n-9)(n-6)}{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&=2 n^{2}-20 n+51-\frac{n}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&<2 n^{2}-19 n+45=\binom{m+n-5}{2}
\end{aligned}
$$

Thus, $r\left(G_{m}, T_{n}^{3}\right) \leqslant m+n-5$ for $m=n-4, n-3$ by Lemma 2.1.
Now assume that $m-1 \mid n-5$. Then $m+n-6=k(m-1)$ for $k \in\{2,3, \ldots\}$. Since $\Delta\left(\overline{k K_{m-1}}\right)=n-5$ we see that $k K_{m-1}$ does not contain G_{m} as a subgraph and $\overline{k K_{m-1}}$ does not contain T_{n} as a subgraph. Hence $r\left(G_{m}, T_{n}\right)>k(m-1)=$ $m+n-6$ and so $r\left(G_{m}, T_{n}\right)=m+n-5$. The proof is now complete.

Theorem 4.4. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7, n>m+1+8 /(m-6)$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. If $2 \mid m(n-1)$, then $r\left(K_{1, m-1}, T_{n}\right)=m+n-5$.

Proof. By Euler's theorem or Lemma 2.4, $\operatorname{ex}\left(m+n-5 ; K_{1, m-1}\right) \leqslant \frac{1}{2}(m-2) \times$ $(m+n-5)$. Thus, applying Lemma 4.1 we obtain $r\left(K_{1, m-1}, T_{n}\right) \leqslant m+n-5$. Suppose that $2 \mid m(n-1)$. By Lemma 2.3,

$$
r\left(K_{1, m-1}, T_{n}\right) \geqslant m-1+n-4-\frac{1-(-1)^{(m-2)(n-5)}}{2}=m+n-5
$$

Thus the result follows.
Corollary 4.5. Let $n \in \mathbb{N}, n \geqslant 17$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Then $r\left(K_{1, n-3}, T_{n}\right)=$ $2 n-7$.

Proof. Taking $m=n-2$ in Theorem 4.4 gives the result.

Theorem 4.5. Let $m, n \in \mathbb{N}, m \geqslant 6, n \geqslant m+3$ and $2 \nmid m(n-1)$. Then

$$
r\left(K_{1, m-1}, T_{n}^{\prime \prime}\right)=r\left(K_{1, m-1}, T_{n}^{\prime \prime \prime}\right)=m+n-6
$$

Proof. Let G be a graph of order $m+n-6$ such that \bar{G} does not contain any copies of $K_{1, m-1}$. That is, $\Delta(\bar{G}) \leqslant m-2$. Thus, $\delta(G)=m+n-7-\Delta(\bar{G}) \geqslant n-5$. If $\Delta(G)=n-5$, then G is a regular graph of order $m+n-6$ with degree $n-5$ and so $(m+n-6)(n-5)=2 e(G)$. Since $m+n-6$ and $n-5$ are odd, we get a contradiction. Thus, $\Delta(G) \geqslant n-4$. Assume that $v_{0} \in V(G), d\left(v_{0}\right)=\Delta(G)=n-4+c, \Gamma\left(v_{0}\right)=$
$\left\{v_{1}, \ldots, v_{n-4+c}\right\}, V_{1}=\left\{v_{0}\right\} \cup \Gamma\left(v_{0}\right)$ and $V_{1}^{\prime}=V(G)-V_{1}=\left\{u_{1}, \ldots, u_{m-3-c}\right\}$. Since $\delta(G) \geqslant n-5$, we see that for $v_{i} \in \Gamma\left(v_{0}\right),\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+1+\left|V_{1}^{\prime}\right| \geqslant d\left(v_{i}\right) \geqslant n-5$ and so

$$
\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-1-(m-3-c)=n-m-3+c \geqslant c .
$$

For $u_{i} \in V_{1}^{\prime}$, we see that $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right|+\left|V_{1}^{\prime}\right|-1 \geqslant d\left(u_{i}\right) \geqslant n-5$ and so

$$
\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-5-(m-4-c)=n-m-1+c \geqslant 2+c .
$$

We first assume that $c=0$. Since $\left|V_{1}^{\prime}\right|=m-3 \geqslant 3$ and $\delta(G) \geqslant n-5$, we see that $\left|\Gamma\left(u_{i}\right) \cap\left\{v_{1}, \ldots, v_{n-4}\right\}\right| \geqslant n-5-(m-4)=n-m-1 \geqslant 2$ for $u_{i} \in V_{1}^{\prime}$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3)(n-m-1)$. Since $n \geqslant m+3$ we see that $(m-4) n \geqslant(m-4)(m+3)=$ $m^{2}-m-12>m^{2}-2 m-7$ and so $e\left(V_{1} V_{1}^{\prime}\right) \geqslant(m-3)(n-m-1)>n-4$. Therefore, $\left|\Gamma\left(v_{i}\right) \cap V_{1}^{\prime}\right| \geqslant 2$ for some $i \in\{1,2, \ldots, n-4\}$. With no loss of generality, we may suppose that $u_{1} v_{i}, u_{2} v_{i}, u_{2} v_{j}, u_{3} v_{k} \in E(G)$, where v_{i}, v_{j}, v_{k} are distinct vertices in $\Gamma\left(v_{0}\right)$. Thus G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Next we assume that $\left|V_{1}^{\prime}\right|=m-3-c \geqslant 3$ and $c \geqslant 1$. Then $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant 3$ for $i=1,2,3$. Hence there are distinct vertices $v_{j}, v_{k}, v_{l} \in \Gamma\left(v_{0}\right)$ such that $u_{1} v_{j}, u_{2} v_{k}, u_{3} v_{l} \in E(G)$ and so G contains a copy of $T_{n}^{\prime \prime \prime}$. Since $d\left(v_{j}\right) \geqslant n-5>2, v_{j}$ is adjacent to some vertex w different from v_{0} and u_{1}. Hence, G contains a copy of $T_{n}^{\prime \prime}$.

Now assume that $\left|V_{1}^{\prime}\right|=2$. That is, $c=m-5$. Since $\left|\Gamma\left(u_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant \delta(G)-1 \geqslant$ $n-6 \geqslant 3$ for $i=1,2$, and $\left|\Gamma\left(v_{i}\right) \cap \Gamma\left(v_{0}\right)\right| \geqslant n-m-3+c=n-8 \geqslant 1$ for $v_{i} \in \Gamma\left(v_{0}\right)$, it is easy to see that G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Suppose that $\left|V_{1}^{\prime}\right|=1$. Then $c=m-4 \geqslant 2, d\left(u_{1}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ and $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ for $i=1,2, \ldots, n-4+m-4$. Hence G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Finally we assume that $\left|V_{1}^{\prime}\right|=0$. That is, $c=m-3$. Since $d\left(v_{i}\right) \geqslant \delta(G) \geqslant n-5 \geqslant 4$ for $i=1,2, \ldots, n-4+m-3$, it is easy to see that G contains a copy of $T_{n}^{\prime \prime}$ and a copy of $T_{n}^{\prime \prime \prime}$.

Suppose that $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$. By the above, G contains a copy of T_{n}. Hence $r\left(K_{1, m-1}, T_{n}\right) \leqslant m+n-6$. By Lemma 2.3, $r\left(K_{1, m-1}, T_{n}\right) \geqslant m-1+n-4-$ $\frac{1}{2}\left(1-(-1)^{(m-2)(n-5)}\right)=m+n-6$. Thus $r\left(K_{1, m-1}, T_{n}\right)=m+n-6$ as asserted.

Theorem 4.6. Let $n \in \mathbb{N}$ with $n \geqslant 15$. Then $r\left(K_{1, n-4}, T_{n}^{3}\right)=2 n-8$.
Proof. By Euler's theorem, $\operatorname{ex}\left(2 n-8 ; K_{1, n-4}\right) \leqslant \frac{1}{2}(n-5)(2 n-8)$. Thus, $r\left(K_{1, n-4}, T_{n}^{3}\right) \leqslant 2 n-8$ by taking $G_{m}=K_{1, n-4}$ in Lemma 4.1. If $2 \nmid n$, from Lemma 2.3 we have $r\left(K_{1, n-4}, T_{n}^{3}\right) \geqslant n-4+n-4=2 n-8$. Thus the result is true for odd n. Now assume that $2 \mid n$. Let G_{0} be the graph of order $2 n-9$ constructed
in Theorem 3.2. Then G_{0} does not contain T_{n}^{3} as a subgraph. As $\delta\left(G_{0}\right)=n-5$, we have $\Delta\left(\bar{G}_{0}\right)=2 n-10-(n-5)=n-5$ and so \bar{G}_{0} does not contain $K_{1, n-4}$ as a subgraph. Hence $r\left(K_{1, n-4}, T_{n}^{3}\right)>\left|V\left(G_{0}\right)\right|=2 n-9$ and so $r\left(K_{1, n-4}, T_{n}^{3}\right)=2 n-8$ as claimed.

Theorem 4.7. Let $n \in \mathbb{N}$ with $n \geqslant 10$. Then

$$
r\left(K_{1, n-2}, T_{n}^{3}\right)=r\left(K_{1, n-2}, T_{n}^{\prime \prime}\right)=r\left(K_{1, n-2}, T_{n}^{\prime \prime \prime}\right)=2 n-5 .
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(K_{1, n-2}\right)=n-2$ and $\Delta\left(T_{n}\right)=n-4$, we have $r\left(K_{1, n-2}, T_{n}\right) \geqslant 2(n-2)-1=2 n-5$ by Lemma 2.3 (ii). By Lemmas 2.4, 2.7 and 2.9,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-5 ; K_{1, n-2}\right) & =\left[\frac{(n-3)(2 n-5)}{2}\right]=n^{2}-6 n+8+\left[\frac{n-1}{2}\right] \\
\operatorname{ex}\left(2 n-5 ; T_{n}\right) & =\frac{(n-2)(2 n-5)-3(n-4)}{2}=n^{2}-6 n+11
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-5 ; K_{1, n-2}\right)+\operatorname{ex}\left(2 n-5 ; T_{n}\right) & =n^{2}-6 n+8+\left[\frac{n-1}{2}\right]+n^{2}-6 n+11 \\
& <2 n^{2}-11 n+15=\binom{2 n-5}{2}
\end{aligned}
$$

Now, applying Lemma 2.1 yields $r\left(K_{1, n-2}, T_{n}\right) \leqslant 2 n-5$ and so $r\left(K_{1, n-2}, T_{n}\right)=$ $2 n-5$, which proves the theorem.
5. FORMULAS FOR $r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right), r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)$ AND $r\left(T_{m}^{\prime}, T_{n}^{3}\right)$

Theorem 5.1. Let $m, n \in \mathbb{N}, n \geqslant 15, m \geqslant 7$ and $m-1 \mid n-5$. Suppose that $G_{m} \in\left\{P_{m}, T_{m}^{\prime}, T_{m}^{*}, T_{m}^{1}, T_{m}^{2}, T_{m}^{3}, T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $m \geqslant 10$ or $G_{m} \notin\left\{T_{m}^{3}, T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}\right\}$. Then $r\left(G_{m}, T_{n}\right)=m+n-5$.

Proof. Note that $m+n-5 \equiv 1(\bmod m-1)$. By (2.1) and Lemmas 2.5, 2.6, 2.10 and 2.11, ex $\left(m+n-5 ; G_{m}\right) \leqslant \frac{1}{2}(m-2)(m+n-5)$. Thus, applying Lemma 4.1 and the fact $n \geqslant m+4$ gives the result.

Theorem 5.2. Let $m, n \in \mathbb{N}, m \geqslant 9, n>m+2+\max \{0,(20-m) /(m-8)\}$ and $m-1 \nmid n-5$. Then

$$
r\left(T_{m}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{m}^{\prime}, T_{n}^{3}\right)=m+n-6
$$

Proof. Let $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Since $\Delta\left(T_{m}^{\prime}\right)=m-2<m-1$ and $\Delta\left(T_{n}\right)=$ $n-4>m-2$, we have $r\left(T_{m}^{\prime}, T_{n}\right) \geqslant m-2+n-4=m+n-6$ by Lemma 2.3 (ii)-(iii). Note that $m \geqslant 9$ and so $n \geqslant 15$. Since $n>m+2+(20-m) /(m-8)$, we see that $(m-8) n>m^{2}-7 m+4$ and so $(m-5)(n-m+4)>3(m+n-6)-(m-2)$.

Suppose that $T_{n} \neq T_{n}^{3}$ or $n \neq m+3$. From Lemmas 2.7 and 2.9, if $(m-5)(n-m+1) \geqslant 3(n-1)$, then

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}\right) \leqslant & \frac{(n-2)(m+n-6)-(m-5)(n-m+4)}{2} \\
& +\frac{(m-5)(n-m+1)-3(n-1)}{2}=\frac{(n-5)(m+n-6)}{2}
\end{aligned}
$$

if $(m-5)(n-m+1)<3(n-1)$, then

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}\right) & =\frac{(n-2)(m+n-6)-(m-5)(n-m+4)}{2} \\
& <\frac{(n-2)(m+n-6)-3(m+n-6)+m-2}{2} \\
& =\frac{(n-5)(m+n-6)+m-2}{2}
\end{aligned}
$$

Recall that $m-1 \nmid n-5$. By Lemma 2.5, ex $\left(m+n-6 ; T_{m}^{\prime}\right) \leqslant \frac{1}{2}((m-2)(m+n-6)-$ $(m-2))$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{\prime}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) \\
& \quad<\frac{(m-2)(m+n-6)-(m-2)}{2}+\frac{(n-5)(m+n-6)+m-2}{2}=\binom{m+n-6}{2} .
\end{aligned}
$$

Now applying Lemma 2.1 yields $r\left(T_{m}^{\prime}, T_{n}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{\prime}, T_{n}\right)=m+n-6$.
Now assume that $T_{n}=T_{n}^{3}$ and $n=m+3$. Then $\max \{0,(20-m) /(m-8)\}<1$ and so $m=n-3 \geqslant 15$. Also, $m+n-6=2 n-9=n-1+n-8=2 m-3=m-1+m-2$. From Lemma 2.9 (iii),

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
$$

By Lemma 2.5, $\operatorname{ex}\left(2 m-3 ; T_{m}^{\prime}\right)=\frac{1}{2}((m-2)(2 m-3)-(m-2))=(m-2)^{2}=(n-5)^{2}$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{\prime}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) \\
&=(n-5)^{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
&=2 n^{2}-20 n+49+\max \left\{\left[\frac{n}{2}\right], 13\right\}<2 n^{2}-19 n+45=\binom{2 n-9}{2} .
\end{aligned}
$$

Applying Lemma 2.1 gives $r\left(T_{m}^{\prime}, T_{n}^{3}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{\prime}, T_{n}^{3}\right)=m+n-6$ for $n=m+3$. This completes the proof.

Theorem 5.3. Let $n \in \mathbb{N}$ with $n \geqslant 18$. Then

$$
r\left(T_{n-3}^{\prime}, T_{n}^{\prime \prime}\right)=r\left(T_{n-3}^{\prime}, T_{n}^{\prime \prime \prime}\right)=r\left(T_{n-3}^{\prime}, T_{n}^{3}\right)=2 n-9 .
$$

Proof. Suppose that $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right)$. Since $\Delta\left(T_{n}\right)=n-4>n-5=$ $\Delta\left(T_{n-3}^{\prime}\right)$, from Lemma 2.3 (ii) we have $r\left(T_{n-3}^{\prime}, T_{n}\right) \geqslant 2(n-4)-1=2 n-9$. By Lemma 2.5, ex $\left(2 n-9 ; T_{n-3}^{\prime}\right)=\frac{1}{2}(n-5)(2 n-10)=n^{2}-10 n+25$. From Lemma 2.7 for $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}\right\}$,

$$
\begin{aligned}
\operatorname{ex}\left(2 n-9 ; T_{n}\right) & =\frac{(n-2)(2 n-9)-7(n-8)}{2}+\max \left\{0,\left[\frac{4(n-8)-3(n-1)}{2}\right]\right\} \\
& =n^{2}-10 n+37+\max \left\{0,\left[\frac{n-29}{2}\right]\right\}<n^{2}-9 n+20
\end{aligned}
$$

and so

$$
\operatorname{ex}\left(2 n-9 ; T_{n-3}^{\prime}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}\right)<n^{2}-10 n+25+n^{2}-9 n+20=\binom{2 n-9}{2}
$$

Now, applying Lemma 2.1 yields $r\left(T_{n-3}^{\prime}, T_{n}\right) \leqslant 2 n-9$ and so $r\left(T_{n-3}^{\prime}, T_{n}\right)=2 n-9$. On the other hand, from Lemma 2.8 we have

$$
\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}<n^{2}-9 n+20
$$

Thus,

$$
\operatorname{ex}\left(2 n-9 ; T_{n-3}^{\prime}\right)+\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)<n^{2}-10 n+25+n^{2}-9 n+20=\binom{2 n-9}{2}
$$

Applying Lemma 2.1, $r\left(T_{n-3}^{\prime}, T_{n}^{3}\right) \leqslant 2 n-9$ and so $r\left(T_{n-3}^{\prime}, T_{n}^{3}\right)=2 n-9$, which completes the proof.

Theorem 5.4. Let $m, n \in \mathbb{N}$ with $n>m \geqslant 10$, and $T_{m} \in\left\{T_{m}^{\prime \prime}, T_{m}^{\prime \prime \prime}, T_{m}^{3}\right\}$. Then

$$
r\left(T_{m}, T_{n}^{\prime}\right)=r\left(T_{m}, T_{n}^{*}\right)= \begin{cases}m+n-3 & \text { if } m-1 \mid n-3 \\ m+n-4 & \text { if } m-1 \nmid n-3 \text { and } n \geqslant(m-3)^{2}+2\end{cases}
$$

Proof. If $m-1 \mid n-3$, then ex $\left(m+n-3 ; T_{m}\right)=\frac{1}{2}((m-2)(m+n-3)-(m-2))$ by Lemmas 2.7 and 2.9. Thus, the result follows from [9], Theorems 4.1 and 5.1.

Now assume that $m-1 \nmid n-3$. By Lemma 2.10, ex $\left(m+n-4 ; T_{m}\right)<\frac{1}{2}(m-2) \times$ ($m+n-4$). Applying [9], Theorems 4.4 and 5.4 deduces the result. The proof is now complete.
6. Evaluation of $r\left(T_{m}^{0}, T_{n}\right)$ with $T_{m}^{0} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$

Lemma 6.1 ([7], Theorem 8.3, pages 11-12). Let $a, b, n \in \mathbb{N}$. If a is coprime to b and $n \geqslant(a-1)(b-1)$, then there are two nonnegative integers x and y such that $n=a x+b y$.

Theorem 6.1. Let $m, n \in \mathbb{N}$ with $m \geqslant 9, n>m+1+12 /(m-8)$ and $m-1 \nmid n-5$. Suppose that $T_{m}^{0} \in\left\{T_{m}^{*}, T_{m}^{1}, T_{m}^{2}\right\}$ and $T_{n} \in\left\{T_{n}^{\prime \prime}, T_{n}^{\prime \prime \prime}, T_{n}^{3}\right\}$. Assume that $T_{m}^{0} \neq T_{m}^{*}$ or $m \geqslant 11$. Then $r\left(T_{m}^{0}, T_{n}\right)=m+n-7$ or $m+n-6$. If $n \geqslant(m-3)^{2}+4$ or $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y, then $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$.

Proof. Note that $\Delta\left(T_{m}^{0}\right)=m-3<n-4=\Delta\left(T_{n}\right)$. Using Lemma 2.3 (ii)-(iii), $r\left(T_{m}^{0}, T_{n}\right) \geqslant m-3+n-4=m+n-7$. Since $m-1 \nmid n-5$, from Lemmas 2.6, 2.11 and 2.12 we have $\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right) \leqslant \frac{1}{2}((m-2)(m+n-6)-(m-2))$.

We first assume that $T_{n} \neq T_{n}^{3}$ or $n \neq m+2, m+3$. By the proof of Theorem 5.2, $\operatorname{ex}\left(m+n-6 ; T_{n}\right)<\frac{1}{2}((n-5)(m+n-6)+m-2)$. Thus,

$$
\begin{aligned}
& \operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) \\
& \quad<\frac{(m-2)(m+n-6)-(m-2)}{2}+\frac{(n-5)(m+n-6)+m-2}{2}=\binom{m+n-6}{2} .
\end{aligned}
$$

Hence, $r\left(T_{m}^{0}, T_{n}\right) \leqslant m+n-6$ by Lemma 2.1 and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$ or $m+n-7$.

We next assume that $T_{n}=T_{n}^{3}$ and $n=m+2$. Then $m+n-6=2 n-8=n-1+n-7$, $m+2>m+1+12 /(m-8)$ and so $n-2=m>20$. By Lemma 2.9 (iv),

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =\operatorname{ex}\left(2 n-8 ; T_{n}^{3}\right) \\
& =\frac{(n-2)(2 n-8)-6(n-7)}{2}+\max \left\{\left[\frac{n-37}{4}\right], 0\right\} \\
& =n^{2}-9 n+29+\max \left\{\left[\frac{n-37}{4}\right], 0\right\}<n^{2}-9 n+29+\frac{n-22}{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}\right) & <\frac{(n-4)(2 n-9)}{2}+n^{2}-9 n+29+\frac{n-22}{2} \\
& =(n-4)(2 n-9)=\binom{2 n-8}{2}
\end{aligned}
$$

Hence $r\left(T_{m}^{0}, T_{n}^{3}\right) \leqslant m+n-6$ by Lemma 2.1 and so $r\left(T_{m}^{0}, T_{n}^{3}\right)=m+n-6$ or $m+n-7$.

Finally, we assume that $T_{n}=T_{n}^{3}$ and $n=m+3$. Then $m+n-6=2 n-9=$ $n-1+n-8, m+3>m+1+12 /(m-8)$ and so $n-3=m \geqslant 15$. From Lemma 2.9 (iii),

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =\operatorname{ex}\left(2 n-9 ; T_{n}^{3}\right)=\frac{(n-2)(2 n-9)-7 n+30}{2}+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& =n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\}
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right) & =\operatorname{ex}\left(2 m-3 ; T_{m}^{0}\right) \leqslant \frac{(m-2)(2 m-3)-(m-2)}{2} \\
& =(m-2)^{2}=(n-5)^{2}
\end{aligned}
$$

We then obtain

$$
\begin{aligned}
\operatorname{ex}\left(m+n-6 ; T_{m}^{0}\right)+\operatorname{ex}\left(m+n-6 ; T_{n}^{3}\right) & =(n-5)^{2}+n^{2}-10 n+24+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& =2 n^{2}-20 n+49+\max \left\{\left[\frac{n}{2}\right], 13\right\} \\
& <2 n^{2}-19 n+45=\binom{n-9}{2} .
\end{aligned}
$$

Applying Lemma 2.1 gives $r\left(T_{m}^{0}, T_{n}^{3}\right) \leqslant m+n-6$ and so $r\left(T_{m}^{0}, T_{n}^{3}\right)=m+n-6$ or $m+n-7$ for $n=m+3$.

If $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y, setting $G=x K_{m-1} \cup y K_{m-2}$ we find that G does not contain any copies of T_{m}^{0}. Observe that $\Delta(\bar{G})=n-5$ or $n-6$. We see that \bar{G} does not contain any copies of T_{n}. Hence $r\left(T_{m}^{0}, T_{n}\right)>|V(G)|=m+n-7$ and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$. If $n \geqslant(m-3)^{2}+4$, then $m+n-7 \geqslant(m-2)(m-3)$. By Lemma 6.1, $m+n-7=(m-1) x+(m-2) y$ for some nonnegative integers x and y and so $r\left(T_{m}^{0}, T_{n}\right)=m+n-6$ as claimed.

Summarizing the above proves the theorem.

References

[1] S. A. Burr, P. Erdős: Extremal Ramsey theory for graphs. Util. Math. 9 (1976), 247-258. Zठ] MR
[2] G. Chartrand, L. Lesniak: Graphs and Digraphs. Wadsworth \& Brooks/Cole Mathematics Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, 1986.
[3] R. J. Faudree, R. H. Schelp: Path Ramsey numbers in multicolorings. J. Comb. Theory, Ser. B 19 (1975), 150-160.

Zbl MR doil
[4] J. W. Grossman, F. Harary, M. Klawe: Generalized Ramsey theory for graphs, X: Double stars. Discrete Math. 28 (1979), 247-254.
[5] Y. Guo, L. Volkmann: Tree-Ramsey numbers. Australas. J. Comb. 11 (1995), 169-175.
[6] F. Harary: Recent results on generalized Ramsey theory for graphs. Graph Theory and Applications. Lecture Notes in Mathematics 303. Springer, Berlin, 1972, pp. 125-138.
[7] L. K. Hua: Introduction to Number Theory. Springer, Berlin, 1982.
Zbl MR doi
[8] S. P. Radziszowski: Small Ramsey numbers. Electron. J. Comb. 2017 (2017), Article ID DS1, 104 pages.
[9] Z.-H. Sun: Ramsey numbers for trees. Bull. Aust. Math. Soc. 86 (2012), 164-176.
[10] Z.-H. Sun, Y.-Y. Tu: Turán's problem for trees T_{n} with maximal degree $n-4$. Available at https://arxiv.org/abs/1410. 7282 (2014), 28 pages.
[11] Z.-H. Sun, L.-L. Wang: Turán's problem for trees. J. Comb. Number Theory 3 (2011), 51-69.
[12] Z.-H. Sun, L.-L. Wang, Y.-L. Wu: Turán's problem and Ramsey numbers for trees. Colloq. Math. 139 (2015), 273-298.

Zbl MR doi
Author's address: Zhi-Hong Sun, School of Mathematics and Statistics, Huaiyin Normal University, 111 Changjiang West Road, Huaian, Jiangsu 223300, P. R. China, e-mail: zhsun@hytc.edu.cn.

