Ramsey numbers for trees

Zhi-Hong Sun

School of Mathematical Sciences,
Huaiyin Normal University,
Huaian, Jiangsu 223001, P.R. China
E-mail: zhihongsun@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

For $n \geq 5$ let T'_n denote the unique tree on n vertices with $\Delta(T'_n) = n-2$, and let $T^*_n = (V, E)$ be the tree on n vertices with $V = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E = \{v_0v_1, \ldots, v_0v_{n-3}, v_{n-3}v_{n-2}, v_{n-2}v_{n-1}\}$. In this paper we evaluate the Ramsey numbers $r(G_m, T'_n)$ and $r(G_m, T^*_n)$, where G_m is a connected graph of order m. As examples, for $n \geq 8$ we have $r(T'_n, T^*_n) = r(T^*_n, T^*_n) = 2n-5$, for $n > m \geq 7$ we have $r(K_{1,m-1}, T^*_n) = m+n-3$ or m+n-4 according as $m-1 \mid (n-3)$ or $m-1 \nmid (n-3)$, for $m \geq 7$ and $n \geq (m-3)^2 + 2$ we have $r(T^*_m, T^*_n) = m+n-3$ or m+n-4 according as $m-1 \mid (n-3)$ or $m-1 \nmid (n-3)$.

MSC: Primary 05C35, Secondary 05C05.

Keywords: Ramsey number, tree, Turán's problem

1. Introduction

In this paper, all graphs are simple graphs. For a graph G=(V(G),E(G)) let e(G)=|E(G)| be the number of edges in G and let $\Delta(G)$ be the maximal degree of G. For a forbidden graph L, let ex(p;L) denote the maximal number of edges in a graph of order p not containing L as a subgraph. The corresponding Turán's problem is to evaluate ex(p;L).

Let $\mathbb N$ be the set of positive integers, and let $p,n\in\mathbb N$ with $p\geq n\geq 3$. For a given tree T_n on n vertices, it is difficult to determine the value of $ex(p;T_n)$. The famous Erdös-Sós conjecture asserts that $ex(p;T_n)\leq \frac{(n-2)p}{2}$ for every tree T_n on n vertices. For the progress on the Erdös-Sós conjecture, see [4,8,9,11]. Write p=k(n-1)+r, where $k\in\mathbb N$ and $r\in\{0,1,\ldots,n-2\}$. Let P_n be the path on n vertices. In [5] Faudree and Schelp showed that

$$ex(p; P_n) = k \binom{n-1}{2} + \binom{r}{2} = \frac{(n-2)p - r(n-1-r)}{2}.$$
 (1.1)

¹The author is supported by the National Natural Sciences Foundation of China (grant no. 10971078).

In the special case r = 0, (1.1) is due to Erdös and Gallai [3]. Let $K_{1,n-1}$ denote the unique tree on n vertices with $\Delta(K_{1,n-1}) = n - 1$, and for $n \ge 4$ let T'_n denote the unique tree on n vertices with $\Delta(T'_n) = n - 2$. In [10] the author and Lin-Lin Wang obtained exact values of $ex(p; K_{1,n-1})$ and $ex(p; T'_n)$, see Lemmas 2.4 and 2.5.

For $n \ge 5$ let $T_n^* = (V, E)$ be the tree on n vertices with $V = \{v_0, v_1, \dots, v_{n-1}\}$ and $E = \{v_0v_1, \dots, v_0v_{n-3}, v_{n-3}v_{n-2}, v_{n-2}v_{n-1}\}$. In [10], we also determine the value of $ex(p; T_n^*)$, see Lemmas 2.6-2.8.

As usual \overline{G} denotes the complement of a graph G. Let G_1 and G_2 be two graphs. The Ramsey number $r(G_1, G_2)$ is the smallest positive integer n such that, for every graph G with n vertices, either G contains a copy of G_1 or else \overline{G} contains a copy of G_2 .

Let $n \in \mathbb{N}$ with $n \geq 6$. If the Erdös-Sós conjecture is true, it is known that $r(T_n, T_n) \leq 2n - 2$ (see [8]). Let $m, n \in \mathbb{N}$. In 1973 Burr and Roberts[2] showed that for $m, n \geq 3$,

$$r(K_{1,m-1}, K_{1,n-1}) = \begin{cases} m+n-3 & \text{if } 2 \nmid mn, \\ m+n-2 & \text{if } 2 \mid mn. \end{cases}$$

In 1995, Guo and Volkmann[6] proved that for $n \geq m \geq 5$,

$$r(T'_m, T'_n) = \begin{cases} m + n - 3 & \text{if } m - 1 \mid (n - 3), \\ m + n - 5 & \text{if } m = n \equiv 0 \text{ (mod 2)}, \\ m + n - 4 & \text{otherwise} \end{cases}$$

and, for $n > m \ge 4$,

$$r(K_{1,m-1},T_n') = \begin{cases} m+n-3 & \text{if } 2 \mid m(n-1), \\ m+n-4 & \text{if } 2 \nmid m(n-1). \end{cases}$$

Let $m, n \in \mathbb{N}$ with $n \geq m \geq 6$. In this paper we evaluate the Ramsey number $r(T_m, T_n^*)$ for $T_m \in \{P_m, K_{1,m-1}, T_m', T_m^*\}$. As examples, for $n \geq 8$,

$$r(P_n, T_n^*) = r(T_n^*, T_n^*) = 2n - 5;$$

for $n > m \ge 7$,

$$r(K_{1,m-1}, T_n^*) = \begin{cases} m+n-3 & \text{if } m-1 \mid (n-3), \\ m+n-4 & \text{if } m-1 \nmid (n-3); \end{cases}$$

and, for $m \ge 7$ and $n \ge (m-3)^2 + 2$,

$$r(P_m, T_n^*) = r(T_m', T_n^*) = r(T_m^*, T_n^*) = \begin{cases} m + n - 3 & \text{if } m - 1 \mid (n - 3), \\ m + n - 4 & \text{if } m - 1 \nmid (n - 3). \end{cases}$$

In addition to the above notation, throughout the paper we also use the following notation: $\lfloor x \rfloor$ is the greatest integer not exceeding x, K_n is the complete graph on n vertices, $K_{m,n}$ is the complete bipartite graph with m and n vertices in the bipartition, $d_G(v)$ is the degree of the vertex v in given graph G, and d(u,v) is the distance between the two vertices u and v in a graph.

2. Basic lemmas

Lemma 2.1. Let G_1 and G_2 be two graphs. Suppose $p \in \mathbb{N}, p \geq max\{|V(G_1)|, |V(G_2)|\}$ and $ex(p; G_1) + ex(p; G_2) < \binom{p}{2}$. Then $r(G_1, G_2) \leq p$.

Proof. Let G be a graph of order p. If $e(G) \leq ex(p; G_1)$ and $e(\overline{G}) \leq ex(p; G_2)$, then

$$ex(p; G_1) + ex(p; G_2) \ge e(G) + e(\overline{G}) = \binom{p}{2}.$$

This contradicts the assumption. Hence, either $e(G) > ex(p; G_1)$ or $e(\overline{G}) > ex(p; G_2)$. Therefore, G contains a copy of G_1 or \overline{G} contains a copy of G_2 . This shows that $r(G_1, G_2) \leq |V(G)| = p$. So the lemma is proved.

Lemma 2.2. Let $k, p \in \mathbb{N}$ with $p \ge k + 1$. Then there exists a k-regular graph of order p if and only if $2 \mid kp$.

This is a known result; see, for example, [10, Corollary 2.1].

Lemma 2.3. Let G_1 and G_2 be two graphs with $\Delta(G_1) = d_1 \geq 2$ and $\Delta(G_2) = d_2 \geq 2$. Then

- (i) $r(G_1, G_2) \ge d_1 + d_2 (1 (-1)^{(d_1 1)(d_2 1)})/2$.
- (ii) Suppose that G_1 is a connected graph of order m and $d_1 < d_2 \le m$. Then $r(G_1, G_2) \ge 2d_2 1 \ge d_1 + d_2$.
- (iii) Suppose that G_1 is a connected graph of order m and $d_2 > m$. If one of the conditions
 - (1) $2 \mid (d_1 + d_2 m)$,
 - (2) $d_1 \neq m-1$,
- (3) G_2 has two vertices u and v such that $d(v) = \Delta(G_2)$ and d(u, v) = 3 holds, then $r(G_1, G_2) \ge d_1 + d_2$.

Proof. We first consider (i). If $2 \mid (d_1-1)(d_2-1)$, then $2 \mid (d_1-1)(d_1+d_2-1)$. Since $d_1-1 \geq 1$, by Lemma 2.2 we may construct a d_1-1 -regular graph G of order d_1+d_2-1 . Since $\Delta(G)=d_1-1$ and $\Delta(\overline{G})=d_2-1$, G does not contain G_1 as a subgraph and \overline{G} does not contain G_2 as a subgraph. Hence $r(G_1,G_2) \geq 1+|V(G)|=d_1+d_2$. Now we assume $2 \nmid (d_1-1)(d_2-1)$. Then $2 \mid d_1, 2 \mid d_2$ and so $2 \mid (d_1+d_2-2)$. By Lemma 2.2, we may construct a d_1-1 -regular graph G of order d_1+d_2-2 . Since $\Delta(G)=d_1-1$ and $\Delta(\overline{G})=d_2-2$, G does not contain G_1 as a subgraph and \overline{G} does not contain G_2 as a subgraph. Hence $r(G_1,G_2) \geq 1+|V(G)|=d_1+d_2-1$. This proves (i).

Next we consider (ii). Suppose that G_1 is a connected graph of order m and $d_1 < d_2 \le m$. Since $K_{d_2-1} \cup K_{d_2-1}$ does not contain any copies of G_1 , and its complement K_{d_2-1,d_2-1} does not contain any copies of G_2 , we see that $r(G_1,G_2) \ge 1 + 2(d_2 - 1) = 2d_2 - 1 \ge d_1 + d_2$. This proves (ii).

Finally we consider (iii). Suppose that G_1 is a connected graph of order m and $d_2 > m$. By Lemma 2.2, we may construct a graph

$$G = \begin{cases} K_{m-1} \cup H_1 & \text{if } 2 \mid (d_1 + d_2 - m), \\ K_{m-2} \cup H_2 & \text{if } 2 \nmid (d_1 + d_2 - m), \end{cases}$$

where H_1 is a $d_1 - 1$ -regular graph of order $d_1 + d_2 - m$ and H_2 is a $d_1 - 1$ -regular graph of order $d_1 + d_2 - m + 1$. It is easily seen that G does not contain any copies

of G_1 and

$$\Delta(\overline{G}) = \begin{cases} d_2 - 1 & \text{if } 2 \mid (d_1 + d_2 - m) \text{ or } d_1 \neq m - 1, \\ d_2 & \text{if } 2 \nmid (d_1 + d_2 - m) \text{ and } d_1 = m - 1. \end{cases}$$

If $2 \mid (d_1+d_2-m)$ or $d_1 \neq m-1$, then \overline{G} does not contain any copies of G_2 and so $r(G_1,G_2) \geq 1 + |V(G)| = d_1 + d_2$. Now assume $2 \nmid (d_1+d_2-m)$ and $d_1=m-1$. For $v_0 \in V(H_2)$ we have $d_{\overline{G}}(v_0) = d_2 - 1$. Suppose that $v_1,\ldots,v_{m-2} \in V(G)$ and v_1,\ldots,v_{m-2} induce a copy of K_{m-2} . Then $\{v_1,\ldots,v_{m-2}\}$ is an independent set in \overline{G} and $d_{\overline{G}}(v_i) = d_2$ for $i=1,2,\ldots,m-2$. If G_2 has two vertices u and v such that $d(v) = \Delta(G_2)$ and d(u,v) = 3, we see that \overline{G} does not contain any copies of G_2 and so $r(G_1,G_2) \geq 1 + |V(G)| = d_1 + d_2$. This proves (iii) and the lemma is proved.

Lemma 2.4 ([10, Theorem 2.1]). Let $p, n \in \mathbb{N}$ with $p \ge n - 1 \ge 1$. Then $ex(p; K_{1,n-1}) = \lfloor \frac{(n-2)p}{2} \rfloor$.

Lemma 2.5 ([10, Theorem 3.1]). Let $p, n \in \mathbb{N}$ with $p \ge n \ge 5$. Let $r \in \{0, 1, \ldots, n-2\}$ be given by $p \equiv r \pmod{n-1}$. Then

$$ex(p;T_n') = \begin{cases} \left\lfloor \frac{(n-2)(p-1)-r-1}{2} \right\rfloor & \text{if } n \geq 7 \text{ and } 2 \leq r \leq n-4, \\ \frac{(n-2)p-r(n-1-r)}{2} & \text{otherwise.} \end{cases}$$

Lemma 2.6 ([10, Theorems 4.1-4.3]). Let $p, n \in \mathbb{N}$ with $p \ge n \ge 6$, and let p = k(n-1) + r with $k \in \mathbb{N}$ and $r \in \{0, 1, n-5, n-4, n-3, n-2\}$. Then

$$ex(p; T_n^*) = \begin{cases} \frac{(n-2)(p-2)}{2} + 1 & \text{if } n > 6 \text{ and } r = n-5, \\ \frac{(n-2)p - r(n-1-r)}{2} & \text{otherwise.} \end{cases}$$

Lemma 2.7 ([10, Theorem 4.4]). Let $p, n \in \mathbb{N}$, $p \ge n \ge 11$, $r \in \{2, 3, ..., n - 6\}$ and $p \equiv r \pmod{n-1}$. Let $t \in \{0, 1, ..., r+1\}$ be given by $n-3 \equiv t \pmod{r+2}$. Then

$$ex(p; T_n^*) = \begin{cases} \lfloor \frac{(n-2)(p-1) - 2r - t - 3}{2} \rfloor & \text{if } r \ge 4 \text{ and } 2 \le t \le r - 1, \\ \frac{(n-2)(p-1) - t(r+2-t) - r - 1}{2} & \text{otherwise.} \end{cases}$$

Lemma 2.8 ([10, Theorem 4.5]). Let $p, n \in \mathbb{N}$ with $6 \le n \le 10$ and $p \ge n$, and let $r \in \{0, 1, \dots, n-2\}$ be given by $p \equiv r \pmod{n-1}$.

- (i) If n = 6, 7, then $ex(p; T_n^*) = \frac{(n-2)p r(n-1-r)}{2}$.
- (ii) If n = 8, 9, then

$$ex(p; T_n^*) = \begin{cases} \frac{(n-2)p - r(n-1-r)}{2} & \text{if } r \neq n-5, \\ \frac{(n-2)(p-2)}{2} + 1 & \text{if } r = n-5. \end{cases}$$

(iii) If n = 10, then

$$ex(p; T_n^*) = \begin{cases} 4p - \frac{r(9-r)}{2} & \text{if } r \neq 4, 5, \\ 4p - 7 & \text{if } r = 5, \\ 4p - 9 & \text{if } r = 4. \end{cases}$$

Lemma 2.9. Let $p, m \in \mathbb{N}$ with $p \geq m \geq 5$, and $T_m \in \{P_m, K_{1,m-1}, T_m', T_m^*\}$. Then $ex(p; T_m) \leq \frac{(m-2)p}{2}$. Moreover, if $m-1 \nmid p$ and $T_m \in \{P_m, T_m', T_m^*\}$, then $ex(p; T_m) \leq \frac{(m-2)(p-1)}{2}$.

Proof. This is immediate from (1.1) and Lemmas 2.4-2.8.

Lemma 2.10. Let $m, n \in \mathbb{N}$ with $m, n \geq 5$. Let G_m be a connected graph on m vertices. If m + n - 5 = (m - 1)x + (m - 2)y for some nonnegative integers x and y, then $r(G_m, T_n) \geq m + n - 4$ for $T_n \in \{K_{1,n-1}, T'_n, T^*_n\}$.

Proof. Let $G = xK_{m-1} \cup yK_{m-2}$. Then |V(G)| = m + n - 5, $\Delta(G) \leq m - 1$ and $\Delta(\overline{G}) \leq n - 3$. Clearly, G does not contain G_m as a subgraph, and \overline{G} does not contain T_n as a subgraph. So the result is true.

Lemma 2.11 ([7, Theorem 8.3, pp.11-12]). Let $a, b, n \in \mathbb{N}$. If a is coprime to b and $n \geq (a-1)(b-1)$, then there are two nonnegative integers x and y such that n = ax + by.

Conjecture 2.12. Let $p, n \in \mathbb{N}$, $p \geq n \geq 5$, p = k(n-1) + r, $k \in \mathbb{N}$ and $r \in \{0, 1, \dots, n-2\}$. Let $T_n \neq K_{1,n-1}, T'_n$ be a tree on n vertices. Then $ex(p; T_n) \leq ex(p; T_n^*)$. Hence:

(i) if $r \in \{0, 1, n-4, n-3, n-2\}$, then

$$ex(p;T_n) = \frac{(n-2)p - r(n-1-r)}{2}.$$

(ii) if $2 \le r \le n - 5$, then

$$ex(p;T_n) \le \frac{(n-2)(p-1)-r-1}{2}.$$

We note that

$$ex(p; T_n) \ge e(kK_{n-1} \cup K_r) = \frac{(n-2)p - r(n-1-r)}{2} = ex(p; P_n).$$

Definition 2.13. For $n \geq 5$ let T_n be a tree on n vertices. View T_n as a bipartite graph with s_1 and s_2 vertices in the bipartition. Define $\alpha_2(T_n) = \max\{s_1, s_2\}$.

Conjecture 2.14. Let $p, n \in \mathbb{N}$ with $p \ge n \ge 5$. Let $T_n^{(1)}$ and $T_n^{(2)}$ be two trees on n vertices. If $\alpha_2(T_n^{(1)}) < \alpha_2(T_n^{(2)})$, then $ex(p; T_n^{(1)}) \le ex(p; T_n^{(2)})$.

3. The Ramsey number $r(G_n, T_n^*)$

Lemma 3.1. Let $n \in \mathbb{N}$, $n \geq 6$, and let G_n be a connected graph on n vertices such that $ex(2n-5;G_n) < n^2 - 5n + 4$. Then $r(G_n,T_n^*) = 2n - 5$.

Proof. As $2K_{n-3}$ does not contain any copies of G_n and $\overline{2K_{n-3}} = K_{n-3,n-3}$ does not contain any copies of T_n^* , we see that $r(G_n, T_n^*) > 2(n-3)$. By Lemma 2.6 we have

$$ex(2n-5;T_n^*) = \frac{(n-2)(2n-5)-3(n-4)}{2} = n^2 - 6n + 11.$$

Thus,

$$ex(2n-5;G_n) + ex(2n-5;T_n^*) < n^2 - 5n + 4 + n^2 - 6n + 11$$
$$= 2n^2 - 11n + 15 = {2n-5 \choose 2}.$$

Appealing to Lemma 2.1 we obtain $r(G_n, T_n^*) \leq 2n - 5$. So $r(G_n, T_n^*) = 2n - 5$ as asserted.

Theorem 3.2. Let $n \in \mathbb{N}$ with $n \geq 8$. Then

$$r(P_n, T_n^*) = r(T_n', T_n^*) = r(T_n^*, T_n^*) = 2n - 5.$$

Proof. By Lemma 2.6,

$$ex(2n-5;T_n^*) = \frac{(n-2)(2n-5) - 3(n-4)}{2} = n^2 - 6n + 11 < n^2 - 5n + 4.$$

By Lemma 2.5,

$$ex(2n-5;T'_n) = \left\lfloor \frac{(n-2)(2n-6) - (n-4) - 1}{2} \right\rfloor = \left\lfloor n^2 - \frac{11}{2}n + \frac{15}{2} \right\rfloor$$
$$\leq n^2 - \frac{11}{2}n + \frac{15}{2} < n^2 - 5n + 4.$$

By (1.1),

$$ex(2n-5; P_n) = {n-1 \choose 2} + {n-4 \choose 2} = n^2 - 6n + 11 < n^2 - 5n + 4.$$

Thus applying Lemma 3.1 we deduce the result.

Conjecture 3.3. Let $n \in \mathbb{N}$, $n \geq 8$, and let $T_n \neq K_{1,n-1}$ be a tree on n vertices. Then $r(T_n, T_n^*) = 2n - 5$.

Remark 3.4 Let $n \in \mathbb{N}$ with $n \geq 4$. From [6, Theorem 3.1(ii)] we know that $r(K_{1,n-1},T_n^*)=2n-3$.

4. The Ramsey number $r(G_m, T_n^*)$ for m < n

Theorem 4.1. Let $m, n \in \mathbb{N}$, $n > m \ge 5$ and $m - 1 \mid n - 3$. Let G_m be a connected graph of order m such that $ex(m + n - 3; G_m) \le \frac{(m-2)(m+n-3)}{2}$ or $G_m \in \{P_m, K_{1,m-1}, T'_m, T^*_m\}$. Then $r(G_m, T^*_n) = m + n - 3$.

Proof. By Lemma 2.9 we may assume that $ex(m+n-3;G_m) \leq \frac{(m-2)(m+n-3)}{2}$. Suppose that n-3=k(m-1). Clearly $(k+1)K_{m-1}$ does not contain G_m as a subgraph and $\overline{(k+1)K_{m-1}}$ does not contain T_n^* as a subgraph. Thus

$$r(G_m, T_n^*) > (k+1)(m-1) = m+n-4.$$

Since $1 \le m - 4 \le n - 6$, using Lemma 2.9 we see that

$$ex(m+n-3;T_n^*) \le \frac{(n-2)(m+n-4)}{2}.$$

Thus,

$$ex(m+n-3; G_m) + ex(m+n-3; T_n^*)$$

$$\leq \frac{(m-2)(m+n-3)}{2} + \frac{(n-2)(m+n-4)}{2}$$

$$< \frac{(m-2+n-2)(m+n-3)}{2} = {m+n-3 \choose 2}.$$

Hence, by Lemma 2.1, $r(G_m, T_n^*) \leq m + n - 3$, and the result follows.

Lemma 4.2. Let $m, n \in \mathbb{N}, n > m \geq 7$ and $m - 1 \nmid n - 3$. Let G_m be a connected graph of order m such that $ex(m + n - 4; G_m) \leq \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{P_m, K_{1,m-1}, T_m', T_m^*\}$. Then $r(G_m, T_n^*) \leq m + n - 4$.

Proof. By Lemma 2.9, we may assume that $ex(m+n-4; G_m) \leq \frac{(m-2)(m+n-4)}{2}$. As m+n-4=n-1+m-3 and $m-1 \nmid (n-3)$, we see that $2 \leq m-3 \leq n-4$ and $m-3 \neq n-5$. Thus, applying Lemmas 2.6- 2.8,

$$ex(m+n-4;T_n^*) < \frac{(n-3)(m+n-4)}{2}.$$

Hence,

$$ex(m+n-4; G_m) + ex(m+n-4; T_n^*) < \frac{(m-2)(m+n-4)}{2} + \frac{(n-3)(m+n-4)}{2} = {m+n-4 \choose 2}.$$

Applying Lemma 2.1, we obtain the result.

Theorem 4.3. Let $m, n \in \mathbb{N}, n > m \geq 7$ and $m - 1 \nmid (n - 3)$. Let G_m be a connected graph of order m such that $ex(m + n - 4; G_m) \leq \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{P_m, T'_m, T^*_m\}$. If m+n-5 = (m-1)x+(m-2)y for some $x, y \in \{0, 1, 2, ...\}$, then $r(G_m, T^*_n) = m + n - 4$.

Proof. By Lemma 4.2, $r(G_m, T_n^*) \le m+n-4$, and by Lemma 2.10, $r(G_m, T_n^*) \ge m+n-4$. Thus the result follows.

Theorem 4.4. Suppose $m, n \in \mathbb{N}$, $n > m \ge 7$, n = k(m-1) + b = q(m-2) + a, $k, q \in \mathbb{N}$, $a \in \{0, 1, ..., m-3\}$ and $b \in \{0, 1, ..., m-2\} - \{3\}$. Let G_m be a connected graph of order m such that $ex(m+n-4; G_m) \le \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{P_m, T'_m, T^*_m\}$. If one of the conditions:

- (i) $b \in \{1, 2, 4\},\$
- (ii) b = 0 and k > 3,
- (iii) $n > (m-3)^2 + 2$,
- (iv) $n > m^2 1 b(m-2)$,
- (v) $a \ge 3$ and $n \ge (a-4)(m-1)+4$

holds, then $r(G_m, T_n^*) = m + n - 4$.

Proof. For $b \in \{1, 2, 4\}$,

$$m+n-5 = \begin{cases} (k-2)(m-1) + 3(m-2) & \text{if } b = 1, \\ (k-1)(m-1) + 2(m-2) & \text{if } b = 2, \\ (k+1)(m-1) & \text{if } b = 4. \end{cases}$$

For b=0 and $k\geq 3$ we have m+n-5=(k-3)(m-1)+4(m-2). For $n\geq (m-3)^2+2$, we have $m+n-5\geq (m-2)(m-3)$ and so m+n-5=(m-1)x+(m-2)y for some $x,y\in\{0,1,2,\ldots\}$ by Lemma 2.11. For $n\geq m^2-1-b(m-2)$ we have $k\geq m+1-b$ and m+n-5=(k+b-m-1)(m-1)+(m+3-b)(m-2). For $a\geq 3$ and $n\geq (a-4)(m-1)+4$ we have $q\geq a-4$ and m+n-5=(a-3)(m-1)+(q+4-a)(m-2). Combining all the above with Theorem 4.3, we obtain the result.

Theorem 4.5. Suppose that $m, n \in \mathbb{N}$, $n > m \ge 7$ and $m - 1 \nmid n - 3$. Then

$$r(K_{1,m-1}, T_n^*) = m + n - 4,$$

$$r(T_m', T_n^*) = m + n - 4 \text{ or } m + n - 5,$$

$$m + n - 6 \le r(T_m^*, T_n^*) \le m + n - 4.$$

Proof. From Lemma 4.2, $r(T_m, T_n^*) \le m + n - 4$ for $T_m \in \{K_{1,m-1}, T_m', T_m^*\}$. By Lemma 2.3, $r(K_{1,m-1}, T_n^*) \ge m - 1 + n - 3$, $r(T_m', T_n^*) \ge m - 2 + n - 3$ (n > m + 1) and $r(T_m^*, T_n^*) \ge m - 3 + n - 3$. By Theorem 4.4, $r(T_m', T_n^*) = m + n - 4$ for n = m + 1, m + 3. Thus the theorem is proved.

Theorem 4.6. Suppose that $m, n \in \mathbb{N}$, $n > m \ge 7$, n = k(m-1) + b, $k \in \mathbb{N}$, $b \in \{0, 1, ..., m-2\}$, $b \ne 3$ and $\frac{m-b}{2} \le k \le m+2-b$. Let G_m be a connected graph of order m such that $ex(m+n-4; G_m) \le \frac{1}{2}(m-2)(m+n-4)$ or $G_m \in \{P_m, T_m^*\}$. Then $r(G_m, T_n^*) = m+n-4$ or m+n-5.

Proof. By Lemma 4.2 we only need to show that $r(G_m, T_n^*) > m + n - 6$. Set $G = (2k + b - m)K_{m-2} \cup (m + 2 - b - k)K_{m-3}$. Then |V(G)| = (2k + b - m)(m - 2) + (m + 2 - b - k)(m - 3) = m + n - 6. We also have $\Delta(G) \leq m - 2$ and $\Delta(\overline{G}) \leq m + n - 6 - (m - 3) = n - 3$. Now it is clear that G_m is not a subgraph of G and that T_n^* is not a subgraph of \overline{G} . So $r(G_m, T_n^*) > |V(G)|$, which completes the proof.

Remark 4.7 If $p \ge m \ge 6$ and T_m is a tree on m vertices with a vertex adjacent to at least $\lfloor \frac{m-1}{2} \rfloor$ vertices of degree 1, in [9] Sidorenko proved that $ex(p; T_m) \le \frac{(m-2)p}{2}$. Thus, G_m can be replaced with T_m in Lemma 4.2, Theorems 4.1, 4.3, 4.4 and 4.6.

5. The Ramsey number $r(G_m, T'_n)$ for m < n

Theorem 5.1. Let $m, n \in \mathbb{N}$, $n > m \ge 6$ and $m-1 \mid n-3$. Suppose that G_m is a connected graph of order m satisfying $ex(m+n-3; G_m) \le \frac{(m-2)(m+n-3)+m+n-4}{2}$ or $G_m \in \{T_m^*, P_m\}$. Then $r(G_m, T_n') = m+n-3$.

Proof. By Lemma 2.9 we may assume that

$$ex(m+n-3;G_m) \le (m-2)(m+n-3)/2 + (m+n-4)/2.$$

Suppose n-3=k(m-1) and $G=(k+1)K_{m-1}$. Then |V(G)|=m+n-4 and $\Delta(\overline{G})=n-3$. Clearly, G_m is not a subgraph of G and T'_n is not a subgraph of \overline{G} . Thus $r(G_m,T'_n)>m+n-4$. Since $m-1\mid (n-3)$, we have $n\geq m+2$ and so $4\leq m-2\leq n-4$. Hence, using Lemma 2.5, $ex(m+n-3;T'_n)=\lfloor\frac{(n-2)(m+n-4)-(m-1)}{2}\rfloor<\frac{(n-2)(m+n-3)-(m+n-4)}{2}$. Therefore

$$ex(m+n-3;G_m) + ex(m+n-3;T'_n) < {m+n-3 \choose 2}.$$

Applying Lemma 2.1, we see that $r(G_m, T'_n) \leq m + n - 3$, so the result follows.

Lemma 5.2. Let $m, n \in \mathbb{N}, n > m \geq 6$ and $m-1 \nmid n-3$. Suppose that G_m is a connected graph of order m satisfying $ex(m+n-4; G_m) < \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{T_m^*, P_m\}$. Then $r(G_m, T_n') \leq m+n-4$.

Proof. Since $m-1 \nmid n-3$, $m-1 \nmid m+n-4$. Thus, applying Lemma 2.9, $ex(m+n-4;T_m^*) \leq (m-2)(m+n-5)/2$ and $ex(m+n-4;P_m) \leq (m-2)(m+n-5)/2$. As n > m, $3 \leq m-3 \leq n-4$. By Lemma 2.5, $ex(m+n-4;T_n') = \lfloor \frac{(n-2)(m+n-5)-(m-2)}{2} \rfloor \leq \frac{(n-2)(m+n-5)-(m-2)}{2}$. Thus

$$ex(m+n-4;G_m)+ex(m+n-4;T'_n)<\frac{(m-2+n-2)(m+n-5)}{2}=\binom{m+n-4}{2}.$$

This, together with Lemma 2.1, yields the result.

Theorem 5.3. Let $m, n \in \mathbb{N}$, $n > m \geq 6$ and $m-1 \nmid (n-3)$. Then $r(T_m^*, T_{m+1}') = 2m-3$ and $r(T_m^*, T_n') = m+n-4$ or m+n-5 for $n \geq m+3$. Suppose that G_m is a connected graph of order m satisfying $ex(m+n-4; G_m) < \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{T_m^*, P_m\}$. If m+n-5 = (m-1)x+(m-2)y for some nonnegative integers x and y, then $r(G_m, T_n') = m+n-4$.

Proof. By Lemma 2.3, $r(T_m^*, T_{m+1}') \ge 2(m-1) - 1 = 2m-3$ and $r(T_m^*, T_n') \ge m-3+n-2$ for $n \ge m+3$. By Lemma 5.2, $r(G_m, T_n') \le m+n-4$. Thus, $r(T_m^*, T_{m+1}') = 2m-3$. Applying Lemma 2.10 we deduce the remaining result.

From Theorem 5.3 and the proof of Theorem 4.4 we deduce the following result. **Theorem 5.4.** Suppose $m, n \in \mathbb{N}$, $n > m \ge 6$, n = k(m-1) + b = q(m-2) + a, $k, q \in \mathbb{N}$, $a \in \{0, 1, \ldots, m-3\}$ and $b \in \{0, 1, \ldots, m-2\} - \{3\}$. Let G_m be a connected graph of order m such that $ex(m+n-4; G_m) < \frac{(m-2)(m+n-4)}{2}$ or $G_m \in \{P_m, T_m^*\}$. If one of the conditions:

- (i) $b \in \{1, 2, 4\},\$
- (ii) b = 0 and $k \ge 3$,
- (iii) $n \ge (m-3)^2 + 2$,
- (iv) $n > m^2 1 b(m-2)$,
- (v) $a \ge 3$ and $n \ge (a-4)(m-1)+4$

holds, then $r(G_m, T'_n) = m + n - 4$.

6. The Ramsey number $r(T_m, K_{1,n-1})$ for m < n

The following two propositions are known.

Proposition 6.1 ([1]). Let $m, n \in \mathbb{N}$ with $m \geq 3$ and $m-1 \mid n-2$. Let T_m be a tree on m vertices. Then $r(T_m, K_{1,n-1}) = m+n-2$.

Proposition 6.2 ([6, Theorem 3.1]). Let $m, n \in \mathbb{N}, m \geq 3$ and n = k(m-1) + b with $k \in \mathbb{N}$ and $b \in \{0, 1, ..., m-2\} - \{2\}$. Let $T_m \neq K_{1,m-1}$ be a tree on m vertices. Then $r(T_m, K_{1,n-1}) \leq m + n - 3$. Moreover, if $k \geq m - b$, then $r(T_m, K_{1,n-1}) = m + n - 3$.

Theorem 6.3. Let $m, n \in \mathbb{N}$, $n \ge m \ge 3$, $m - 1 \nmid (n - 2)$, n = q(m - 2) + a, $q \in \mathbb{N}$ and $a \in \{2, 3, ..., m - 3\}$. Let $T_m \ne K_{1,m-1}$ be a tree on m vertices. If $n \ge (a - 3)(m - 1) + 3$, then $r(T_m, K_{1,n-1}) = m + n - 3$.

Proof. Since $q(m-2) = n-a \ge (a-3)(m-2)$ we have $q \ge a-3$. Set $G = (a-2)K_{m-1} \cup (q-(a-3))K_{m-2}$. Then |V(G)| = (a-2)(m-1) + (q-(a-3))(m-2) = m+n-4 and $\Delta(\overline{G}) \le n-2$. Clearly, T_m is not a subgraph of G and $K_{1,n-1}$ is not a subgraph of \overline{G} . Thus $r(T_m, K_{1,n-1}) > |V(G)| = m+n-4$. By Proposition 6.2, $r(T_m, K_{1,n-1}) \le m+n-3$. So $r(T_m, K_{1,n-1}) = m+n-3$. This proves the theorem.

Theorem 6.4. Let $m, n \in \mathbb{N}$ with $n > m \ge 5$ and $m-1 \nmid (n-2)$. Then $r(T_m^*, K_{1,n-1}) = m+n-3$ or m+n-4. Moreover, if m+n-4 = (m-1)x+(m-2)y+2(m-3)z for some nonnegative integers x, y and z, then $r(T_m^*, K_{1,n-1}) = m+n-3$. Proof. By Proposition 6.2, $r(T_m^*, K_{1,n-1}) \le m+n-3$. By Lemma 2.3 we have $r(T_m^*, K_{1,n-1}) \ge m+n-4$. If m+n-4 = (m-1)x+(m-2)y+2(m-3)z for some nonnegative integers x, y and z, setting $G = xK_{m-1} \cup yK_{m-2} \cup zK_{m-3,m-3}$ we find $\Delta(\overline{G}) \le n-2$. Clearly, G does not contain any copies of T_m^* , and \overline{G} does not contain any copies of $K_{1,n-1}$. Thus, $r(T_m^*, K_{1,n-1}) > |V(G)| = m+n-4$ and so $r(T_m^*, K_{1,n-1}) = m+n-3$. This proves the theorem.

References

- [1] S.A. Burr, Generalized Ramsey theory for graphs—a survey, in Graphs and Combinatorics, Lecture Notes in Mathematics 406 (ed. R.A. Bari and F. Harary), Springer, Berlin, New York, 1974, 52-75
- [2] S.A. Burr and J.A. Roberts, On Ramsey numbers for stars, Utilitas Mathematica 4(1973), 217-220.
- [3] P. Erdös and T. Gallai, On maximal paths and circuits in graphs, Acta Math. Acad. Sci. Hungar. **10**(1959), 337-356.
- [4] G.H. Fan and L.L. Sun, The Erdös-Sós conjecture for spiders, Discrete Math. **307** (2007), 3055-3062.
- [5] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory, Ser. B, 19(1975), 150-160.
- [6] Y.B. Guo and L. Volkmann, Tree-Ramsey numbers, Australasian J. Combin. 11 (1995), 169-175.
- [7] L.K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.
- [8] S.P. Radziszowski, Small Ramsey numbers, Dynamic Surveys of Electronic J. Combinatorics 2011, DS1.13, 84pp.
- [9] A.F. Sidorenko, Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9(1989), 207-215.
- [10] Z.H. Sun and L.L.Wang, Turán's problem for trees, J. Combin. and Number Theory **3**(2011), 51-69.
- [11] M. Woźniak, On the Erdös-Sós conjecture, J. Graph Theory 21(1996), 229-234.