J. Nanjing Univ. 27(1991), Special Issue, 43-50, 146

List of the main results in the paper
MAXIMUM SIZE OF GRAPHS WITH GIRTH NOT LESS THAN A GIVEN NUMBER

Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China
E-mail: hyzhsun@public.hy.js.cn

For graph G let $e(G)$ be the number of edges in G (the size of G), and let $\delta(G)$ and $\Delta(G)$ be the minimal degree and maximal degree of G respectively.

For $g \geq 3$ let $e_{g}(p)$ be the maximal size of a graph of order p with girth at least g.
Theorem 1. For positive integer p we have

$$
e_{5}(p) \leq \frac{1}{2} p \sqrt{p-1}
$$

Theorem 2. If G is a simple graph of order p with girth ≥ 7 and $\delta(G)=\delta \geq 1$, then

$$
e(G) \leq \frac{p}{4}\left\{\frac{\delta^{2}-1}{2 \delta-1}+\frac{1}{2 \delta-1} \sqrt{\left(\delta^{2}-1\right)^{2}+4(2 \delta-1)(p-1)}\right\}
$$

Theorem 3. Let G be a simple graph of order p with girth $\geq 7, x=2 e(G) / p$, $\Delta(G)=\Delta$ and $\delta(G)=\delta \geq 1$. Then

$$
2 m x^{3}-x^{2}+x-(p-1) \leq 0
$$

where $m=\delta \Delta /\left(\Delta^{2}+\delta^{2}\right)$.
Corollary 4. Let G be a simple graph of order p with girth $\geq 7, \delta(G)=\delta \geq 1$ and $\Delta(G)=\Delta$. Then

$$
e(G)<\left(\frac{p}{2}\right)^{\frac{4}{3}} \sqrt[3]{\left(1+\frac{1}{\delta}\right)\left(\frac{\Delta}{\delta}+\frac{\delta}{\Delta}\right)}
$$

Theorem 4. For $r \geq 2$ we have

$$
e_{2 r+1}(p)<\frac{r}{r+1} p^{1+\frac{1}{r}}+p .
$$

Corollary 5. For $p \geq 3$ and $g>3$ we have

$$
e_{g}(p) \leq \frac{p}{p-2} e_{g}(p-1)
$$

