A kind of orthogonal polynomials and related identities

Zhi-Hong Sun

School of Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223300, P.R. China
Email: zhsun@hytc.edu.cn
URL: http://www.hytc.edu.cn/xsjl/szh
Abstract In this paper we introduce the polynomials $\left\{d_{n}^{(r)}(x)\right\}$ and $\left\{D_{n}^{(r)}(x)\right\}$ given by $d_{n}^{(r)}(x)=$ $\sum_{k=0}^{n}\binom{x+r+k}{k}\binom{x-r}{n-k}(n \geq 0), D_{0}^{(r)}(x)=1, D_{1}^{(r)}(x)=x$ and $D_{n+1}^{(r)}(x)=x D_{n}^{(r)}(x)-n(n+$ $2 r) D_{n-1}^{(r)}(x)(n \geq 1)$. We show that $\left\{D_{n}^{(r)}(x)\right\}$ are orthogonal polynomials for $r>-\frac{1}{2}$, and establish many identities for $\left\{d_{n}^{(r)}(x)\right\}$ and $\left\{D_{n}^{(r)}(x)\right\}$, especially obtain a formula for $d_{n}^{(r)}(x)^{2}$ and the linearization formulas for $d_{m}^{(r)}(x) d_{n}^{(r)}(x)$ and $D_{m}^{(r)}(x) D_{n}^{(r)}(x)$. As an application we extend recent work of Sun and Guo.

Keywords: orthogonal polynomial; identity; three-term recurrence
MSC(2010): Primary 33C47, Secondary 30B10, 05A10, 05A19, 11A07, 11B83.

1. Introduction

Let $\mathbb{Z}, \mathbb{N}_{0}$ and \mathbb{N} be the sets of integers, nonnegative integers and positive integers, respectively. By $[5,(3.17)]$, for $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} t^{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{x+k}{n}(t-1)^{n-k} \tag{1.1}
\end{equation*}
$$

Define

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} 2^{k} \quad(n=0,1,2, \ldots) . \tag{1.2}
\end{equation*}
$$

For $m, n \in \mathbb{N}, d_{n}(m)$ is the number of lattice paths from $(0,0)$ to (m, n), with jumps $(0,1),(1,1)$ or $(1,0)$. $\left\{d_{n}(m)\right\}$ are called Delannoy numbers. See [2]. In [8] Z.W. Sun deduced some supercongruences involving $d_{n}(x)$. Actually, he obtained congruences for

$$
\begin{equation*}
\sum_{k=0}^{p-1} d_{k}(x)^{2}, \sum_{k=0}^{p-1}(-1)^{k} d_{k}(x)^{2}, \sum_{k=0}^{p-1}(2 k+1) d_{k}(x)^{2} \quad \text { and } \quad \sum_{k=0}^{p-1}(-1)^{k}(2 k+1) d_{k}(x)^{2} \tag{1.3}
\end{equation*}
$$

modulo p^{2}, where p is an odd prime and x is a rational p-adic integer. Z.W. Sun also conjectured that for any $n \in \mathbb{N}$ and $x \in \mathbb{Z}$,

$$
\begin{align*}
& x(x+1) \sum_{k=0}^{n-1}(2 k+1) d_{k}(x)^{2} \equiv 0 \quad\left(\bmod 2 n^{2}\right), \tag{1.4}\\
& \sum_{k=0}^{n-1} \varepsilon^{k}(2 k+1) d_{k}(x)^{2 m} \equiv 0 \quad(\bmod n) \quad \text { for given } \varepsilon \in\{1,-1\} \text { and } m \in \mathbb{N} . \tag{1.5}
\end{align*}
$$

Recently, Guo[6] proved the above two congruences by using the identity

$$
\begin{equation*}
d_{n}(x)^{2}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{x}{k}\binom{x+k}{k} 4^{k} \tag{1.6}
\end{equation*}
$$

Guo proved (1.6) by using Maple and Zeilberger's algorithm, and Zudilin stated that (1.6) can be deduced from two transformation formulas for hypergeometric series. See [6] and [7, (1.7.1.3) and (2.5.32)].

In this paper we establish closed formulas for sums in (1.3), which imply Sun's related congruences. Set

$$
\begin{equation*}
d_{n}^{(r)}(x)=\sum_{k=0}^{n}\binom{x+r+k}{k}\binom{x-r}{n-k}(n=0,1,2, \ldots) . \tag{1.7}
\end{equation*}
$$

Then $d_{n}(x)=d_{n}^{(0)}(x)$ by (1.1). Thus, $d_{n}^{(r)}(x)$ is a generalization of $d_{n}(x)$. The main purpose of this paper is to investigate the properties of $d_{n}^{(r)}(x)$. We establish many identities for $d_{n}^{(r)}(x)$. In particular, we obtain a formula for $d_{n}^{(r)}(x)^{2}$, which is a generalization of (1.6). See Theorem 2.6 .

Some classical orthogonal polynomials have formulas for the linearization of their products. As examples, for Hermite polynomials $\left\{H_{n}(x)\right\}\left(H_{-1}(x)=0, H_{0}(x)=1, H_{n+1}(x)=\right.$ $\left.2 x H_{n}(x)-2 n H_{n-1}(x)(n \geq 0)\right)$ and Legendre polynomials $\left\{P_{n}(x)\right\}\left(P_{0}(x)=1, P_{1}(x)=\right.$ $\left.x,(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)(n \geq 1)\right)$ we have the linearization of their products. See [1, Theorem 6.8.1 and Corollary 6.8.3] and [3, p.195]. In Section 2 we establish the following linearization formula:

$$
\begin{equation*}
d_{m}^{(r)}(x) d_{n}^{(r)}(x)=\sum_{k=0}^{\min \{m, n\}}\binom{m+n-2 k}{m-k}\binom{2 r+m+n-k}{k}(-1)^{k} d_{m+n-2 k}^{(r)}(x) \tag{1.8}
\end{equation*}
$$

In Section 3 we introduce the polynomials $\left\{D_{n}^{(r)}(x)\right\}$ given by

$$
\begin{equation*}
D_{0}^{(r)}(x)=1, D_{1}^{(r)}(x)=x \quad \text { and } \quad D_{n+1}^{(r)}(x)=x D_{n}^{(r)}(x)-n(n+2 r) D_{n-1}^{(r)}(x)(n \geq 1) . \tag{1.9}
\end{equation*}
$$

By [4, pp.175-176] or [1, pp.244-245], $\left\{D_{n}^{(r)}(x)\right\}$ are orthogonal polynomials for $r>-\frac{1}{2}$, although we have not found their weight functions. We state that $D_{n}^{(r)}(x)=(-i)^{n} n!d_{n}^{(r)}\left(\frac{i x-1}{2}\right)$, and obtain some properties of $\left\{D_{n}^{(r)}(x)\right\}$. In particular, we show that

$$
\begin{equation*}
D_{n}^{(r)}(x)^{2}-D_{n+1}^{(r)}(x) D_{n-1}^{(r)}(x)>0 \quad \text { for } r>-\frac{1}{2} \text { and real } x . \tag{1.10}
\end{equation*}
$$

Note that $P_{n}(x)^{2}-P_{n-1}(x) P_{n+1}(x) \geq 0$ for $|x| \leq 1$ and $H_{n}(x)^{2}-H_{n-1}(x) H_{n+1}(x) \geq 0$. See [1, p.342] and [3, p.195].

Throughout this paper, $[a]$ is the greatest integer not exceeding a, and $f^{\prime}(x)$ is the derivative of $f(x)$.

2. The properties of $d_{n}^{(r)}(x)$

By (1.1) and (1.2), for $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{x}{k} 2^{k}=\sum_{k=0}^{n}\binom{n}{k}\binom{x+k}{n}=\sum_{k=0}^{n}\binom{x+k}{k}\binom{x}{n-k} . \tag{2.1}
\end{equation*}
$$

Now we introduce the following generalization of $\left\{d_{n}(x)\right\}$.
Definition 2.1. Let $\left\{d_{n}^{(r)}(x)\right\}$ be the polynomials given by

$$
d_{n}^{(r)}(x)=\sum_{k=0}^{n}\binom{x+r+k}{k}\binom{x-r}{n-k}(n=0,1,2, \ldots) .
$$

For convenience we also define $d_{-1}^{(r)}(x)=0$.
By (2.1), $d_{n}(x)=d_{n}^{(0)}(x)$. Since $\binom{-a}{k}=(-1)^{k}\binom{a+k-1}{k}$ we see that

$$
\begin{equation*}
d_{n}^{(r)}(x)=\sum_{k=0}^{n}\binom{-1-x-r}{k}(-1)^{k}\binom{x-r}{n-k}=\sum_{k=0}^{n}\binom{-1-x-r}{n-k}(-1)^{n-k}\binom{x-r}{k} . \tag{2.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
d_{n}^{(r)}(-1-x)=(-1)^{n} d_{n}^{(r)}(x) \tag{2.3}
\end{equation*}
$$

The first few $\left\{d_{n}^{(r)}(x)\right\}$ are shown below:

$$
\begin{aligned}
& d_{0}^{(r)}(x)=1, d_{1}^{(r)}(x)=2 x+1, d_{2}^{(r)}(x)=2 x^{2}+2 x+r+1, \\
& d_{3}^{(r)}(x)=\frac{4}{3} x^{3}+2 x^{2}+\left(2 r+\frac{8}{3}\right) x+r+1
\end{aligned}
$$

Theorem 2.1. For $|t|<1$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n}=\frac{(1+t)^{x-r}}{(1-t)^{x+r+1}} \tag{2.4}
\end{equation*}
$$

Proof. Newton's binomial theorem states that $(1+t)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} t^{n}$. Thus,

$$
(1+t)^{x-r}(1-t)^{-x-r-1}=\left(\sum_{m=0}^{\infty}\binom{x-r}{m} t^{m}\right)\left(\sum_{k=0}^{\infty}\binom{-x-r-1}{k}(-1)^{k} t^{k}\right)
$$

$$
=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{-x-r-1}{k}(-1)^{k}\binom{x-r}{n-k}\right) t^{n}=\sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n} .
$$

This proves the theorem.
Corollary 2.1. For $n \in \mathbb{N}$ we have

$$
d_{n}^{(r)}\left(-\frac{1}{2}\right)= \begin{cases}0 & \text { if } 2 \nmid n \\ \binom{-1 / 2-r}{n / 2}(-1)^{n / 2} & \text { if } 2 \mid n\end{cases}
$$

Proof. By Theorem 2.1 and Newton's binomial theorem, for $|t|<1$ we have

$$
\sum_{n=0}^{\infty} d_{n}^{(r)}(-1 / 2) t^{n}=\left(1-t^{2}\right)^{-1 / 2-r}=\sum_{k=0}^{\infty}\binom{-1 / 2-r}{k}(-1)^{k} t^{2 k}
$$

Now comparing the coefficients of t^{n} on both sides yields the result.
Theorem 2.2. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
(n+1) d_{n+1}^{(r)}(x)=(1+2 x) d_{n}^{(r)}(x)+(n+2 r) d_{n-1}^{(r)}(x) \tag{2.5}
\end{equation*}
$$

Proof. By Theorem 2.1, for $|t|<1$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+1) d_{n+1}^{(r)}(x) t^{n}-\sum_{n=0}^{\infty} n d_{n-1}^{(r)}(x) t^{n} \\
& =\left(\sum_{n=0}^{\infty} d_{n+1}^{(r)}(x) t^{n+1}\right)^{\prime}-t\left(\sum_{n=1}^{\infty} d_{n-1}^{(r)}(x) t^{n}\right)^{\prime} \\
& =\left((1+t)^{x-r}(1-t)^{-x-r-1}\right)^{\prime}-t\left(t(1+t)^{x-r}(1-t)^{-x-r-1}\right)^{\prime} \\
& =\left((1+t)^{x-r}(1-t)^{-x-r-1}\right)^{\prime}-t\left((1+t)^{x-r}(1-t)^{-x-r-1}+t\left((1+t)^{x-r}(1-t)^{-x-r-1}\right)^{\prime}\right) \\
& =\left(1-t^{2}\right)\left((x-r)(1+t)^{x-r-1}(1-t)^{-x-r-1}+(1+t)^{x-r}(x+r+1)(1-t)^{-x-r-2}\right) \\
& \quad-t(1+t)^{x-r}(1-t)^{-x-r-1} \\
& =(1+2 x+2 r t)(1+t)^{x-r}(1-t)^{-x-r-1} \\
& =(1+2 x) \sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n}+2 r \sum_{n=1}^{\infty} d_{n-1}^{(r)}(x) t^{n} .
\end{aligned}
$$

Now comparing the coefficients of t^{n} on both sides gives the result.
Theorem 2.3. Let $n \in \mathbb{N}_{0}$. Then

$$
\begin{equation*}
d_{n}^{(r)}(x)=\sum_{k=0}^{[n / 2]}\binom{r-1+k}{k} d_{n-2 k}(x)=\sum_{k=0}^{n}\binom{2 r-1+k}{k} d_{n-k}(x-r) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}(x)=\sum_{k=0}^{[n / 2]}\binom{r}{k}(-1)^{k} d_{n-2 k}^{(r)}(x)=\sum_{k=0}^{n}\binom{2 r}{k}(-1)^{k} d_{n-k}^{(r)}(x+r) . \tag{2.7}
\end{equation*}
$$

Proof. By (2.4),

$$
\sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n}=\left(1-t^{2}\right)^{-r} \cdot \frac{1}{1-t}\left(\frac{1+t}{1-t}\right)^{x}=(1-t)^{-2 r} \cdot \frac{1}{1-t}\left(\frac{1+t}{1-t}\right)^{x-r}
$$

Hence

$$
\sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n}=\left(1-t^{2}\right)^{-r} \sum_{n=0}^{\infty} d_{n}(x) t^{n}=(1-t)^{-2 r} \sum_{n=0}^{\infty} d_{n}(x-r) t^{n}
$$

which yields the first 2 results by applying Newton's binomial theorem and comparing the coefficients of t^{n} on both sides. Also,

$$
\sum_{n=0}^{\infty} d_{n}(x) t^{n}=\left(1-t^{2}\right)^{r} \sum_{n=0}^{\infty} d_{n}^{(r)}(x) t^{n}=(1-t)^{2 r} \sum_{n=0}^{\infty} d_{n}^{(r)}(x+r) t^{n}
$$

yields the next 2 results.
Corollary 2.2. Let $n \in \mathbb{N}_{0}$. Then $d_{n}^{(r)}(0)=\left(\begin{array}{c}r+\left[\begin{array}{c}n \\ {\left[\frac{n}{2}\right]}\end{array}\right) \text {. } \\ {\left[\begin{array}{c}2\end{array}\right]}\end{array}\right.$
Proof. Set $\binom{a}{k}=0$ for $k<0$. Since $d_{n}(0)=\sum_{k=0}^{n}\binom{n}{k}\binom{0}{k} 2^{k}=1$, applying Theorem 2.3 we get

$$
\begin{aligned}
d_{n}^{(r)}(0) & =\sum_{k=0}^{[n / 2]}\binom{r-1+k}{k}=\sum_{k=0}^{[n / 2]}\binom{-r}{k}(-1)^{k} \\
& =\sum_{k=0}^{[n / 2]}\left((-1)^{k}\binom{-r-1}{k}-(-1)^{k-1}\binom{-r-1}{k-1}\right)=(-1)^{\left[\frac{n}{2}\right]}\binom{-r-1}{\left[\frac{n}{2}\right]}=\binom{r+\left[\frac{n}{2}\right]}{\left[\frac{n}{2}\right]} .
\end{aligned}
$$

Theorem 2.4. For $n \in \mathbb{N}$ we have
(i) $d_{n}^{(r)}(x)=d_{n}^{(r+1)}(x)-d_{n-2}^{(r+1)}(x)$,
(ii) $d_{n}^{(r+1)}(x)=\sum_{k=0}^{[n / 2]} d_{n-2 k}^{(r)}(x)$,
(iii) $(n+1)^{2} d_{n+1}^{(r)}(x)^{2}-(n+2 r+1)^{2} d_{n}^{(r)}(x)^{2}=4(x-r)(x+1+r)\left(d_{n}^{(r+1)}(x)^{2}-d_{n-1}^{(r+1)}(x)^{2}\right)$,
(iv) $(2 r+1) \sum_{k=0}^{n-1}(2 k+2 r+1) d_{k}^{(r)}(x)^{2}=n^{2} d_{n}^{(r)}(x)^{2}-4(x-r)(x+1+r) d_{n-1}^{(r+1)}(x)^{2}$.

Proof. By Theorem 2.1, for $|t|<1$,

$$
\sum_{n=0}^{\infty} d_{n}^{(r+1)}(x) t^{n}=\frac{1}{1-t^{2}} \sum_{m=0}^{\infty} d_{m}^{(r)}(x) t^{m}=\left(\sum_{k=0}^{\infty} t^{2 k}\right)\left(\sum_{m=0}^{\infty} d_{m}^{(r)}(x) t^{m}\right)
$$

Now comparing the coefficients of t^{n} on both sides yields (i) and (ii).
By (i) and (2.5),

$$
d_{n+1}^{(r)}(x)=d_{n+1}^{(r+1)}(x)-d_{n-1}^{(r+1)}(x)
$$

$$
=\frac{(2 x+1) d_{n}^{(r+1)}(x)+(n+2+2 r) d_{n-1}^{(r+1)}(x)}{n+1}-d_{n-1}^{(r+1)}(x)=\frac{(2 x+1) d_{n}^{(r+1)}(x)+(2 r+1) d_{n-1}^{(r+1)}(x)}{n+1}
$$

and

$$
\begin{aligned}
& d_{n}^{(r)}(x)=d_{n}^{(r+1)}(x)-d_{n-2}^{(r+1)}(x) \\
& =d_{n}^{(r+1)}(x)-\frac{n d_{n}^{(r+1)}(x)-(2 x+1) d_{n-1}^{(r+1)}(x)}{n+1+2 r}=\frac{(2 r+1) d_{n}^{(r+1)}(x)+(2 x+1) d_{n-1}^{(r+1)}(x)}{n+1+2 r} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& (n+1)^{2} d_{n+1}^{(r)}(x)^{2}-(n+1+2 r)^{2} d_{n}^{(r)}(x)^{2} \\
& =\left((2 x+1) d_{n}^{(r+1)}(x)+(2 r+1) d_{n-1}^{(r+1)}(x)\right)^{2}-\left((2 r+1) d_{n}^{(r+1)}(x)+(2 x+1) d_{n-1}^{(r+1)}(x)\right)^{2} \\
& =4(x-r)(x+1+r)\left(d_{n}^{(r+1)}(x)^{2}-d_{n-1}^{(r+1)}(x)^{2}\right) .
\end{aligned}
$$

This proves (iii). By (iii),

$$
\begin{aligned}
& \sum_{k=0}^{n-1}(2 r+1)(2 k+2 r+1) d_{k}^{(r)}(x)^{2} \\
& =\sum_{k=0}^{n-1}\left((k+1)^{2} d_{k+1}^{(r)}(x)^{2}-k^{2} d_{k}^{(r)}(x)^{2}\right)-4(x-r)(x+1+r) \sum_{k=0}^{n-1}\left(d_{k}^{(r+1)}(x)^{2}-d_{k-1}^{(r+1)}(x)^{2}\right) \\
& =n^{2} d_{n}^{(r)}(x)^{2}-4(x-r)(x+1+r) d_{n-1}^{(r+1)}(x)^{2} .
\end{aligned}
$$

This proves (iv).
Theorem 2.5. Let $n \in \mathbb{N}, r \in \mathbb{N}_{0}$ and $x \in \mathbb{Z}$. Then

$$
(2 r+1) \prod_{k=-r}^{r}(x+k)(x+1-k) \sum_{k=0}^{n-1}(2 k+2 r+1) d_{k}^{(r)}(x)^{2} \equiv 0 \quad\left(\bmod 2 n^{2}(n+1)^{2} \cdots(n+2 r)^{2}\right)
$$

Proof. It is easily seen that for $k, n, r \in \mathbb{N}_{0}$ with $k \leq n$,

$$
\binom{x+r}{2 r}\binom{x+r+k}{k}\binom{x-r}{n-k}=\binom{n+2 r}{2 r}\binom{n}{k}\binom{x+r+k}{n+2 r} .
$$

Thus,

$$
\begin{equation*}
\binom{x+r}{2 r} d_{n}^{(r)}(x)=\binom{n+2 r}{2 r} \sum_{k=0}^{n}\binom{n}{k}\binom{x+r+k}{n+2 r} \quad \text { for } \quad r \in \mathbb{N}_{0} \tag{2.8}
\end{equation*}
$$

By Theorem 2.4(iv) and (2.8),

$$
(2 r+1) \prod_{k=-r}^{r}(x+k)(x+1-k) \sum_{k=0}^{n-1}(2 k+2 r+1) d_{k}^{(r)}(x)^{2}
$$

$$
\begin{aligned}
= & \prod_{k=-r}^{r}(x+k)(x+1-k) \times\left(n^{2} d_{n}^{(r)}(x)^{2}-4(x-r)(x+1+r) d_{n-1}^{(r+1)}(x)^{2}\right) \\
= & (x-r)(x+r+1)(n+2 r)^{2}(n+2 r-1)^{2} \cdots(n+1)^{2} n^{2}\left(\sum_{k=0}^{n}\binom{n}{k}\binom{x+r+k}{n+2 r}\right)^{2} \\
& -4(n+2 r+1)^{2}(n+2 r)^{2} \cdots n^{2}\left(\sum_{k=0}^{n-1}\binom{n-1}{k}\binom{x+r+1+k}{n+2 r+1}\right)^{2} .
\end{aligned}
$$

To finish the proof, we note that $(x+r+1)(x-r) \equiv 0(\bmod 2)$.
We remark that Theorem 2.5 is a generalization of (1.4), and the next theorem is a generalization of (1.6).

Theorem 2.6. Suppose $n \in \mathbb{N}_{0}$ and $r \notin\left\{-\frac{1}{2},-\frac{2}{2},-\frac{3}{2}, \ldots\right\}$. Then

$$
\begin{equation*}
d_{n}^{(r)}(x)^{2}=\binom{n+2 r}{n} \sum_{m=0}^{n} \frac{\binom{x-r}{m}\binom{x+r+m}{m}\binom{n+2 r+m}{n-m}}{\binom{m+2 r}{m}} 4^{m} . \tag{2.9}
\end{equation*}
$$

Proof. Set

$$
s(n)=\frac{d_{n}^{(r)}(x)^{2}}{\binom{n+2 r}{n}} \quad \text { and } \quad S(n)=\sum_{m=0}^{n} \frac{\binom{x-r}{m}\binom{x+r+m}{m}\binom{n+2 r+m}{n-m}}{\binom{m+2 r}{m}} 4^{m} .
$$

Using sumrecursion in Maple we find that for $n \in \mathbb{N}$,
$(n+2)(n+2+2 r) S(n+2)-\left((2 x+1)^{2}+(n+1)(n+1+2 r)\right)(S(n+1)+S(n))+n(n+2 r) S(n-1)=0$.
By Theorem 2.2,

$$
d_{n+2}^{(r)}(x)=\frac{(1+2 x) d_{n+1}^{(r)}(x)+(n+1+2 r) d_{n}^{(r)}(x)}{n+2}, d_{n-1}^{(r)}(x)=\frac{(n+1) d_{n+1}^{(r)}(x)-(1+2 x) d_{n}^{(r)}(x)}{n+2 r} .
$$

Thus,

$$
\left.\begin{array}{l}
(n+2)(n+2+2 r) s(n+2)+n(n+2 r) s(n-1) \\
=\frac{(n+2)(n+2+2 r)}{\binom{n+2+2 r}{2 r}} d_{n+2}^{(r)}(x)^{2}+\frac{n(n+2 r)}{\binom{n-1+2 r}{2 r}} d_{n-1}^{(r)}(x)^{2} \\
=\frac{\left((1+2 x) d_{n+1}^{(r)}(x)+(n+1+2 r) d_{n}^{(r)}(x)\right)^{2}}{\binom{n+1+2 r}{2 r}}+\frac{\left((n+1) d_{n+1}^{(r)}(x)-(1+2 x) d_{n}^{(r)}(x)\right)^{2}}{\binom{n+2 r}{2 r}} \\
=d_{n+1}^{(r)}(x)^{2}\left\{\frac{(1+2 x)^{2}}{\binom{n+1+2 r}{2 r}}+\frac{(n+1)^{2}}{\binom{n+2 r}{2 r}}\right\}+d_{n}^{(r)}(x)^{2}\left\{\frac{(1+2 x)^{2}}{\left(_{n}^{n+2 r} 2 r\right.}\right)
\end{array}+\frac{(n+1+2 r)^{2}}{\binom{n+1+2 r}{2 r}}\right\}, \begin{gathered}
(n+1)(n+1+2 r))+\frac{d_{n}^{(r)}(x)^{2}}{\binom{n+2 r}{2 r}}\left((1+2 x)^{2}+(n+1)(n+1+2 r)\right) . \\
=\frac{d_{n+1}^{(r)}(x)^{2}}{\binom{n+1+2 r}{2 r}}\left((1+2 x)^{2}+(n+2 x)^{2}+(n+1)(n+1+2 r)\right)(s(n)+s(n+1)) .
\end{gathered}
$$

This shows that $s(n)$ and $S(n)$ satisfy the same recurrence relation. Also,

$$
s(0)=1=S(0), s(1)=\frac{(1+2 x)^{2}}{2 r+1}=S(1), s(2)=\frac{\left(2 x^{2}+2 x+r+1\right)^{2}}{(r+1)(2 r+1)}=S(2) .
$$

Thus, $s(n)=S(n)$ for $n \in \mathbb{N}_{0}$.
Now we present the linearization of $d_{m}^{(r)}(x) d_{n}^{(r)}(x)$.
Theorem 2.7. Let $m, n \in \mathbb{N}_{0}$. Then

$$
\begin{equation*}
d_{m}^{(r)}(x) d_{n}^{(r)}(x)=\sum_{k=0}^{\min \{m, n\}}\binom{m+n-2 k}{m-k}\binom{2 r+m+n-k}{k}(-1)^{k} d_{m+n-2 k}^{(r)}(x) . \tag{2.10}
\end{equation*}
$$

Proof. Let $L(m, n)=d_{m}^{(r)}(x) d_{n}^{(r)}(x)$ and $\binom{a}{k}=0$ for $k<0$. By Theorem 2.2, $(m+1+$ $2 r) d_{m}^{(r)}(x)+(1+2 x) d_{m+1}^{(r)}(x)=(m+2) d_{m+2}^{(r)}(x)$. Hence

$$
(m+1+2 r) L(m, n)+(1+2 x) L(m+1, n)-(m+2) L(m+2, n)=0
$$

Let

$$
G(m, n, k, l)=(-1)^{k}\binom{m+n-2 k}{m-k}\binom{2 r+m+n-k}{k}\binom{x+r+l}{l}\binom{x-r}{m+n-2 k-l} .
$$

Using Maple it is easy to check that

$$
\begin{aligned}
& (m+1+2 r) G(m, n, k, l)+(2 x+1) G(m+1, n, k, l)-(m+2) G(m+2, n, k, l) \\
& =F_{1}(m, n, k+1, l)-F_{1}(m, n, k, l)+F_{2}(m, n, k, l+1)-F_{2}(m, n, k, l)
\end{aligned}
$$

where

$$
\begin{aligned}
F_{1}(m, n, k, l)= & (-1)^{k}(2 m+n+2 r+4-2 k) \\
& \times\binom{ m+n+2-2 k}{m+2-k}\binom{2 r+m+1+n-k}{k-1}\binom{x+r+l}{l}\binom{x-r}{m+2+n-2 k-l}
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{2}(m, n, k, l) \\
& =(-1)^{k} l\binom{m+1+n-2 k}{m+1-k}\binom{2 r+m+n+1-k}{k}\binom{x+r+l}{l}\binom{x+1-r}{m+2+n-2 k-l} .
\end{aligned}
$$

Thus,

$$
\sum_{k=0}^{m+2} \sum_{l=0}^{m+2+n}((m+1+2 r) G(m, n, k, l)+(2 x+1) G(m+1, n, k, l)-(m+2) G(m+2, n, k, l))
$$

$$
\begin{aligned}
& =\sum_{l=0}^{m+2+n} \sum_{k=0}^{m+2}\left(F_{1}(m, n, k+1, l)-F_{1}(m, n, k, l)\right)+\sum_{k=0}^{m+2} \sum_{l=0}^{m+2+n}\left(F_{2}(m, n, k, l+1)-F_{2}(m, n, k, l)\right) \\
& =\sum_{l=0}^{m+2+n}\left(F_{1}(m, n, m+3, l)-F_{1}(m, n, 0, l)\right)+\sum_{k=0}^{m+2}\left(F_{2}(m, n, k, m+n+3)-F_{2}(m, n, k, 0)\right) \\
& =0 .
\end{aligned}
$$

Set

$$
R(m, n)=\sum_{k=0}^{m} \sum_{l=0}^{m+n} G(m, n, k, l)=\sum_{k=0}^{m} \sum_{l=0}^{m+n-2 k} G(m, n, k, l) .
$$

Then $(m+1+2 r) R(m, n)+(2 x+1) R(m+1, n)-(m+2) R(m+2, n)=0$. From the above we see that $L(m, n)$ and $R(m, n)$ satisfy the same recurrence relation. It is clear that $L(0, n)=$ $d_{n}^{(r)}(x)=\sum_{l=0}^{n}\binom{x+r+l}{l}\binom{x-r}{n-l}=R(0, n)$. By Theorem 2.2, $R(1, n)=(n+1) d_{n+1}^{(r)}(x)-(n+$ $2 r) d_{n-1}^{(r)}(x)=(1+2 x) d_{n}^{(r)}(x)=L(1, n)$. Hence, $L(m, n)=R(m, n)$ for any nonnegative integers m and n. This proves the theorem.

Theorem 2.8. For $n \in \mathbb{N}$ we have

$$
\begin{align*}
& 2(1+x+y) \sum_{k=0}^{n-1} \frac{(2 r+k+1) \cdots(2 r+n)}{(k+1) \cdots n} d_{k}^{(r)}(x) d_{k}^{(r)}(y) \tag{2.11}\\
& =(n+2 r)\left(d_{n}^{(r)}(x) d_{n-1}^{(r)}(y)+d_{n-1}^{(r)}(x) d_{n}^{(r)}(y)\right) .
\end{align*}
$$

Proof. We prove (2.11) by induction on n. Clearly (2.11) is true for $n=1$. By Theorem 2.2,

$$
\begin{aligned}
& (n+1)\left(d_{n+1}^{(r)}(x) d_{n}^{(r)}(y)+d_{n}^{(r)}(x) d_{n+1}^{(r)}(y)\right) \\
& =d_{n}^{(r)}(y)\left((1+2 x) d_{n}^{(r)}(x)+(n+2 r) d_{n-1}^{(r)}(x)\right)+d_{n}^{(r)}(x)\left((1+2 y) d_{n}^{(r)}(y)+(n+2 r) d_{n-1}^{(r)}(y)\right) \\
& =2(1+x+y) d_{n}^{(r)}(x) d_{n}^{(r)}(y)+(n+2 r)\left(d_{n}^{(r)}(x) d_{n-1}^{(r)}(y)+d_{n-1}^{(r)}(x) d_{n}^{(r)}(y)\right) .
\end{aligned}
$$

Thus, if the result holds for n, then

$$
\begin{aligned}
& 2(1+x+y) \sum_{k=0}^{n} \frac{(2 r+k+1) \cdots(2 r+n+1)}{(k+1) \cdots(n+1)} d_{k}^{(r)}(x) d_{k}^{(r)}(y) \\
& =\frac{n+2 r+1}{n+1} 2(1+x+y)\left(d_{n}^{(r)}(x) d_{n}^{(r)}(y)+\sum_{k=0}^{n-1} \frac{(2 r+k+1) \cdots(2 r+n)}{(k+1) \cdots n} d_{k}^{(r)}(x) d_{k}^{(r)}(y)\right) \\
& =\frac{n+2 r+1}{n+1}\left(2(1+x+y) d_{n}^{(r)}(x) d_{n}^{(r)}(y)+(n+2 r)\left(d_{n}^{(r)}(x) d_{n-1}^{(r)}(y)+d_{n-1}^{(r)}(x) d_{n}^{(r)}(y)\right)\right) \\
& =(n+1+2 r)\left(d_{n+1}^{(r)}(x) d_{n}^{(r)}(y)+d_{n}^{(r)}(x) d_{n+1}^{(r)}(y)\right) .
\end{aligned}
$$

Hence (2.11) holds for $n+1$.
Remark 2.1. Taking $r=0$ in Theorem 2.8 and noting that $d_{n}(x)=d_{n}^{(0)}(x)$ yields

$$
\begin{equation*}
2(1+x+y) \sum_{k=0}^{n-1} d_{k}(x) d_{k}(y)=n\left(d_{n}(x) d_{n-1}(y)+d_{n-1}(x) d_{n}(y)\right) . \tag{2.12}
\end{equation*}
$$

3. The orthogonal polynomials $\left\{D_{n}^{(r)}(x)\right\}$

By [4, pp.175-176], every orthogonal system of real valued polynomials $\left\{p_{n}(x)\right\}$ satisfies

$$
\begin{equation*}
p_{-1}(x)=0, p_{0}(x)=1 \quad \text { and } \quad x p_{n}(x)=A_{n} p_{n+1}(x)+B_{n} p_{n}(x)+C_{n} p_{n-1}(x)(n \geq 0) \tag{3.1}
\end{equation*}
$$

where A_{n}, B_{n}, C_{n} are real and $A_{n} C_{n+1}>0$. Conversely, if (3.1) holds for a sequence of polynomials $\left\{p_{n}(x)\right\}$ and A_{n}, B_{n}, C_{n} are real with $A_{n} C_{n+1}>0$, then there exists a weight function $w(x)$ such that

$$
\int_{-\infty}^{\infty} w(x) p_{m}(x) p_{n}(x) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{1}{v_{n}} \int_{-\infty}^{\infty} w(x) d x & \text { if } m=n\end{cases}
$$

where $v_{0}=1$ and $v_{n}=\frac{A_{0} A_{1} \cdots A_{n-1}}{C_{1} \cdots C_{n}}(n \geq 1)$.
In this section we discuss a kind of orthogonal polynomials related to $\left\{d_{n}^{(r)}(x)\right\}$.
Definition 3.1. Let $\left\{D_{n}^{(r)}(x)\right\}$ be the polynomials given by

$$
\begin{equation*}
D_{-1}^{(r)}(x)=0, \quad D_{0}^{(r)}(x)=1 \quad \text { and } \quad D_{n+1}^{(r)}(x)=x D_{n}^{(r)}(x)-n(n+2 r) D_{n-1}^{(r)}(x)(n \geq 0) \tag{3.2}
\end{equation*}
$$

The first few $D_{n}^{(r)}(x)$ are shown below:

$$
D_{0}^{(r)}(x)=1, D_{1}^{(r)}(x)=x, D_{2}^{(r)}(x)=x^{2}-2 r-1, D_{3}^{(r)}(x)=x^{3}-(6 r+5) x .
$$

Suppose $r>-\frac{1}{2}$. Set $A_{n}=1, B_{n}=0, C_{n}=n(n+2 r), v_{0}=1$ and $v_{n}=\frac{1}{n!(2 r+1)(2 r+2) \cdots(2 r+n)}$ $(n \geq 1)$. Then $A_{n} C_{n+1}>0$ and (3.1) holds for $p_{n}(x)=D_{n}^{(r)}(x)$. Hence $\left\{D_{n}^{(r)}(x)\right\}$ are orthogonal polynomials.

Lemma 3.1. For $n \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
d_{n}^{(r)}(x)=\frac{i^{n} D_{n}^{(r)}(-i(1+2 x))}{n!} \quad \text { and so } \quad D_{n}^{(r)}(x)=(-i)^{n} n!d_{n}^{(r)}\left(\frac{i x-1}{2}\right) \tag{3.3}
\end{equation*}
$$

Proof. Since $D_{0}^{(r)}(-i(1+2 x))=1, i D_{1}^{(r)}(-i(1+2 x))=1+2 x$ and

$$
\begin{aligned}
& (n+1) \frac{i^{n+1} D_{n+1}^{(r)}(-i(1+2 x))}{(n+1)!} \\
& =\frac{i^{n+1} D_{n+1}^{(r)}(-i(1+2 x))}{n!}=\frac{i^{n+1}}{n!}\left(-i(1+2 x) D_{n}^{(r)}(-i(1+2 x))-n(n+2 r) D_{n-1}^{(r)}(-i(1+2 x))\right) \\
& =(1+2 x) \frac{i^{n} D_{n}^{(r)}(-i(1+2 x))}{n!}+(n+2 r) \frac{i^{n-1} D_{n-1}^{(r)}(-i(1+2 x))}{(n-1)!}
\end{aligned}
$$

we must have $d_{n}^{(r)}(x)=\frac{i^{n} D_{n}^{(r)}(-i(1+2 x))}{n!}$ by (2.5). Substituting x with $\frac{i x-1}{2}$ yields the remaining part.

Theorem 3.1. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{n-1}(2 k+2 r+1) \prod_{s=k+1}^{n} s(s+2 r) D_{k}^{(r)}(x)^{2}=n(n+2 r)\left(D_{n}^{(r)}(x)^{2}-D_{n-1}^{(r)}(x) D_{n+1}^{(r)}(x)\right) \tag{3.4}
\end{equation*}
$$

Thus, $D_{n}^{(r)}(x)^{2}-D_{n+1}^{(r)}(x) D_{n-1}^{(r)}(x)>0$ for $r>-\frac{1}{2}$ and real x.
Proof. Set $\Delta_{n}^{(r)}(x)=D_{n}^{(r)}(x)^{2}-D_{n+1}^{(r)}(x) D_{n-1}^{(r)}(x)$. We prove (3.4) by induction on n. Clearly (3.4) is true for $n=1$. Suppose that (3.4) holds for n. Since

$$
\begin{aligned}
\Delta_{n+1}^{(r)}(x)-n(n+2 r) \Delta_{n}^{(r)}(x)= & D_{n+1}^{(r)}(x)^{2}-D_{n}^{(r)}(x)\left(x D_{n+1}^{(r)}(x)-(n+1)(n+2 r+1) D_{n}^{(r)}(x)\right) \\
& -n(n+2 r)\left(D_{n}^{(r)}(x)^{2}-D_{n-1}^{(r)}(x) D_{n+1}^{(r)}(x)\right) \\
= & D_{n+1}^{(r)}(x)\left(D_{n+1}^{(r)}(x)-x D_{n}^{(r)}(x)+n(n+2 r) D_{n-1}^{(r)}(x)\right) \\
& +((n+1)(n+1+2 r)-n(n+2 r)) D_{n}^{(r)}(x)^{2} \\
= & (2 n+2 r+1) D_{n}^{(r)}(x)^{2},
\end{aligned}
$$

we see that

$$
\begin{aligned}
& \sum_{k=0}^{n}(2 k+2 r+1) \prod_{s=k+1}^{n+1} s(s+2 r) \times D_{k}^{(r)}(x)^{2} \\
& =(n+1)(n+1+2 r)\left((2 n+2 r+1) D_{n}^{(r)}(x)^{2}+\sum_{k=0}^{n-1}(2 k+2 r+1) \prod_{s=k+1}^{n} s(s+2 r) D_{k}^{(r)}(x)^{2}\right) \\
& =(n+1)(n+1+2 r)\left((2 n+2 r+1) D_{n}^{(r)}(x)^{2}+n(n+2 r) \Delta_{n}^{(r)}(x)\right) \\
& =(n+1)(n+1+2 r) \Delta_{n+1}^{(r)}(x) .
\end{aligned}
$$

This shows that (3.4) holds for $n+1$. Hence (3.4) is proved by induction. For $r>-\frac{1}{2}$ we have $1+2 r>0$. From (3.4) and the fact $D_{0}^{(r)}(x)=1$ we deduce that $\Delta_{n}^{(r)}(x) \geq(2 r+$ 1) $\frac{n!(2 r+1) \cdots(2 r+n)}{n(n+2 r)}>0$. This concludes the proof.

Corollary 3.1. Let $n \in \mathbb{N}$. Then

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k}(2 k+2 r+1) \frac{(k+1+2 r) \cdots(n+2 r)}{(k+1) \cdots n} d_{k}^{(r)}(x)^{2} \tag{3.5}\\
& =(-1)^{n}(n+2 r)\left(n d_{n}^{(r)}(x)^{2}-(n+1) d_{n-1}^{(r)}(x) d_{n+1}^{(r)}(x)\right) .
\end{align*}
$$

Proof. Replacing x with $-i(1+2 x)$ in Theorem 3.1 and then applying Lemma 3.1 yields the result.

Theorem 3.2. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\sum_{k=0}^{n-1} \prod_{s=k+1}^{n} s(s+2 r) D_{k}^{(r)}(x)^{2}=n(n+2 r)\left(D_{n-1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)-D_{n}^{(r)}(x) \frac{d}{d x} D_{n-1}^{(r)}(x)\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k} \prod_{s=k+1}^{n} \frac{s+2 r}{s} d_{k}^{(r)}(x)^{2} \tag{3.7}\\
& =(-1)^{n-1} \frac{n+2 r}{2}\left(d_{n-1}^{(r)}(x) \frac{d}{d x} d_{n}^{(r)}(x)-d_{n}^{(r)}(x) \frac{d}{d x} d_{n-1}^{(r)}(x)\right) .
\end{align*}
$$

Proof. We prove (3.6) by induction on n. Clearly (3.6) is true for $n=1$. Suppose that (3.6) holds for n. Since $D_{n+1}^{(r)}(x)=x D_{n}^{(r)}(x)-n(n+2 r) D_{n-1}^{(r)}(x)$ we see that

$$
\frac{d}{d x} D_{n+1}^{(r)}(x)=D_{n}^{(r)}(x)+x \frac{d}{d x} D_{n}^{(r)}(x)-n(n+2 r) \frac{d}{d x} D_{n-1}^{(r)}(x)
$$

and so

$$
\begin{aligned}
& D_{n}^{(r)}(x) \frac{d}{d x} D_{n+1}^{(r)}(x)-D_{n+1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)-n(n+2 r)\left(D_{n-1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)-D_{n}^{(r)}(x) \frac{d}{d x} D_{n-1}^{(r)}(x)\right) \\
& = \\
& \quad D_{n}^{(r)}(x)^{2}+x D_{n}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)-n(n+2 r) D_{n}^{(r)}(x) \frac{d}{d x} D_{n-1}^{(r)}(x) \\
& \quad-\left(x D_{n}^{(r)}(x)-n(n+2 r) D_{n-1}^{(r)}(x)\right) \frac{d}{d x} D_{n}^{(r)}(x) \\
& \quad-n(n+2 r) D_{n-1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)+n(n+2 r) D_{n}^{(r)}(x) \frac{d}{d x} D_{n-1}^{(r)}(x) \\
& = \\
& D_{n}^{(r)}(x)^{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{k=0}^{n} \prod_{s=k+1}^{n+1} s(s+2 r) \times D_{k}^{(r)}(x)^{2} \\
& =(n+1)(n+1+2 r)\left(D_{n}^{(r)}(x)^{2}+\sum_{k=0}^{n-1} \prod_{s=k+1}^{n} s(s+2 r) \cdot D_{k}^{(r)}(x)^{2}\right) \\
& =(n+1)(n+1+2 r)\left(D_{n}^{(r)}(x)^{2}+n(n+2 r)\left(D_{n-1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)-D_{n}^{(r)}(x) \frac{d}{d x} D_{n-1}^{(r)}(x)\right)\right) \\
& =(n+1)(n+1+2 r)\left(D_{n}^{(r)}(x) \frac{d}{d x} D_{n+1}^{(r)}(x)-D_{n+1}^{(r)}(x) \frac{d}{d x} D_{n}^{(r)}(x)\right) .
\end{aligned}
$$

This shows that (3.6) holds for $n+1$. Hence (3.6) is proved.
By Lemma 3.1, $d_{n}^{(r)}(x)=i^{n} D_{n}^{(r)}(-i(1+2 x)) / n!$. Thus, $\frac{d}{d x} d_{n}^{(r)}(x)=i^{n} \frac{d}{d x} D_{n}^{(r)}(-i(1+$ $2 x))(-2 i) / n$!. Now applying (3.6) we obtain

$$
\begin{aligned}
& \sum_{k=0}^{n-1}(-1)^{k} \prod_{s=k+1}^{n} \frac{s+2 r}{s} \times d_{k}^{(r)}(x)^{2} \\
& =\sum_{k=0}^{n-1} \prod_{s=k+1}^{n} \frac{s+2 r}{s} \times \frac{D_{k}^{(r)}(-i(1+2 x))^{2}}{k!^{2}}=\frac{1}{n!^{2}} \sum_{k=0}^{n-1} \prod_{s=k+1}^{n} s(s+2 r) \times D_{k}^{(r)}(-i(1+2 x))^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n(n+2 r)}{n!^{2}}\left(D_{n-1}^{(r)}(-i(1+2 x)) \frac{d}{d x} D_{n}^{(r)}(-i(1+2 x))-D_{n}^{(r)}(-i(1+2 x)) \frac{d}{d x} D_{n-1}^{(r)}(-i(1+2 x))\right) \\
& =\frac{n(n+2 r)}{n!^{2}}\left(\frac{n!\frac{d}{d x} d_{n}^{(r)}(x)}{(-2 i) i^{n}} \times \frac{(n-1)!d_{n-1}^{(r)}(x)}{i^{n-1}}-\frac{n!d_{n}^{(r)}(x)}{i^{n}} \times \frac{(n-1)!\frac{d}{d x} d_{n-1}^{(r)}(x)}{(-2 i) i^{n-1}}\right) \\
& =(-1)^{n-1} \frac{n+2 r}{2}\left(d_{n-1}^{(r)}(x) \frac{d}{d x} d_{n}^{(r)}(x)-d_{n}^{(r)}(x) \frac{d}{d x} d_{n-1}^{(r)}(x)\right) .
\end{aligned}
$$

This proves (3.7).
Remark 3.1. Taking $r=0$ in (3.7) and (3.5) yields

$$
\begin{align*}
& \sum_{k=0}^{n-1}(-1)^{k} d_{k}(x)^{2}=(-1)^{n-1} \frac{n}{2}\left(d_{n-1}(x) d_{n}^{\prime}(x)-d_{n}(x) d_{n-1}^{\prime}(x)\right) \tag{3.8}\\
& \sum_{k=0}^{n-1}(-1)^{k}(2 k+1) d_{k}(x)^{2}=(-1)^{n}\left(n^{2} d_{n}(x)^{2}-n(n+1) d_{n-1}(x) d_{n+1}(x)\right) \tag{3.9}
\end{align*}
$$

Theorem 3.3. For $n \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
D_{n}^{(r)}(x)^{2}=\sum_{m=0}^{n}\binom{n+2 r+m}{n-m}(-1)^{n-m} \prod_{j=m+1}^{n} j(2 r+j) \prod_{k=1}^{m}\left(x^{2}+(2 r+2 k-1)^{2}\right) \tag{3.10}
\end{equation*}
$$

Proof. By Lemma 3.1 and Theorem 2.6,

$$
\left.D_{n}^{(r)}(x)^{2}=(-1)^{n} n!^{2} d_{n}^{(r)}\left(\frac{i x-1}{2}\right)^{2}=(-1)^{n} n!^{2}\binom{n+2 r}{n} \sum_{m=0}^{n} \frac{\left(\frac{i x-1}{2}-r\right.}{m}\right)\binom{\frac{i x-1}{2}+r+m}{m}\binom{n+2 r+m}{n-m}, ~\binom{m+2 r}{m} .
$$

Since

$$
\begin{aligned}
& \binom{\frac{i x-1}{2}-r}{m}\binom{\frac{i x-1}{2}+r+m}{m} \\
& =\frac{\left(\frac{i x-1}{2}-r\right)\left(\frac{i x-1}{2}-(r+1)\right) \cdots\left(\frac{i x-1}{2}-(r+m-1)\right)\left(\frac{i x-1}{2}+r+m\right) \cdots\left(\frac{i x-1}{2}+r+1\right)}{m!^{2}} \\
& =\frac{\left((i x)^{2}-(2 r+1)^{2}\right) \cdots\left((i x)^{2}-(2 r+2 m-1)^{2}\right)}{2^{2 m} \cdot m!^{2}}=\frac{\left(x^{2}+(2 r+1)^{2}\right) \cdots\left(x^{2}+(2 r+2 m-1)^{2}\right)}{(-4)^{m} \cdot m!^{2}}
\end{aligned}
$$

from the above we deduce that
$D_{n}^{(r)}(x)^{2}=(-1)^{n} n!\sum_{m=0}^{n}\binom{n+2 r+m}{n-m} \frac{(-1)^{m}(2 r+1)(2 r+2) \cdots(2 r+n)}{m!(2 r+1)(2 r+2) \cdots(2 r+m)} \prod_{k=1}^{m}\left(x^{2}+(2 r+2 k-1)^{2}\right)$.
This yields the result.
Theorem 3.4. The exponential generating function of $\left\{D_{n}^{(r)}(x)\right\}$ is given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} D_{n}^{(r)}(x) \frac{t^{n}}{n!}=\left(1+t^{2}\right)^{-r-\frac{1}{2}} \mathrm{e}^{x \arctan t} \tag{3.11}
\end{equation*}
$$

Proof. Set $f(t)=\sum_{n=0}^{\infty} D_{n}^{(r)}(x) \frac{t^{n}}{n!}$. Then

$$
f(t)=1+\sum_{n=0}^{\infty} D_{n+1}^{(r)}(x) \frac{t^{n+1}}{(n+1)!}=1+\sum_{n=0}^{\infty} x D_{n}^{(r)}(x) \frac{t^{n+1}}{(n+1)!}-\sum_{n=1}^{\infty} n(n+2 r) D_{n-1}^{(r)}(x) \frac{t^{n+1}}{(n+1)!}
$$

Hence

$$
\begin{aligned}
f^{\prime}(t) & =\sum_{n=0}^{\infty} x D_{n}^{(r)}(x) \frac{t^{n}}{n!}-\sum_{n=1}^{\infty}(n+2 r) D_{n-1}^{(r)}(x) \frac{t^{n}}{(n-1)!} \\
& =x f(t)-2 r t f(t)-t\left(\sum_{n=1}^{\infty} D_{n-1}^{(r)}(x) \frac{t^{n}}{(n-1)!}\right)^{\prime} \\
& =(x-2 r t) f(t)-t(t f(t))^{\prime}=(x-2 r t) f(t)-t\left(f(t)+t f^{\prime}(t)\right)
\end{aligned}
$$

That is, $\frac{f^{\prime}(t)}{f(t)}=\frac{x-(2 r+1) t}{1+t^{2}}$. Solving this differential equation yields (3.11).
Corollary 3.2. For $n \in \mathbb{N}_{0}$,

$$
D_{n}^{(r)}(-x)=(-1)^{n} D_{n}^{(r)}(x) \quad \text { and } \quad D_{n}^{(r)}(0)= \begin{cases}0 & \text { if } n \text { is odd } \tag{3.12}\\ n!\binom{-r-1 / 2}{n / 2} & \text { if } n \text { is even } .\end{cases}
$$

Proof. By Theorem 3.4,

$$
\sum_{n=0}^{\infty} D_{n}^{(r)}(-x) \frac{(-t)^{n}}{n!}=\left(1+t^{2}\right)^{-r-\frac{1}{2}} \mathrm{e}^{-x \arctan (-t)}=\left(1+t^{2}\right)^{-r-\frac{1}{2}} \mathrm{e}^{x \arctan t}=\sum_{n=0}^{\infty} D_{n}^{(r)}(x) \frac{t^{n}}{n!}
$$

Thus, $(-1)^{n} D_{n}^{(r)}(-x)=D_{n}^{(r)}(x)$. Taking $x=0$ in Theorem 3.4 and then applying Newton's binomial theorem we see that $\sum_{n=0}^{\infty} D_{n}^{(r)}(0) \frac{t^{n}}{n!}=\left(1+t^{2}\right)^{-r-\frac{1}{2}}=\sum_{k=0}^{\infty}\binom{-r-\frac{1}{2}}{k} t^{2 k}$. Comparing the coefficients of t^{n} on both sides yields the remaining part.

Theorem 3.5. For $n \in \mathbb{N}_{0}$ we have

$$
\begin{align*}
& D_{n}^{(r)}(x)=x^{n}-\sum_{k=1}^{n-1} k(k+2 r) D_{k-1}^{(r)}(x) x^{n-1-k} \tag{3.13}\\
& n!d_{n}^{(r)}(x)=(1+2 x)^{n}+\sum_{k=1}^{n-1}(k+2 r) \cdot k!d_{k-1}^{(r)}(x)(1+2 x)^{n-1-k} \tag{3.14}
\end{align*}
$$

Proof. For $x \neq 0$ and $k=0,1,2, \ldots$ we have $\frac{D_{k+1}^{(r)}(x)}{x^{k+1}}-\frac{D_{k}^{(r)}(x)}{x^{k}}=-k(k+2 r) \frac{D_{k-1}^{(r)}(x)}{x^{k+1}}$. Thus,

$$
-\sum_{k=1}^{n-1} k(k+2 r) \frac{D_{k-1}^{(r)}(x)}{x^{k+1}}=\sum_{k=1}^{n-1}\left(\frac{D_{k+1}^{(r)}(x)}{x^{k+1}}-\frac{D_{k}^{(r)}(x)}{x^{k}}\right)=\frac{D_{n}^{(r)}(x)}{x^{n}}-\frac{D_{1}^{(r)}(x)}{x}
$$

Multiplying by x^{n} on both sides and noting that $D_{1}^{(r)}(x)=x$ we deduce (3.13) for $x \neq 0$. When $x=0,(3.13)$ is also true by (3.2).

By Lemma 3.1, $(-i)^{n} n!d_{n}^{(r)}(x)=D_{n}^{(r)}(-i(1+2 x))$. Thus,

$$
\begin{aligned}
& (-i)^{n} n!d_{n}^{(r)}(x) \\
& =D_{n}^{(r)}(-i(1+2 x))=(-i(1+2 x))^{n}-\sum_{k=1}^{n-1} k(k+2 r) D_{k-1}^{(r)}(-i(1+2 x))(-i(1+2 x))^{n-1-k} \\
& =(-i(1+2 x))^{n}-\sum_{k=1}^{n-1} k(k+2 r)(-i)^{k-1}(k-1)!d_{k-1}^{(r)}(x)(-i(1+2 x))^{n-1-k} \\
& =(-i)^{n}\left\{(1+2 x)^{n}+\sum_{k=1}^{n-1}(k+2 r) \cdot k!d_{k-1}^{(r)}(x)(1+2 x)^{n-1-k}\right\} .
\end{aligned}
$$

This proves (3.14).
Corollary 3.3. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& {\left[x^{n}\right] d_{n}^{(r)}(x)=\frac{2^{n}}{n!}, \quad\left[x^{n-1}\right] d_{n}^{(r)}(x)=\frac{2^{n-1}}{(n-1)!}, \quad\left[x^{n-2}\right] d_{n}^{(r)}(x)=\frac{2^{n-2}}{(n-2)!}\left(r+\frac{n+1}{3}\right)(n \geq 2),} \\
& {\left[x^{n}\right] D_{n}^{(r)}(x)=1 \quad \text { and } \quad\left[x^{n-2}\right] D_{n}^{(r)}(x)=-\frac{(n-1) n(2 n-1+6 r)}{6}(n \geq 2)}
\end{aligned}
$$

where $\left[x^{k}\right] f(x)$ is the coefficient of x^{k} in the power series expansion of $f(x)$.
Proof. From Theorem 3.5 we see that $\left[x^{n}\right] D_{n}^{(r)}(x)=1$ and so

$$
\left[x^{n-2}\right] D_{n}^{(r)}(x)=-\sum_{k=1}^{n-1} k(k+2 r)=-\sum_{k=1}^{n-1} k^{2}-2 r \sum_{k=1}^{n-1} k=-\frac{(n-1) n(2 n-1)}{6}-r n(n-1) .
$$

By Theorem 3.5, $\left[x^{n}\right] d_{n}^{(r)}(x)=\left[x^{n}\right] \frac{(1+2 x)^{n}}{n!}=\frac{2^{n}}{n!},\left[x^{n-1}\right] d_{n}^{(r)}(x)=\left[x^{n-1}\right] \frac{(1+2 x)^{n}}{n!}=\frac{2^{n-1}}{(n-1)!}$ and

$$
\left[x^{n-2}\right] n!d_{n}^{(r)}(x)=\binom{n}{2} 2^{n-2}+\sum_{k=1}^{n-1}(k+2 r) k \cdot 2^{k-1} \cdot 2^{n-1-k}=2^{n-2} n(n-1)\left(r+\frac{n+1}{3}\right)(n \geq 2) .
$$

This yields the result.
Theorem 3.6. For any nonnegative integer n we have

$$
\begin{equation*}
D_{n}^{(r)}(x)=D_{n}^{(r+1)}(x)+n(n-1) D_{n-2}^{(r+1)}(x)=\sum_{k=0}^{[n / 2]}\binom{n}{2 k}\binom{-r}{k}(2 k)!D_{n-2 k}^{(0)}(x) . \tag{3.15}
\end{equation*}
$$

Proof. By Theorem 3.4, for $|t|<1$,

$$
\sum_{n=0}^{\infty} D_{n}^{(r)}(x) \frac{t^{n}}{n!}=\left(1+t^{2}\right) \sum_{n=0}^{\infty} D_{n}^{(r+1)}(x) \frac{t^{n}}{n!}=\left(1+t^{2}\right)^{-r} \sum_{n=0}^{\infty} D_{n}^{(0)}(x) \frac{t^{n}}{n!}
$$

Now comparing the coefficients of t^{n} on both sides yields the result.
Finally we state the linearization formula for $D_{m}^{(r)}(x) D_{n}^{(r)}(x)$.

Theorem 3.7. Let m and n be nonnegative integers. Then

$$
\begin{equation*}
D_{m}^{(r)}(x) D_{n}^{(r)}(x)=\sum_{k=0}^{\min \{m, n\}}\binom{m}{k}\binom{n}{k} k!^{2}\binom{2 r+m+n-k}{k} D_{m+n-2 k}^{(r)}(x) . \tag{3.16}
\end{equation*}
$$

Proof. This is immediate from Theorem 2.7 and Lemma 3.1.

Acknowledgments

The author was supported by the National Natural Science Foundation of China (Grant No. 11371163).

References

[1] G. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematical Applications, Vol.71, Cambridge University Press, Cambridge, 1999.
[2] C. Banderier and S. Schwer, Why Delannoy numbers?, J. Stat. Planning Inference 135(2005), 40-54.
[3] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol.II, McGraw-Hill, New York, 1953. Based, in part, on notes left by Harry Bateman.
[4] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd edition, Encyclopedia of Mathematics and its Applications, Vol.96, Cambridge University Press, Cambridge, 2004.
[5] H.W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia University, Morgantown, WV, 1972.
[6] V.J.W. Guo, Proof of Sun's conjectures on integer-valued polynomials, J. Math. Anal. Appl. 444(2016), 182-191.
[7] L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[8] Z.W. Sun, Supercongruences involving dual sequences, Finite Fields Appl. 46 (2017), 179216.

