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Abstract In this paper we introduce the polynomials {d(r)
n (x)} and {D(r)

n (x)} given by d
(r)
n (x) =∑n

k=0

(
x+r+k

k

)(
x−r
n−k

)
(n ≥ 0), D

(r)
0 (x) = 1, D

(r)
1 (x) = x and D

(r)
n+1(x) = xD

(r)
n (x) − n(n +

2r)D
(r)
n−1(x) (n ≥ 1). We show that {D(r)

n (x)} are orthogonal polynomials for r > −1
2
, and

establish many identities for {d(r)
n (x)} and {D(r)

n (x)}, especially obtain a formula for d
(r)
n (x)2

and the linearization formulas for d
(r)
m (x)d

(r)
n (x) and D

(r)
m (x)D

(r)
n (x). As an application we extend

recent work of Sun and Guo.
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1. Introduction

Let Z, N0 and N be the sets of integers, nonnegative integers and positive integers, respec-
tively. By [5, (3.17)], for n ∈ N0,

(1.1)
n∑

k=0

(
n

k

)(
x

k

)
tk =

n∑

k=0

(
n

k

)(
x + k

n

)
(t− 1)n−k.

Define

(1.2) dn(x) =
n∑

k=0

(
n

k

)(
x

k

)
2k (n = 0, 1, 2, . . .).

For m,n ∈ N, dn(m) is the number of lattice paths from (0, 0) to (m,n), with jumps (0, 1), (1, 1)
or (1, 0). {dn(m)} are called Delannoy numbers. See [2]. In [8] Z.W. Sun deduced some
supercongruences involving dn(x). Actually, he obtained congruences for

(1.3)

p−1∑

k=0

dk(x)2,

p−1∑

k=0

(−1)kdk(x)2,

p−1∑

k=0

(2k + 1)dk(x)2 and

p−1∑

k=0

(−1)k(2k + 1)dk(x)2
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modulo p2, where p is an odd prime and x is a rational p-adic integer. Z.W. Sun also conjectured
that for any n ∈ N and x ∈ Z,

x(x + 1)
n−1∑

k=0

(2k + 1)dk(x)2 ≡ 0 (mod 2n2),(1.4)

n−1∑

k=0

εk(2k + 1)dk(x)2m ≡ 0 (mod n) for given ε ∈ {1,−1} and m ∈ N.(1.5)

Recently, Guo[6] proved the above two congruences by using the identity

(1.6) dn(x)2 =
n∑

k=0

(
n + k

2k

)(
x

k

)(
x + k

k

)
4k.

Guo proved (1.6) by using Maple and Zeilberger’s algorithm, and Zudilin stated that (1.6) can
be deduced from two transformation formulas for hypergeometric series. See [6] and [7, (1.7.1.3)
and (2.5.32)].

In this paper we establish closed formulas for sums in (1.3), which imply Sun’s related
congruences. Set

(1.7) d(r)
n (x) =

n∑

k=0

(
x + r + k

k

)(
x− r

n− k

)
(n = 0, 1, 2, . . .).

Then dn(x) = d
(0)
n (x) by (1.1). Thus, d

(r)
n (x) is a generalization of dn(x). The main purpose of

this paper is to investigate the properties of d
(r)
n (x). We establish many identities for d

(r)
n (x).

In particular, we obtain a formula for d
(r)
n (x)2, which is a generalization of (1.6). See Theorem

2.6.
Some classical orthogonal polynomials have formulas for the linearization of their prod-

ucts. As examples, for Hermite polynomials {Hn(x)} (H−1(x) = 0, H0(x) = 1, Hn+1(x) =
2xHn(x) − 2nHn−1(x) (n ≥ 0)) and Legendre polynomials {Pn(x)} (P0(x) = 1, P1(x) =
x, (n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x) (n ≥ 1)) we have the linearization of their
products. See [1, Theorem 6.8.1 and Corollary 6.8.3] and [3, p.195]. In Section 2 we establish
the following linearization formula:

(1.8) d(r)
m (x)d(r)

n (x) =

min{m,n}∑

k=0

(
m + n− 2k

m− k

)(
2r + m + n− k

k

)
(−1)kd

(r)
m+n−2k(x).

In Section 3 we introduce the polynomials {D(r)
n (x)} given by

(1.9) D
(r)
0 (x) = 1, D

(r)
1 (x) = x and D

(r)
n+1(x) = xD(r)

n (x)− n(n + 2r)D
(r)
n−1(x) (n ≥ 1).

By [4, pp.175-176] or [1, pp.244-245], {D(r)
n (x)} are orthogonal polynomials for r > −1

2
, although

we have not found their weight functions. We state that D
(r)
n (x) = (−i)nn!d

(r)
n ( ix−1

2
), and obtain

some properties of {D(r)
n (x)}. In particular, we show that

(1.10) D(r)
n (x)2 −D

(r)
n+1(x)D

(r)
n−1(x) > 0 for r > −1

2
and real x.
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Note that Pn(x)2 − Pn−1(x)Pn+1(x) ≥ 0 for |x| ≤ 1 and Hn(x)2 −Hn−1(x)Hn+1(x) ≥ 0. See [1,
p.342] and [3, p.195].

Throughout this paper, [a] is the greatest integer not exceeding a, and f ′(x) is the derivative
of f(x).

2. The properties of d
(r)
n (x)

By (1.1) and (1.2), for n ∈ N0,

(2.1) dn(x) =
n∑

k=0

(
n

k

)(
x

k

)
2k =

n∑

k=0

(
n

k

)(
x + k

n

)
=

n∑

k=0

(
x + k

k

)(
x

n− k

)
.

Now we introduce the following generalization of {dn(x)}.
Definition 2.1. Let {d(r)

n (x)} be the polynomials given by

d(r)
n (x) =

n∑

k=0

(
x + r + k

k

)(
x− r

n− k

)
(n = 0, 1, 2, . . .).

For convenience we also define d
(r)
−1(x) = 0.

By (2.1), dn(x) = d
(0)
n (x). Since

(−a
k

)
= (−1)k

(
a+k−1

k

)
we see that

(2.2) d(r)
n (x) =

n∑

k=0

(−1− x− r

k

)
(−1)k

(
x− r

n− k

)
=

n∑

k=0

(−1− x− r

n− k

)
(−1)n−k

(
x− r

k

)
.

Hence

(2.3) d(r)
n (−1− x) = (−1)nd(r)

n (x).

The first few {d(r)
n (x)} are shown below:

d
(r)
0 (x) = 1, d

(r)
1 (x) = 2x + 1, d

(r)
2 (x) = 2x2 + 2x + r + 1,

d
(r)
3 (x) =

4

3
x3 + 2x2 +

(
2r +

8

3

)
x + r + 1.

Theorem 2.1. For |t| < 1 we have

(2.4)
∞∑

n=0

d(r)
n (x)tn =

(1 + t)x−r

(1− t)x+r+1
.

Proof. Newton’s binomial theorem states that (1 + t)α =
∑∞

n=0

(
α
n

)
tn. Thus,

(1 + t)x−r(1− t)−x−r−1 =
( ∞∑

m=0

(
x− r

m

)
tm

)( ∞∑

k=0

(−x− r − 1

k

)
(−1)ktk

)
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=
∞∑

n=0

( n∑

k=0

(−x− r − 1

k

)
(−1)k

(
x− r

n− k

))
tn =

∞∑
n=0

d(r)
n (x)tn.

This proves the theorem. ¤
Corollary 2.1. For n ∈ N we have

d(r)
n

(
− 1

2

)
=





0 if 2 - n,(−1/2− r

n/2

)
(−1)n/2 if 2 | n.

Proof. By Theorem 2.1 and Newton’s binomial theorem, for |t| < 1 we have

∞∑
n=0

d(r)
n (−1/2)tn = (1− t2)−1/2−r =

∞∑

k=0

(−1/2− r

k

)
(−1)kt2k.

Now comparing the coefficients of tn on both sides yields the result. ¤
Theorem 2.2. For n ∈ N we have

(2.5) (n + 1)d
(r)
n+1(x) = (1 + 2x)d(r)

n (x) + (n + 2r)d
(r)
n−1(x).

Proof. By Theorem 2.1, for |t| < 1,

∞∑
n=0

(n + 1)d
(r)
n+1(x)tn −

∞∑
n=0

nd
(r)
n−1(x)tn

=
( ∞∑

n=0

d
(r)
n+1(x)tn+1

)′
− t

( ∞∑
n=1

d
(r)
n−1(x)tn

)′

=
(
(1 + t)x−r(1− t)−x−r−1

)′ − t
(
t(1 + t)x−r(1− t)−x−r−1

)′

=
(
(1 + t)x−r(1− t)−x−r−1

)′ − t((1 + t)x−r(1− t)−x−r−1 + t((1 + t)x−r(1− t)−x−r−1)′)

= (1− t2)
(
(x− r)(1 + t)x−r−1(1− t)−x−r−1 + (1 + t)x−r(x + r + 1)(1− t)−x−r−2

)

− t(1 + t)x−r(1− t)−x−r−1

= (1 + 2x + 2rt)(1 + t)x−r(1− t)−x−r−1

= (1 + 2x)
∞∑

n=0

d(r)
n (x)tn + 2r

∞∑
n=1

d
(r)
n−1(x)tn.

Now comparing the coefficients of tn on both sides gives the result. ¤
Theorem 2.3. Let n ∈ N0. Then

(2.6) d(r)
n (x) =

[n/2]∑

k=0

(
r − 1 + k

k

)
dn−2k(x) =

n∑

k=0

(
2r − 1 + k

k

)
dn−k(x− r)

and

(2.7) dn(x) =

[n/2]∑

k=0

(
r

k

)
(−1)kd

(r)
n−2k(x) =

n∑

k=0

(
2r

k

)
(−1)kd

(r)
n−k(x + r).
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Proof. By (2.4),

∞∑
n=0

d(r)
n (x)tn = (1− t2)−r · 1

1− t

(1 + t

1− t

)x

= (1− t)−2r · 1

1− t

(1 + t

1− t

)x−r

.

Hence ∞∑
n=0

d(r)
n (x)tn = (1− t2)−r

∞∑
n=0

dn(x)tn = (1− t)−2r

∞∑
n=0

dn(x− r)tn,

which yields the first 2 results by applying Newton’s binomial theorem and comparing the
coefficients of tn on both sides. Also,

∞∑
n=0

dn(x)tn = (1− t2)r

∞∑
n=0

d(r)
n (x)tn = (1− t)2r

∞∑
n=0

d(r)
n (x + r)tn

yields the next 2 results. ¤
Corollary 2.2. Let n ∈ N0. Then d

(r)
n (0) =

(r+[n
2
]

[n
2
]

)
.

Proof. Set
(

a
k

)
= 0 for k < 0. Since dn(0) =

∑n
k=0

(
n
k

)(
0
k

)
2k = 1, applying Theorem 2.3 we

get

d(r)
n (0) =

[n/2]∑

k=0

(
r − 1 + k

k

)
=

[n/2]∑

k=0

(−r

k

)
(−1)k

=

[n/2]∑

k=0

(
(−1)k

(−r − 1

k

)
− (−1)k−1

(−r − 1

k − 1

))
= (−1)[n

2
]

(−r − 1

[n
2
]

)
=

(
r + [n

2
]

[n
2
]

)
. ¤

Theorem 2.4. For n ∈ N we have

d(r)
n (x) = d(r+1)

n (x)− d
(r+1)
n−2 (x),(i)

d(r+1)
n (x) =

[n/2]∑

k=0

d
(r)
n−2k(x),(ii)

(n + 1)2d
(r)
n+1(x)2 − (n + 2r + 1)2d(r)

n (x)2 = 4(x− r)(x + 1 + r)(d(r+1)
n (x)2 − d

(r+1)
n−1 (x)2),(iii)

(2r + 1)
n−1∑

k=0

(2k + 2r + 1)d
(r)
k (x)2 = n2d(r)

n (x)2 − 4(x− r)(x + 1 + r)d
(r+1)
n−1 (x)2.(iv)

Proof. By Theorem 2.1, for |t| < 1,

∞∑
n=0

d(r+1)
n (x)tn =

1

1− t2

∞∑
m=0

d(r)
m (x)tm =

( ∞∑

k=0

t2k
)( ∞∑

m=0

d(r)
m (x)tm

)
.

Now comparing the coefficients of tn on both sides yields (i) and (ii).
By (i) and (2.5),

d
(r)
n+1(x) = d

(r+1)
n+1 (x)− d

(r+1)
n−1 (x)
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=
(2x + 1)d

(r+1)
n (x) + (n + 2 + 2r)d

(r+1)
n−1 (x)

n + 1
− d

(r+1)
n−1 (x) =

(2x + 1)d
(r+1)
n (x) + (2r + 1)d

(r+1)
n−1 (x)

n + 1

and

d(r)
n (x) = d(r+1)

n (x)− d
(r+1)
n−2 (x)

= d(r+1)
n (x)− nd

(r+1)
n (x)− (2x + 1)d

(r+1)
n−1 (x)

n + 1 + 2r
=

(2r + 1)d
(r+1)
n (x) + (2x + 1)d

(r+1)
n−1 (x)

n + 1 + 2r
.

Thus,

(n + 1)2d
(r)
n+1(x)2 − (n + 1 + 2r)2d(r)

n (x)2

= ((2x + 1)d(r+1)
n (x) + (2r + 1)d

(r+1)
n−1 (x))2 − ((2r + 1)d(r+1)

n (x) + (2x + 1)d
(r+1)
n−1 (x))2

= 4(x− r)(x + 1 + r)(d(r+1)
n (x)2 − d

(r+1)
n−1 (x)2).

This proves (iii). By (iii),

n−1∑

k=0

(2r + 1)(2k + 2r + 1)d
(r)
k (x)2

=
n−1∑

k=0

(
(k + 1)2d

(r)
k+1(x)2 − k2d

(r)
k (x)2

)− 4(x− r)(x + 1 + r)
n−1∑

k=0

(
d

(r+1)
k (x)2 − d

(r+1)
k−1 (x)2

)

= n2d(r)
n (x)2 − 4(x− r)(x + 1 + r)d

(r+1)
n−1 (x)2.

This proves (iv). ¤
Theorem 2.5. Let n ∈ N, r ∈ N0 and x ∈ Z. Then

(2r + 1)
r∏

k=−r

(x + k)(x + 1− k)
n−1∑

k=0

(2k + 2r + 1)d
(r)
k (x)2 ≡ 0 (mod 2n2(n + 1)2 · · · (n + 2r)2).

Proof. It is easily seen that for k, n, r ∈ N0 with k ≤ n,

(
x + r

2r

)(
x + r + k

k

)(
x− r

n− k

)
=

(
n + 2r

2r

)(
n

k

)(
x + r + k

n + 2r

)
.

Thus,

(2.8)

(
x + r

2r

)
d(r)

n (x) =

(
n + 2r

2r

) n∑

k=0

(
n

k

)(
x + r + k

n + 2r

)
for r ∈ N0.

By Theorem 2.4(iv) and (2.8),

(2r + 1)
r∏

k=−r

(x + k)(x + 1− k)
n−1∑

k=0

(2k + 2r + 1)d
(r)
k (x)2
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=
r∏

k=−r

(x + k)(x + 1− k)× (
n2d(r)

n (x)2 − 4(x− r)(x + 1 + r)d
(r+1)
n−1 (x)2

)

= (x− r)(x + r + 1)(n + 2r)2(n + 2r − 1)2 · · · (n + 1)2n2
( n∑

k=0

(
n

k

)(
x + r + k

n + 2r

))2

− 4(n + 2r + 1)2(n + 2r)2 · · ·n2
( n−1∑

k=0

(
n− 1

k

)(
x + r + 1 + k

n + 2r + 1

))2

.

To finish the proof, we note that (x + r + 1)(x− r) ≡ 0 (mod 2). ¤
We remark that Theorem 2.5 is a generalization of (1.4), and the next theorem is a gener-

alization of (1.6).
Theorem 2.6. Suppose n ∈ N0 and r 6∈ {−1

2
,−2

2
,−3

2
, . . .}. Then

(2.9) d(r)
n (x)2 =

(
n + 2r

n

) n∑
m=0

(
x−r
m

)(
x+r+m

m

)(
n+2r+m

n−m

)
(

m+2r
m

) 4m.

Proof. Set

s(n) =
d

(r)
n (x)2

(
n+2r

n

) and S(n) =
n∑

m=0

(
x−r
m

)(
x+r+m

m

)(
n+2r+m

n−m

)
(

m+2r
m

) 4m.

Using sumrecursion in Maple we find that for n ∈ N,

(n+2)(n+2+2r)S(n+2)−((2x+1)2+(n+1)(n+1+2r))(S(n+1)+S(n))+n(n+2r)S(n−1) = 0.

By Theorem 2.2,

d
(r)
n+2(x) =

(1 + 2x)d
(r)
n+1(x) + (n + 1 + 2r)d

(r)
n (x)

n + 2
, d

(r)
n−1(x) =

(n + 1)d
(r)
n+1(x)− (1 + 2x)d

(r)
n (x)

n + 2r
.

Thus,

(n + 2)(n + 2 + 2r)s(n + 2) + n(n + 2r)s(n− 1)

=
(n + 2)(n + 2 + 2r)(

n+2+2r
2r

) d
(r)
n+2(x)2 +

n(n + 2r)(
n−1+2r

2r

) d
(r)
n−1(x)2

=
((1 + 2x)d

(r)
n+1(x) + (n + 1 + 2r)d

(r)
n (x))2

(
n+1+2r

2r

) +
((n + 1)d

(r)
n+1(x)− (1 + 2x)d

(r)
n (x))2

(
n+2r

2r

)

= d
(r)
n+1(x)2

{(1 + 2x)2

(
n+1+2r

2r

) +
(n + 1)2

(
n+2r

2r

)
}

+ d(r)
n (x)2

{(1 + 2x)2

(
n+2r

2r

) +
(n + 1 + 2r)2

(
n+1+2r

2r

)
}

=
d

(r)
n+1(x)2

(
n+1+2r

2r

) (
(1 + 2x)2 + (n + 1)(n + 1 + 2r)

)
+

d
(r)
n (x)2

(
n+2r

2r

) (
(1 + 2x)2 + (n + 1)(n + 1 + 2r)

)
.

= ((1 + 2x)2 + (n + 1)(n + 1 + 2r))(s(n) + s(n + 1)).
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This shows that s(n) and S(n) satisfy the same recurrence relation. Also,

s(0) = 1 = S(0), s(1) =
(1 + 2x)2

2r + 1
= S(1), s(2) =

(2x2 + 2x + r + 1)2

(r + 1)(2r + 1)
= S(2).

Thus, s(n) = S(n) for n ∈ N0. ¤

Now we present the linearization of d
(r)
m (x)d

(r)
n (x).

Theorem 2.7. Let m,n ∈ N0. Then

(2.10) d(r)
m (x)d(r)

n (x) =

min{m,n}∑

k=0

(
m + n− 2k

m− k

)(
2r + m + n− k

k

)
(−1)kd

(r)
m+n−2k(x).

Proof. Let L(m,n) = d
(r)
m (x)d

(r)
n (x) and

(
a
k

)
= 0 for k < 0. By Theorem 2.2, (m + 1 +

2r)d
(r)
m (x) + (1 + 2x)d

(r)
m+1(x) = (m + 2)d

(r)
m+2(x). Hence

(m + 1 + 2r)L(m,n) + (1 + 2x)L(m + 1, n)− (m + 2)L(m + 2, n) = 0.

Let

G(m,n, k, l) = (−1)k

(
m + n− 2k

m− k

)(
2r + m + n− k

k

)(
x + r + l

l

)(
x− r

m + n− 2k − l

)
.

Using Maple it is easy to check that

(m + 1 + 2r)G(m,n, k, l) + (2x + 1)G(m + 1, n, k, l)− (m + 2)G(m + 2, n, k, l)

= F1(m,n, k + 1, l)− F1(m,n, k, l) + F2(m,n, k, l + 1)− F2(m,n, k, l),

where

F1(m,n, k, l) = (−1)k(2m + n + 2r + 4− 2k)

×
(

m + n + 2− 2k

m + 2− k

)(
2r + m + 1 + n− k

k − 1

)(
x + r + l

l

)(
x− r

m + 2 + n− 2k − l

)

and

F2(m,n, k, l)

= (−1)kl

(
m + 1 + n− 2k

m + 1− k

)(
2r + m + n + 1− k

k

)(
x + r + l

l

)(
x + 1− r

m + 2 + n− 2k − l

)
.

Thus,

m+2∑

k=0

m+2+n∑

l=0

(
(m + 1 + 2r)G(m,n, k, l) + (2x + 1)G(m + 1, n, k, l)− (m + 2)G(m + 2, n, k, l)

)
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=
m+2+n∑

l=0

m+2∑

k=0

(
F1(m,n, k + 1, l)− F1(m,n, k, l)

)
+

m+2∑

k=0

m+2+n∑

l=0

(
F2(m,n, k, l + 1)− F2(m,n, k, l)

)

=
m+2+n∑

l=0

(F1(m,n, m + 3, l)− F1(m,n, 0, l)) +
m+2∑

k=0

(F2(m,n, k, m + n + 3)− F2(m,n, k, 0))

= 0.

Set

R(m,n) =
m∑

k=0

m+n∑

l=0

G(m,n, k, l) =
m∑

k=0

m+n−2k∑

l=0

G(m,n, k, l).

Then (m + 1 + 2r)R(m,n) + (2x + 1)R(m + 1, n) − (m + 2)R(m + 2, n) = 0. From the above
we see that L(m,n) and R(m,n) satisfy the same recurrence relation. It is clear that L(0, n) =

d
(r)
n (x) =

∑n
l=0

(
x+r+l

l

)(
x−r
n−l

)
= R(0, n). By Theorem 2.2, R(1, n) = (n + 1)d

(r)
n+1(x) − (n +

2r)d
(r)
n−1(x) = (1 + 2x)d

(r)
n (x) = L(1, n). Hence, L(m,n) = R(m,n) for any nonnegative integers

m and n. This proves the theorem. ¤
Theorem 2.8. For n ∈ N we have

(2.11)
2(1 + x + y)

n−1∑

k=0

(2r + k + 1) · · · (2r + n)

(k + 1) · · ·n d
(r)
k (x)d

(r)
k (y)

= (n + 2r)(d(r)
n (x)d

(r)
n−1(y) + d

(r)
n−1(x)d(r)

n (y)).

Proof. We prove (2.11) by induction on n. Clearly (2.11) is true for n = 1. By Theorem
2.2,

(n + 1)
(
d

(r)
n+1(x)d(r)

n (y) + d(r)
n (x)d

(r)
n+1(y)

)

= d(r)
n (y)

(
(1 + 2x)d(r)

n (x) + (n + 2r)d
(r)
n−1(x)

)
+ d(r)

n (x)
(
(1 + 2y)d(r)

n (y) + (n + 2r)d
(r)
n−1(y)

)

= 2(1 + x + y)d(r)
n (x)d(r)

n (y) + (n + 2r)
(
d(r)

n (x)d
(r)
n−1(y) + d

(r)
n−1(x)d(r)

n (y)
)
.

Thus, if the result holds for n, then

2(1 + x + y)
n∑

k=0

(2r + k + 1) · · · (2r + n + 1)

(k + 1) · · · (n + 1)
d

(r)
k (x)d

(r)
k (y)

=
n + 2r + 1

n + 1
2(1 + x + y)

(
d(r)

n (x)d(r)
n (y) +

n−1∑

k=0

(2r + k + 1) · · · (2r + n)

(k + 1) · · ·n d
(r)
k (x)d

(r)
k (y)

)

=
n + 2r + 1

n + 1

(
2(1 + x + y)d(r)

n (x)d(r)
n (y) + (n + 2r)(d(r)

n (x)d
(r)
n−1(y) + d

(r)
n−1(x)d(r)

n (y))
)

= (n + 1 + 2r)
(
d

(r)
n+1(x)d(r)

n (y) + d(r)
n (x)d

(r)
n+1(y)

)
.

Hence (2.11) holds for n + 1. ¤
Remark 2.1. Taking r = 0 in Theorem 2.8 and noting that dn(x) = d

(0)
n (x) yields

(2.12) 2(1 + x + y)
n−1∑

k=0

dk(x)dk(y) = n(dn(x)dn−1(y) + dn−1(x)dn(y)).
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3. The orthogonal polynomials {D(r)
n (x)}

By [4, pp.175-176], every orthogonal system of real valued polynomials {pn(x)} satisfies

(3.1) p−1(x) = 0, p0(x) = 1 and xpn(x) = Anpn+1(x) + Bnpn(x) + Cnpn−1(x) (n ≥ 0),

where An, Bn, Cn are real and AnCn+1 > 0. Conversely, if (3.1) holds for a sequence of poly-
nomials {pn(x)} and An, Bn, Cn are real with AnCn+1 > 0, then there exists a weight function
w(x) such that

∫ ∞

−∞
w(x)pm(x)pn(x)dx =





0 if m 6= n,
1

vn

∫ ∞

−∞
w(x)dx if m = n,

where v0 = 1 and vn = A0A1···An−1

C1···Cn
(n ≥ 1).

In this section we discuss a kind of orthogonal polynomials related to {d(r)
n (x)}.

Definition 3.1. Let {D(r)
n (x)} be the polynomials given by

(3.2) D
(r)
−1(x) = 0, D

(r)
0 (x) = 1 and D

(r)
n+1(x) = xD(r)

n (x)− n(n + 2r)D
(r)
n−1(x) (n ≥ 0).

The first few D
(r)
n (x) are shown below:

D
(r)
0 (x) = 1, D

(r)
1 (x) = x, D

(r)
2 (x) = x2 − 2r − 1, D

(r)
3 (x) = x3 − (6r + 5)x.

Suppose r > −1
2
. Set An = 1, Bn = 0, Cn = n(n+2r), v0 = 1 and vn = 1

n!(2r+1)(2r+2)···(2r+n)

(n ≥ 1). Then AnCn+1 > 0 and (3.1) holds for pn(x) = D
(r)
n (x). Hence {D(r)

n (x)} are orthogonal
polynomials.

Lemma 3.1. For n ∈ N0 we have

(3.3) d(r)
n (x) =

inD
(r)
n (−i(1 + 2x))

n!
and so D(r)

n (x) = (−i)nn!d(r)
n

(ix− 1

2

)
.

Proof. Since D
(r)
0 (−i(1 + 2x)) = 1, iD

(r)
1 (−i(1 + 2x)) = 1 + 2x and

(n + 1)
in+1D

(r)
n+1(−i(1 + 2x))

(n + 1)!

=
in+1D

(r)
n+1(−i(1 + 2x))

n!
=

in+1

n!

(− i(1 + 2x)D(r)
n (−i(1 + 2x))− n(n + 2r)D

(r)
n−1(−i(1 + 2x))

)

= (1 + 2x)
inD

(r)
n (−i(1 + 2x))

n!
+ (n + 2r)

in−1D
(r)
n−1(−i(1 + 2x))

(n− 1)!
,

we must have d
(r)
n (x) = inD

(r)
n (−i(1+2x))

n!
by (2.5). Substituting x with ix−1

2
yields the remaining

part. ¤
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Theorem 3.1. For n ∈ N we have

(3.4)
n−1∑

k=0

(2k + 2r + 1)
n∏

s=k+1

s(s + 2r)D
(r)
k (x)2 = n(n + 2r)

(
D(r)

n (x)2 −D
(r)
n−1(x)D

(r)
n+1(x)

)
.

Thus, D
(r)
n (x)2 −D

(r)
n+1(x)D

(r)
n−1(x) > 0 for r > −1

2
and real x.

Proof. Set ∆
(r)
n (x) = D

(r)
n (x)2−D

(r)
n+1(x)D

(r)
n−1(x). We prove (3.4) by induction on n. Clearly

(3.4) is true for n = 1. Suppose that (3.4) holds for n. Since

∆
(r)
n+1(x)− n(n + 2r)∆(r)

n (x) = D
(r)
n+1(x)2 −D(r)

n (x)(xD
(r)
n+1(x)− (n + 1)(n + 2r + 1)D(r)

n (x))

− n(n + 2r)(D(r)
n (x)2 −D

(r)
n−1(x)D

(r)
n+1(x))

= D
(r)
n+1(x)(D

(r)
n+1(x)− xD(r)

n (x) + n(n + 2r)D
(r)
n−1(x))

+ ((n + 1)(n + 1 + 2r)− n(n + 2r))D(r)
n (x)2

= (2n + 2r + 1)D(r)
n (x)2,

we see that

n∑

k=0

(2k + 2r + 1)
n+1∏

s=k+1

s(s + 2r)×D
(r)
k (x)2

= (n + 1)(n + 1 + 2r)
(
(2n + 2r + 1)D(r)

n (x)2 +
n−1∑

k=0

(2k + 2r + 1)
n∏

s=k+1

s(s + 2r)D
(r)
k (x)2

)

= (n + 1)(n + 1 + 2r)
(
(2n + 2r + 1)D(r)

n (x)2 + n(n + 2r)∆(r)
n (x)

)

= (n + 1)(n + 1 + 2r)∆
(r)
n+1(x).

This shows that (3.4) holds for n + 1. Hence (3.4) is proved by induction. For r > −1
2

we

have 1 + 2r > 0. From (3.4) and the fact D
(r)
0 (x) = 1 we deduce that ∆

(r)
n (x) ≥ (2r +

1)n!(2r+1)···(2r+n)
n(n+2r)

> 0. This concludes the proof. ¤
Corollary 3.1. Let n ∈ N. Then

(3.5)

n−1∑

k=0

(−1)k(2k + 2r + 1)
(k + 1 + 2r) · · · (n + 2r)

(k + 1) · · ·n d
(r)
k (x)2

= (−1)n(n + 2r)
(
nd(r)

n (x)2 − (n + 1)d
(r)
n−1(x)d

(r)
n+1(x)

)
.

Proof. Replacing x with −i(1 + 2x) in Theorem 3.1 and then applying Lemma 3.1 yields
the result. ¤

Theorem 3.2. Let n ∈ N. Then

(3.6)
n−1∑

k=0

n∏

s=k+1

s(s + 2r)D
(r)
k (x)2 = n(n + 2r)

(
D

(r)
n−1(x)

d

dx
D(r)

n (x)−D(r)
n (x)

d

dx
D

(r)
n−1(x)

)
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and

(3.7)

n−1∑

k=0

(−1)k

n∏

s=k+1

s + 2r

s
d

(r)
k (x)2

= (−1)n−1n + 2r

2

(
d

(r)
n−1(x)

d

dx
d(r)

n (x)− d(r)
n (x)

d

dx
d

(r)
n−1(x)

)
.

Proof. We prove (3.6) by induction on n. Clearly (3.6) is true for n = 1. Suppose that (3.6)

holds for n. Since D
(r)
n+1(x) = xD

(r)
n (x)− n(n + 2r)D

(r)
n−1(x) we see that

d

dx
D

(r)
n+1(x) = D(r)

n (x) + x
d

dx
D(r)

n (x)− n(n + 2r)
d

dx
D

(r)
n−1(x)

and so

D(r)
n (x)

d

dx
D

(r)
n+1(x)−D

(r)
n+1(x)

d

dx
D(r)

n (x)− n(n + 2r)
(
D

(r)
n−1(x)

d

dx
D(r)

n (x)−D(r)
n (x)

d

dx
D

(r)
n−1(x)

)

= D(r)
n (x)2 + xD(r)

n (x)
d

dx
D(r)

n (x)− n(n + 2r)D(r)
n (x)

d

dx
D

(r)
n−1(x)

− (xD(r)
n (x)− n(n + 2r)D

(r)
n−1(x))

d

dx
D(r)

n (x)

− n(n + 2r)D
(r)
n−1(x)

d

dx
D(r)

n (x) + n(n + 2r)D(r)
n (x)

d

dx
D

(r)
n−1(x)

= D(r)
n (x)2.

Hence

n∑

k=0

n+1∏

s=k+1

s(s + 2r)×D
(r)
k (x)2

= (n + 1)(n + 1 + 2r)
(
D(r)

n (x)2 +
n−1∑

k=0

n∏

s=k+1

s(s + 2r) ·D(r)
k (x)2

)

= (n + 1)(n + 1 + 2r)
(
D(r)

n (x)2 + n(n + 2r)
(
D

(r)
n−1(x)

d

dx
D(r)

n (x)−D(r)
n (x)

d

dx
D

(r)
n−1(x)

))

= (n + 1)(n + 1 + 2r)
(
D(r)

n (x)
d

dx
D

(r)
n+1(x)−D

(r)
n+1(x)

d

dx
D(r)

n (x)
)
.

This shows that (3.6) holds for n + 1. Hence (3.6) is proved.

By Lemma 3.1, d
(r)
n (x) = inD

(r)
n (−i(1 + 2x))/n!. Thus, d

dx
d

(r)
n (x) = in d

dx
D

(r)
n (−i(1 +

2x))(−2i)/n!. Now applying (3.6) we obtain

n−1∑

k=0

(−1)k

n∏

s=k+1

s + 2r

s
× d

(r)
k (x)2

=
n−1∑

k=0

n∏

s=k+1

s + 2r

s
× D

(r)
k (−i(1 + 2x))2

k!2
=

1

n!2

n−1∑

k=0

n∏

s=k+1

s(s + 2r)×D
(r)
k (−i(1 + 2x))2
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=
n(n + 2r)

n!2

(
D

(r)
n−1(−i(1 + 2x))

d

dx
D(r)

n (−i(1 + 2x))−D(r)
n (−i(1 + 2x))

d

dx
D

(r)
n−1(−i(1 + 2x))

)

=
n(n + 2r)

n!2

(n! d
dx

d
(r)
n (x)

(−2i)in
× (n− 1)!d

(r)
n−1(x)

in−1
− n!d

(r)
n (x)

in
× (n− 1)! d

dx
d

(r)
n−1(x)

(−2i)in−1

)

= (−1)n−1n + 2r

2

(
d

(r)
n−1(x)

d

dx
d(r)

n (x)− d(r)
n (x)

d

dx
d

(r)
n−1(x)

)
.

This proves (3.7). ¤
Remark 3.1. Taking r = 0 in (3.7) and (3.5) yields

n−1∑

k=0

(−1)kdk(x)2 = (−1)n−1n

2
(dn−1(x)d′n(x)− dn(x)d′n−1(x)),(3.8)

n−1∑

k=0

(−1)k(2k + 1)dk(x)2 = (−1)n(n2dn(x)2 − n(n + 1)dn−1(x)dn+1(x)).(3.9)

Theorem 3.3. For n ∈ N0 we have

(3.10) D(r)
n (x)2 =

n∑
m=0

(
n + 2r + m

n−m

)
(−1)n−m

n∏
j=m+1

j(2r + j)
m∏

k=1

(x2 + (2r + 2k − 1)2).

Proof. By Lemma 3.1 and Theorem 2.6,

D(r)
n (x)2 = (−1)nn!2d(r)

n

(ix− 1

2

)2

= (−1)nn!2
(

n + 2r

n

) n∑
m=0

( ix−1
2
−r

m

)( ix−1
2

+r+m
m

)(
n+2r+m

n−m

)
(

m+2r
m

) 4m.

Since
(

ix−1
2
− r

m

)(
ix−1

2
+ r + m

m

)

=
( ix−1

2
− r)( ix−1

2
− (r + 1)) · · · ( ix−1

2
− (r + m− 1))( ix−1

2
+ r + m) · · · ( ix−1

2
+ r + 1)

m!2

=
((ix)2 − (2r + 1)2) · · · ((ix)2 − (2r + 2m− 1)2)

22m ·m!2
=

(x2 + (2r + 1)2) · · · (x2 + (2r + 2m− 1)2)

(−4)m ·m!2
,

from the above we deduce that

D(r)
n (x)2 = (−1)nn!

n∑
m=0

(
n + 2r + m

n−m

)
(−1)m(2r + 1)(2r + 2) · · · (2r + n)

m!(2r + 1)(2r + 2) · · · (2r + m)

m∏

k=1

(x2+(2r+2k−1)2).

This yields the result. ¤
Theorem 3.4. The exponential generating function of {D(r)

n (x)} is given by

(3.11)
∞∑

n=0

D(r)
n (x)

tn

n!
= (1 + t2)−r− 1

2 ex arctan t.
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Proof. Set f(t) =
∑∞

n=0 D
(r)
n (x) tn

n!
. Then

f(t) = 1 +
∞∑

n=0

D
(r)
n+1(x)

tn+1

(n + 1)!
= 1 +

∞∑
n=0

xD(r)
n (x)

tn+1

(n + 1)!
−

∞∑
n=1

n(n + 2r)D
(r)
n−1(x)

tn+1

(n + 1)!
.

Hence

f ′(t) =
∞∑

n=0

xD(r)
n (x)

tn

n!
−

∞∑
n=1

(n + 2r)D
(r)
n−1(x)

tn

(n− 1)!

= xf(t)− 2rtf(t)− t
( ∞∑

n=1

D
(r)
n−1(x)

tn

(n− 1)!

)′

= (x− 2rt)f(t)− t(tf(t))′ = (x− 2rt)f(t)− t(f(t) + tf ′(t)).

That is, f ′(t)
f(t)

= x−(2r+1)t
1+t2

. Solving this differential equation yields (3.11). ¤
Corollary 3.2. For n ∈ N0,

(3.12) D(r)
n (−x) = (−1)nD(r)

n (x) and D(r)
n (0) =





0 if n is odd,

n!

(−r − 1/2

n/2

)
if n is even.

Proof. By Theorem 3.4,

∞∑
n=0

D(r)
n (−x)

(−t)n

n!
= (1 + t2)−r− 1

2 e−x arctan (−t) = (1 + t2)−r− 1
2 ex arctan t =

∞∑
n=0

D(r)
n (x)

tn

n!
.

Thus, (−1)nD
(r)
n (−x) = D

(r)
n (x). Taking x = 0 in Theorem 3.4 and then applying Newton’s

binomial theorem we see that
∑∞

n=0 D
(r)
n (0) tn

n!
= (1+ t2)−r− 1

2 =
∑∞

k=0

(−r− 1
2

k

)
t2k. Comparing the

coefficients of tn on both sides yields the remaining part. ¤
Theorem 3.5. For n ∈ N0 we have

D(r)
n (x) = xn −

n−1∑

k=1

k(k + 2r)D
(r)
k−1(x)xn−1−k,(3.13)

n!d(r)
n (x) = (1 + 2x)n +

n−1∑

k=1

(k + 2r) · k!d
(r)
k−1(x)(1 + 2x)n−1−k.(3.14)

Proof. For x 6= 0 and k = 0, 1, 2, . . . we have
D

(r)
k+1(x)

xk+1 − D
(r)
k (x)

xk = −k(k + 2r)
D

(r)
k−1(x)

xk+1 . Thus,

−
n−1∑

k=1

k(k + 2r)
D

(r)
k−1(x)

xk+1
=

n−1∑

k=1

(D
(r)
k+1(x)

xk+1
− D

(r)
k (x)

xk

)
=

D
(r)
n (x)

xn
− D

(r)
1 (x)

x
.

Multiplying by xn on both sides and noting that D
(r)
1 (x) = x we deduce (3.13) for x 6= 0. When

x = 0, (3.13) is also true by (3.2).
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By Lemma 3.1, (−i)nn!d
(r)
n (x) = D

(r)
n (−i(1 + 2x)). Thus,

(−i)nn!d(r)
n (x)

= D(r)
n (−i(1 + 2x)) = (−i(1 + 2x))n −

n−1∑

k=1

k(k + 2r)D
(r)
k−1(−i(1 + 2x))(−i(1 + 2x))n−1−k

= (−i(1 + 2x))n −
n−1∑

k=1

k(k + 2r)(−i)k−1(k − 1)!d
(r)
k−1(x)(−i(1 + 2x))n−1−k

= (−i)n
{

(1 + 2x)n +
n−1∑

k=1

(k + 2r) · k!d
(r)
k−1(x)(1 + 2x)n−1−k

}
.

This proves (3.14). ¤
Corollary 3.3. Let n ∈ N. Then

[xn]d(r)
n (x) =

2n

n!
, [xn−1]d(r)

n (x) =
2n−1

(n− 1)!
, [xn−2]d(r)

n (x) =
2n−2

(n− 2)!

(
r +

n + 1

3

)
(n ≥ 2),

[xn]D(r)
n (x) = 1 and [xn−2]D(r)

n (x) = −(n− 1)n(2n− 1 + 6r)

6
(n ≥ 2),

where [xk]f(x) is the coefficient of xk in the power series expansion of f(x).

Proof. From Theorem 3.5 we see that [xn]D
(r)
n (x) = 1 and so

[xn−2]D(r)
n (x) = −

n−1∑

k=1

k(k + 2r) = −
n−1∑

k=1

k2 − 2r
n−1∑

k=1

k = −(n− 1)n(2n− 1)

6
− rn(n− 1).

By Theorem 3.5, [xn]d
(r)
n (x) = [xn] (1+2x)n

n!
= 2n

n!
, [xn−1]d

(r)
n (x) = [xn−1] (1+2x)n

n!
= 2n−1

(n−1)!
and

[xn−2]n!d(r)
n (x) =

(
n

2

)
2n−2 +

n−1∑

k=1

(k + 2r)k · 2k−1 · 2n−1−k = 2n−2n(n− 1)
(
r +

n + 1

3

)
(n ≥ 2).

This yields the result. ¤
Theorem 3.6. For any nonnegative integer n we have

(3.15) D(r)
n (x) = D(r+1)

n (x) + n(n− 1)D
(r+1)
n−2 (x) =

[n/2]∑

k=0

(
n

2k

)(−r

k

)
(2k)!D

(0)
n−2k(x).

Proof. By Theorem 3.4, for |t| < 1,

∞∑
n=0

D(r)
n (x)

tn

n!
= (1 + t2)

∞∑
n=0

D(r+1)
n (x)

tn

n!
= (1 + t2)−r

∞∑
n=0

D(0)
n (x)

tn

n!
.

Now comparing the coefficients of tn on both sides yields the result. ¤
Finally we state the linearization formula for D

(r)
m (x)D

(r)
n (x).
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Theorem 3.7. Let m and n be nonnegative integers. Then

(3.16) D(r)
m (x)D(r)

n (x) =

min{m,n}∑

k=0

(
m

k

)(
n

k

)
k!2

(
2r + m + n− k

k

)
D

(r)
m+n−2k(x).

Proof. This is immediate from Theorem 2.7 and Lemma 3.1. ¤
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