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Notation: N the set of positive integers,

[x] the greatest integer not exceeding x,

Kk the complete graph with k vertices, K1,n−1

the unique tree on n vertices with maximal

degree n − 1, Pn the path with n vertices,

G the complement of G, d(v) the degree

of the vertex v in a graph G, ∆(G) the max-

imal degree of G, d(u, v) the distance be-

tween u and v, α(G) the independence num-

ber of G, R(n, k) classical Ramsey numbers,

R(G1, G2) generalized Ramsey numbers,

ex(p;L) the maximal number of edges in a

simple graph of order p not containing L as a

subgraph.
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1. Classical Ramsey numbers

Frank Ramsey, 1903-1930, mathematics, eco-

nomics, philosophy.

Harary describes the birth of Ramsey theory in

his book where he writes the following:

The celebrated paper of Ramsey [in 1930] has

stimulated an enormous study in both graph

theory ..., and in other branches of mathemat-

ics .... Most certainly ’Ramsey theory’ is now

an established and growing branch of combina-

torics. Its results are often easy to state (after

they have been found) and difficult to prove;

they are beautiful when exact, and colourful.

Unsolved problems abound, and additional in-

teresting open questions arise faster than so-

lutions to the existing problems.
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Let n, k ≥ 2 be positive integers. The classical

Ramsey number R(n, k) is the minimum pos-

itive integer such that every graph on R(n, k)

vertices has a complete subgraph Kn or an in-

dependent set with k vertices.

Ramsey Theorem(1930): R(n, k) < +∞.

Up to now we only know the following exact

values of Ramsey numbers:

R(3,3) = 6, R(3,4) = 9, R(3,5) = 14,

R(3,6) = 18, R(3,7) = 23,

R(3,8) = 28(Ke-Min Zhang and B.D. Mckay,1992)

R(3,9) = 36, R(4,4) = 18, R(4,5) = 25.
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Erdös’ comments on R(5,5) and R(6,6).

Erdös asks us to imagine an alien force, vastly

more powerful than us, landing on Earth and

demanding the value of R(5, 5) or they will

destroy our planet. In that case, he claims,

we should marshal all our computers and all

our mathematicians and attempt to find the

value. But suppose, instead, that they ask for

R(6, 6). In that case, he believes, we should

attempt to destroy the aliens.
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The best constructive lower bound for R(3, k)

is due to N.Alon:

R(3, k) ≥ ck
√

k.

The best current bounds for R(3, k):

c
k2

log k
< R(3, k) < (1 + o(1))

k2

log k
.

(J.H.Kim, 1995) (Shearer,1991)

For R(5,5) it is known that 43 ≤ R(5,5) ≤ 49.

In 2005, Prof. Ke-Min Zhang told me he con-

jectured R(5,5) = 46 due to certain reasons.

Inspired by Zhang’s comments, I made the fol-

lowing conjecture.
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Conjecture 1 (Z.H.Sun, June 27, 2005) Let

{Ln} be the Lucas sequence defined by L0 =

2, L1 = 1 and Ln+1 = Ln + Ln−1(n ≥ 1). For

k ≥ 3 we have

R(k, k) = 4L2k−5 + 2.

Conjecture 1 is true for k = 3,4. By this

conjecture, we have R(5,5) = 46, R(6,6) =

118, R(7,7) = 306. It is known that 102 ≤
R(6,6) ≤ 165 and 205 ≤ R(7,7) ≤ 540.

Since L2(n+1) = 3L2n − L2(n−1), Conjecture 1

is equivalent to

R(k, k) = 3R(k − 1, k − 1)−R(k − 2, k − 2)− 2

for k ≥ 3. It is well known that

Ln =

(
1 +

√
5

2

)n

+

(
1−√5

2

)n

.
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Thus, by Conjecture 1,

R(k, k) = 4





(
1 +

√
5

2

)2k−5

−
(√

5− 1

2

)2k−5


 + 2

= 128





(
3 +

√
5

2

)k

−
(
3−√5

2

)k


 + 2.

Hence,

R(k, k) ∼ 128
(
3 +

√
5

2

)k
as k → +∞

and so

lim
k→+∞

R(k, k)
1
k =

3 +
√

5

2
.

Erdös Problem 1($100): Prove that lim
k→∞

R(k, k)
1
k

exists.

Erdös Problem 2($250): Assuming this limit

exists, what is it?
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We note that 3+
√

5
2 ≈ 2.618. On the other

hand, it is known that

(
√

2)k < R(k, k) ≤ 4k.

The best current bounds for R(k, k):
√

2

e
k(
√

2)k < R(k, k) < k
c√

log k
−1

2
(2k − 2

k − 1

)
.

Conjecture 2 For any positive integer n ≥ 2

we have

n− 1

R(3, n)− 1
>

n

R(3, n + 1)− 1

and so

R(3, n + 1) >
nR(3, n)− 1

n− 1
.

As 1
2 > 2

5 > 3
8 > 4

13 > 5
17 > 6

22 > 7
27 > 8

35, Con-

jecture 2 is true for n ∈ {2,3, . . . ,8}. If the con-

jecture is true, we have R(3,10) > 9R(3,9)−1
8 >

40. It is now known that 40 ≤ R(3,10) ≤ 43.
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Conjecture 3 For any positive integer n we

have 6 | R(3,3n) and

R(3,6n− 1) + R(3,6n + 1)

≡ R(3,6n− 2) + R(3,6n + 2) ≡ 1 (mod 3).

Conjecture 4 We have

R(3,10) = 41, R(3,12) = 54, R(3,14) = 77.

It is known that 52 ≤ R(3,12) ≤ 59.

2. The generalized Ramsey number R(n, r; k, s)

Definition 2.1. Let n, r, k, s be positive inte-

gers with n, k ≥ 2. We define the generalized

Ramsey number R(n, r; k, s) to be the smallest

positive integer p such that for every graph G

of order p, either G contains a subgraph in-

duced by n vertices with at most r − 1 edges,

or the complement G of G contains a subgraph

induced by k vertices with at most s−1 edges.
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Clearly R(n,1; k,1) = R(n, k). In 1981, Bolze
and Harborth [2] introduced the generalized
Ramsey number rm,n(s, t) = R(m,

(
m
2

)
− s +

1;n,
(
n
2

)
− t + 1) (1 ≤ s ≤

(
m
2

)
,1 ≤ t ≤

(
n
2

)
).

Theorem 2.1. Let n, r, k, s be positive integers
with n, k ≥ 2. Then

R(n, r; k, s) ≤ R(n− 1, r; k, s) + R(n, r; k − 1, s).

Moreover, the strict inequality holds when both
R(n− 1, r; k, s) and R(n, r; k − 1, s) are even.

Theorem 2.1 is a generalization of the classical
inequality R(n, k) ≤ R(n− 1, k) + R(n, k − 1).

By Definition 2.1, R(4,3; k,1) is the smallest
positive integer p such that for any graph G of
order p, either G has a subgraph induced by 4
vertices with at least 4 edges, or G contains
an independent set with k vertices. Every sub-
graph of (k−1)K3 induced by 4 vertices has at
most three edges and the independence num-
ber of (k − 1)K3 is k − 1. Thus R(4,3; k,1) >
3(k − 1).
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Conjecture 5 (Z.H.Sun, Feb.1990) For k =

1,2,3, . . . we have

R(4,3; k,1) = 3k − 2.

The conjecture has been confirmed for k ≤ 6.

R(4,3; 7,1) = 19 or 20.

Theorem 2.2. Let 0 < ε ≤ 1 and k ∈ N with

k ≥ 6. Then

R(4,3; k,1) <
(k + a)2

4− ε

and

R(4,3; k,1)−R(4,3; k − 1,1) < 1 +
k + a√
4− ε

,

where

a =
5− 1.5ε

2−√4− ε
− 6.
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Conjecture 6 (Z.H.Sun, Feb.1990) For n ≥
2 we have

n(n−1)/2∑

r=1

R(n, r; 3,1) = R(3,
n(n + 1)

2
− 1).

The conjecture is true for n = 2,3,4. Since

10∑

r=1

R(5, r; 3,1)

= 14 + 11 + 9 + 9 + 7 + 7 + 5 + 5 + 5 + 5 = 77,

we conjecture that R(3,14) = 77. It is known

that 66 ≤ R(3,14) ≤ 78.
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3. The value of R(n, n(n− 1)/2− r; k,1)

By Definition 1, R(n, n(n−1)/2− r; k,1) is the
smallest positive integer p ≥ max{n, k} such
that for any graph G of order p, either G has
a subgraph induced by n vertices with at least
r + 1 edges, or G contains an independent set
with k vertices.

Theorem 3.1 (Z.H.Sun, August 2008). Let
k, n, r ∈ N with k ≥ 2, n ≥ 4 and r ≤ n−2. Then

R(n, n(n− 1)/2− r; k,1)

=





max{n, k + r} if r ≤ n

2
− 1,

max{n,2k + [
2r − 2− n

3
]} if r >

n

2
− 1.

Putting r = n− 2 in Theorem 5 we have

R(n, n(n− 1)/2− n + 2; k,1)

= max{n,2k − 2 + [
n

3
]}

=

{
n if n ≥ 3k − 4,

2k − 2 + [
n

3
] if n < 3k − 4.
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Theorem 3.2. Let p, n, t ∈ N,2 ≤ t ≤ n
2+2 and

p ≥ n ≥ 4. If G is a simple graph of order p
in which every subgraph induced by n vertices
has at most n− t edges, then

α(G) ≥
[p− [n+4−2t

3 ]

2

]
+ 1.

Theorem 3.2 is a deep result, it can be proved
by induction on p. For p = n, n + 1 the result
can be proved by using Turán’s theorem.

Theorem 3.3. Let p, m, n,∈ N,1 ≤ m < n
2 − 1

and p ≥ n ≥ 3. If G is a graph of order p in
which every subgraph induced by n vertices has
at most m edges, then α(G) ≥ p−m.

Theorem 3.3 can also be proved by induction
on p. The proof of Theorem 3.3 is easier than
the proof of Theorem 3.2.

Using Theorems 3.2 and 3.3 we deduce the
formula for R(n, n(n− 1)− r; k,1) (Theorem
3.1)!
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§4. Evaluation of ex(p;Tn)

For a forbidden graph L, let ex(p;L) denote

the maximal number of edges in a graph of

order p not containing L as a subgraph.

The corresponding Turán’s problem is to eval-

uate ex(p;L). In 1941 Turán determined ex(p;Kk).

Let p, n ∈ N with p ≥ n. For a given tree Tn on

n vertices, it is difficult to determine the value

of ex(p;Tn).

Erdös-Sós conjecture: Let p ≥ n ≥ 3. For

any tree Tn on n vertices we have

ex(p;Tn) ≤ (n− 2)p

2
.

Let T ′n denote the unique tree on n vertices

with maximal degree n− 2.
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Sun’s Conjecture ([S3, 2012]). Let p, n ∈
N, p ≥ n ≥ 5, p = k(n − 1) + r, k ∈ N and

r ∈ {0,1, . . . , n − 2}. Let Tn 6= K1,n−1, T ′n be a

tree on n vertices.

(i) If r ∈ {0,1, n− 4, n− 3, n− 2}, then

ex(p;Tn) =
(n− 2)p− r(n− 1− r)

2
.

(ii) If 2 ≤ r ≤ n− 5, then

ex(p;Tn) ≤ (n− 2)(p− 1)− r − 1

2
.

Faudree and Schelp(1975): Let p, n ∈ N
with p ≥ n. Write p = k(n − 1) + r, where

k ∈ N and r ∈ {0,1, . . . , n− 2}. Then

ex(p;Pn) = k
(n− 1

2

)
+

(r

2

)
.

In the special case r = 0, the formula is due to

Erdös and Gallai (1959).

17



We note that

ex(p;Tn) ≥ e(kKn−1 ∪Kr)

=
(n− 2)p− r(n− 1− r)

2
= ex(p;Pn).

Theorem 4.1. Let p, n ∈ N with p ≥ n ≥ 2.

Then ex(p;K1,n−1) = [(n−2)p
2 ].

Theorem 4.2 ([SW, 2011]). Let p, n ∈ N
with p ≥ n ≥ 5. Let r ∈ {0,1, . . . , n − 2} be

given by p ≡ r (mod n− 1). Let T ′n denote the

unique tree on n vertices with maximal degree

n− 2. Then

ex(p;T ′n) =





[(n− 2)(p− 1)− r − 1

2

]

if n ≥ 7 and 2 ≤ r ≤ n− 4,
(n− 2)p− r(n− 1− r)

2
otherwise.
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Let T1
n , T2

n and T ∗n be the trees with n vertices

v0, v1, . . . , vn−1 and

E(T1
n ) = {v0v1, . . . , v0vn−3, v1vn−2, v2vn−1},

E(T2
n ) = {v0v1, . . . , v0vn−3, v1vn−2, v1vn−1},

E(T ∗n) = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1},
respectively.

Theorem 4.3 ([SWW, arxiv1110.2725]). Let

p, n ∈ N, p ≥ n ≥ 5 and p = k(n − 1) + r with

k ∈ N and r ∈ {0,1, . . . , n− 2}. Then

ex(p;T1
n ) = ex(p;T2

n )

=





[(n− 2)(p− 2)

2

]
− r − 1

if n ≥ 16 and 3 ≤ r ≤ n− 6

or if 13 ≤ n ≤ 15 and 4 ≤ r ≤ n− 7,
(n− 2)p− r(n− 1− r)

2
otherwise.
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Theorem 4.4 ([SW,2011]). Let p, n ∈ N
with p ≥ 2n−6 and n ≥ 7, and let p = k(n−1)+

r with k ∈ N and r ∈ {0,1, n−5, n−4, n−3, n−2}.
Then

ex(p;T ∗n)

=





(n− 2)(p− 2)

2
+ 1 if r = n− 5;

(n− 2)p− r(n− 1− r)

2
if r 6= n− 5.

Theorem 4.5 (Sun and Wang (JCNT)).

Let p, n ∈ N, p ≥ n ≥ 11, r ∈ {2,3, . . . , n − 6}
and p ≡ r (mod n−1). Let m ∈ {0,1, . . . , r+1}
be given by n− 3 ≡ m (mod r + 2). Then

ex(p;T ∗n) =





[
(n− 2)(p− 1)− 2r −m− 3

2
]

if r ≥ 4 and 2 ≤ m ≤ r − 1,
(n− 2)(p− 1)−m(r + 2−m)− r − 1

2
otherwise.

The proof of Theorems 4.4 and 4.5 is highly

technical!
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§5. Ramsey numbers for trees

Let G1 and G2 be two graphs. The Ramsey
number r(G1, G2) is the smallest positive in-
teger n such that, for every graph G with n
vertices, either G contains a copy of G1 or else
the complement G of G contains a copy of G2.

Let n ∈ N with n ≥ 6, and let Tn be a tree on
n vertices. If the Erdös-Sós conjecture is true,
it is known that r(Tn, Tn) ≤ 2n− 2.

Let m, n ∈ N. In 1973 Burr and Roberts showed
that for m, n ≥ 3,

r(K1,m−1, K1,n−1) =

{
m + n− 3 if 2 - mn,

m + n− 2 if 2 | mn.

In 1995, Guo and Volkmann proved that for
m, n ≥ 5,

r(T ′m, T ′n)

=





m + n− 3 if m− 1 | n− 3 or n− 1 | m− 3,

m + n− 5 if m = n ≡ 0 (mod 2),

m + n− 4 otherwise.
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Lemma 5.1. Let G1 and G2 be two graphs.

Suppose p ∈ N, p ≥ max{|V (G1)|, |V (G2)|} and

ex(p;G1)+ex(p;G2) <
(

p
2

)
. Then r(G1, G2) ≤ p.

Proof. Let G be a graph of order p. If e(G) ≤
ex(p;G1) and e(G) ≤ ex(p;G2), then

ex(p;G1) + ex(p;G2) ≥ e(G) + e(G) =
(p

2

)
.

This contradicts the assumption. Hence, ei-

ther e(G) > ex(p;G1) or e(G) > ex(p;G2). There-

fore, G contains a copy of G1 or G contains

a copy of G2. This shows that r(G1, G2) ≤
|V (G)| = p.

Lemma 5.2. Let k, p ∈ N with p ≥ k+1. Then

there exists a k−regular graph of order p if and

only if 2 | kp.
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Lemma 5.3. Let G1 and G2 be two graphs

with ∆(G1) = d1 ≥ 2 and ∆(G2) = d2 ≥ 2.

Then

(i) r(G1, G2) ≥ d1+d2−(1−(−1)(d1−1)(d2−1))/2.

(ii) Suppose that G1 is a connected graph of

order m and d1 < d2 ≤ m. Then r(G1, G2) ≥
2d2 − 1.

(iii) Suppose that G1 is a connected graph of

order m and d2 > m. If one of the conditions

(1) 2 | (d1 + d2 −m),

(2) d1 6= m− 1,

(3) G2 has two vertices u and v such that

d(v) = ∆(G2) and d(u, v) = 3

holds, then r(G1, G2) ≥ d1 + d2.
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Using Lemmas 5.1-5.3 and the above formulas

for ex(p;K1,n−1), ex(p;T ′n), ex(p;T1
n ), ex(p;T2

n )

and ex(p;T ∗n) we may deduce many formulas

for r(Tm, Tn), where Tm ∈ {Pm, K1,m−1, T ′m, T1
m,

T2
m, T ∗m}.

Theorem 5.1 ([S3,2012]). For n ≥ 8 we

have

r(Pn, T ∗n) = r(T ′n, T ∗n) = r(T ∗n, T ∗n) = 2n− 5.

Theorem 5.2 ([S3, 2012]). Suppose that

m, n ∈ N and n > m ≥ 7. Then

r(K1,m−1, T ∗n) =

{
m + n− 3 if m− 1 | (n− 3),

m + n− 4 if m− 1 - (n− 3).
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Theorem 5.3 ([S3]). For n ≥ (m− 3)2 +2 ≥
11 and Tm ∈ {Pm, , T ∗m} we have

r(Tm, T ∗n) =

{
n + m− 3 if m− 1 | n− 3,

n + m− 4 if m− 1 - n− 3.

Theorem 5.4 (Sun,Wang,Wu [SWW]). Let

n ∈ N and i, j ∈ {1,2}.

(i) If n is odd with n ≥ 17, then r(T i
n, T

j
n) =

2n− 7.

(ii) If n is even with n ≥ 12, then r(T i
n, T

j
n) =

2n− 6.

Theorem 5.5 ([SWW]). Let n ∈ N, n ≥ 8

and i ∈ {1,2}. Then

r(T i
n, T ′n) = r(T i

n, T ∗n) = 2n− 5.
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Theorem 5.6 ([SWW]). Let n ∈ N, n ≥ 17

and i ∈ {1,2}. Then

r(Pn, T i
n) = r(Pn−1, T i

n) = r(Pn−2, T i
n)

= r(Pn−3, T i
n) = 2n− 7.

Theorem 5.7 ([SWW]). Let m, n ∈ N, m ≥ 5,

n ≥ 8, n > m and j ∈ {1,2}. Then

r(K1,m−1, T j
n) = m + n− 4 or m + n− 5.

Moreover, if 2 | mn, then

r(K1,m−1, T j
n) = m + n− 4.

Theorem 5.8 ([SWW]). Let m, n ∈ N, n >

m ≥ 16 and i ∈ {1,2}. Then

r(T ′m, T i
n)

=





m + n− 4 if m− 1 | (n− 4),

m + n− 6 if n = m + 1 ≡ 1 (mod 2),

m + n− 5 otherwise.
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