Int. J. Number Theory 11(2015), 1301-1312.
Congruences for $q^{[p / 8]}(\bmod p)$ under the condition $4 n^{2} p=x^{2}+q y^{2}$

Zhi-Hong Sun
School of Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223001, PR China
zhihongsun@yahoo.com
http://www.hytc.edu.cn/xsjl/szh

Abstract

Let \mathbb{Z} be the set of integers, and let p be a prime of the form $4 k+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$. Let q be an integer of the form $4 k+3$. Assume that $4 n^{2} p=x^{2}+q y^{2}$ with $c, d, n, x, y \in \mathbb{Z}$ and $(q, n)=(x, y)=1$, where (a, b) is the greatest common divisor of integers a and b. In this paper we establish congruences for $(-q)^{[p / 8]}(\bmod p)$ in terms of c, d, n, x and y, where [.] is the greatest integer function. In particular, we establish a reciprocity law and give an explicit criterion for $(-11)^{[p / 8]}(\bmod p)$.

Keywords: Congruence; quartic Jacobi symbol; octic residue; reciprocity law; binary quadratic form

Mathematics Subject Classification 2010: Primary 11A15, Secondary 11A07, 11E25

1. Introduction

Let \mathbb{Z} be the set of integers, $i=\sqrt{-1}$ and $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$. For any positive odd number m and $a \in \mathbb{Z}$ let $\left(\frac{a}{m}\right)$ be the (quadratic) Jacobi symbol. For convenience we also define $\left(\frac{a}{1}\right)=1$ and $\left(\frac{a}{-m}\right)=\left(\frac{a}{m}\right)$. Then for any two odd numbers m and n with $m>0$ or $n>0$ we have the following general quadratic reciprocity law: $\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{m}\right)$.

For $a, b, c, d \in \mathbb{Z}$ with $2 \nmid c$ and $2 \mid d$, one can define the quartic Jacobi symbol $\left(\frac{a+b i}{c+d i}\right)_{4}$ as in [9,10,12]. From [6] we know that $\overline{\left(\frac{a+b i}{c+d i}\right)_{4}}=\left(\frac{a-b i}{c-d i}\right)_{4}=\left(\frac{a+b i}{c+d i}\right)_{4}^{-1}$, where \bar{x} means the complex conjugate of x. For $m, n \in \mathbb{Z}$ (not both zero) let (m, n) be the greatest common divisor of m and n. From $[9,11,12,13]$ we have the following properties of the quartic Jacobi symbol:
(1.1) ([12]) Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. Then

$$
\begin{aligned}
& \left(\frac{i}{a+b i}\right)_{4}=i^{\frac{a^{2}+b^{2}-1}{4}}=(-1)^{\frac{a^{2}-1}{8}} i^{\left(1-(-1)^{\frac{b}{2}}\right) / 2}, \\
& \left(\frac{1+i}{a+b i}\right)_{4}= \begin{cases}i^{\left((-1)^{\frac{a-1}{2}}(a-b)-1\right) / 4} & \text { if } 4 \mid b, \\
i^{\frac{(-1)^{\frac{a-1}{2}}(b-a)-1}{4}-1} & \text { if } 4 \mid b-2,\end{cases} \\
& \left(\frac{-1}{a+b i}\right)_{4}=(-1)^{\frac{b}{2}} \quad \text { and } \quad\left(\frac{2}{a+b i}\right)_{4}=i^{(-1)^{\frac{a-1}{2} \frac{b}{2}}=i^{\frac{a b}{2}} .}
\end{aligned}
$$

(1.2) ([12]) Let $a, b, c, d \in \mathbb{Z}$ with $2 \nmid a c, 2 \mid b$ and $2 \mid d$. If $a+b i$ and $c+d i$ are relatively prime elements of $\mathbb{Z}[i]$, we have the following general law of quartic reciprocity:

$$
\left(\frac{a+b i}{c+d i}\right)_{4}=(-1)^{\frac{b}{2} \cdot \frac{c-1}{2}+\frac{d}{2} \cdot \frac{a+b-1}{2}}\left(\frac{c+d i}{a+b i}\right)_{4}
$$

In particular, if $4 \mid b$, then $\left(\frac{a+b i}{c+d i}\right)_{4}=(-1)^{\frac{a-1}{2} \cdot \frac{d}{2}}\left(\frac{c+d i}{a+b i}\right)_{4}$.
(1.3) ([2], [9, Lemma 2.1]) Let $a, b, m \in \mathbb{Z}$ with $2 \nmid m$ and $\left(m, a^{2}+b^{2}\right)=1$. Then $\left(\frac{a+b i}{m}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{m}\right)$.
(1.4) ([11, Lemma 4.3]) Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. For any integer x with $\left(x, a^{2}+b^{2}\right)=1$ we have $\left(\frac{x^{2}}{a+b i}\right)_{4}=\left(\frac{x}{a^{2}+b^{2}}\right)$.
(1.5) ([13, Lemma 2.9]) Suppose $c, d, m, x \in \mathbb{Z}, 2 \nmid m, x^{2} \equiv c^{2}+d^{2}(\bmod m)$ and $(m, x(x+d))=1$. Then $\left(\frac{c+d i}{m}\right)_{4}=\left(\frac{x(x+d)}{m}\right)$.

For the history of quartic reciprocity laws, see $[6,7]$. Let p be a prime of the form $8 k+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Then q is an octic residue $(\bmod p)$ if and only if $q^{(p-1) / 8} \equiv 1(\bmod p)$. In the classical octic reciprocity laws (see $[1,7]$), we always write that $p=c^{2}+d^{2}=a^{2}+2 b^{2}(a, b, c, d \in \mathbb{Z})$.

For a prime $p=24 k+1=c^{2}+d^{2}=x^{2}+3 y^{2}$ with $k, c, d, x, y \in \mathbb{Z}$ and $c \equiv 1$ $(\bmod 4)$, by using cyclotomic numbers and Jacobi sums Hudson and Williams ([4,5]) proved that

$$
3^{\frac{p-1}{8}} \equiv\left\{\begin{array}{llll}
\pm 1 & (\bmod p) & \text { if } c \equiv \pm(-1)^{\frac{y}{4}} & (\bmod 3) \\
\pm \frac{d}{c} & (\bmod p) & \text { if } d \equiv \pm(-1)^{\frac{y}{4}} & (\bmod 3)
\end{array}\right.
$$

Let p be a prime of the form $4 k+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}, c \equiv 1(\bmod 4)$, $d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Suppose $q, x, y \in \mathbb{Z}, 2 \nmid q, p \nmid q$ and $p=x^{2}+q y^{2}$. Assume that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. In [13], using (1.1)-(1.5) the author deduced some congruences for $q^{[p / 8]}(\bmod p)$ in terms of c, d, x and y, where $[a]$ is the greatest integer not exceeding a.

In 1890 Stickelberger (see $[3,8]$) proved the following elegant theorem.
Theorem 1.1 Let $\mathbb{Q}(\sqrt{-q})$ be an imaginary quadratic field of discriminant $-q$ and class number h. Assume that $q \neq 3,4,8$. Let p be an odd prime such that $\left(\frac{-q}{p}\right)=1$. Then there are integers x, y, unique up to sign, for which $4 p^{h}=x^{2}+q y^{2}$ and $p \nmid x$.

For $q \in\{11,19,43,67,163\}$ and an odd prime p with $\left(\frac{p}{q}\right)=1$, it follows from Theorem 1.1 that $4 p=x^{2}+q y^{2}$ for some $x, y \in \mathbb{Z}$.

Inspired by [13] and Theorem 1.1, in this paper we establish congruences for $(-q)^{[p / 8]}(\bmod p)$ under the condition that $p=c^{2}+d^{2}$ and $4 n^{2} p=x^{2}+q y^{2}$, where $p \equiv 1(\bmod 4)$ is a prime and $q \equiv 3(\bmod 4)$. In particular, we establish a reciprocity law and give a useful and explicit criterion for $(-11)^{[p / 8]}(\bmod p)$, see Theorems 2.32.5.

2. Main results

Theorem 2.1. Let p be a prime of the form $4 m+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. Suppose that $q, n, x, y \in \mathbb{Z}, q \equiv 3(\bmod 4), p \nmid q, 4 n^{2} p=x^{2}+q y^{2}$,
$y \equiv 1(\bmod 4),(q, n)=(x, y)=1,(c, x+2 n d)=1$ and $\left(\frac{2 c n /(x+2 d n)+i}{q}\right)_{4}=i^{k}$. Then

$$
(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{lll}
(-1)^{\frac{x-1}{2} n+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{k-n}(\bmod p) & \text { if } 8 \mid p-1, \\
(-1)^{\frac{x+1}{2} n+\frac{x-1}{2}+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{k-n} \frac{y}{x}(\bmod p) & \text { if } 8 \mid p-5 .
\end{array}\right.
$$

Proof. Clearly $(n, x)^{2} \mid 4 n^{2} p-x^{2}$ and so $(n, x)^{2} \mid q y^{2}$. Since $(q, n)=(x, y)=1$ we get $(n, x)=1$. Note that $(y, n)^{2} \mid x^{2}$ and $(x, y)=1$. We also have $(y, n)=1$. Since $4 n^{2} p=x^{2}+q y^{2},(x, y)=1$ and $p \nmid q$ we see that $2 \nmid x$ and $p \nmid x$. Thus $\left(x,(2 c n)^{2}+(x+2 d n)^{2}\right)=\left(x, 4 n^{2} p\right)=1$. As $q y^{2}=(2 c n)^{2}+(x+2 d n)(2 d n-x)$ we see that $(q y, x+2 d n) \mid 4 c^{2} n^{2}$. Recall that $(q y, n)=1$ and $(c, x+2 d n)=1$. We get $(q y, x+2 d n)=1$. Also,

$$
\begin{aligned}
& \left(q y^{2},(2 c n)^{2}+(x+2 d n)^{2}\right) \\
& =\left((2 c n)^{2}+(x+2 d n)^{2}-2 x(x+2 d n),(2 c n)^{2}+(x+2 d n)^{2}\right) \\
& =\left(2 x(x+2 d n),(2 c)^{2}+(x+2 d n)^{2}\right) \\
& =\left(x+2 d n,(2 c)^{2}+(x+2 d n)^{2}\right)=\left(x+2 d n, 4 c^{2}\right)=1 .
\end{aligned}
$$

Since $n^{2} p=\frac{q+1}{4}+\frac{x^{2}-1}{4}+\frac{y^{2}-1}{4} q$ we see that $n \equiv n^{2} p \equiv \frac{q+1}{4}(\bmod 2)$. Now using (1.1)-(1.4) and the fact that $\left(\frac{a}{m}\right)_{4}=1$ for $a, m \in \mathbb{Z}$ with $2 \nmid m$ and $(a, m)=1$ we see that

$$
\begin{aligned}
i^{k} & =\left(\frac{2 c n+(x+2 d n) i}{q}\right)_{4}=\left(\frac{i}{q}\right)_{4}\left(\frac{x+2 d n-2 c n i}{q}\right)_{4} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} n}\left(\frac{q}{x+2 d n-2 c n i}\right)_{4} \\
& =(-1)^{\frac{q+1}{4}+n}\left(\frac{q y^{2}}{x+2 d n-2 c n i}\right)_{4}\left(\frac{y^{2}}{x+2 d n-2 c n i}\right)_{4} \\
& =\left(\frac{(x+2 d n)^{2}+(2 c n)^{2}-2 x(x+2 d n)}{x+2 d n-2 c n i}\right)_{4}\left(\frac{y}{(x+2 d n)^{2}+4 c^{2} n^{2}}\right) \\
& =\left(\frac{-2 x(x+2 d n)}{x+2 d n-2 c n i}\right)_{4}\left(\frac{y}{(x+2 d n)^{2}+4 c^{2} n^{2}}\right) \\
& =(-1)^{n}\left(\frac{2}{x+2 d n-2 c n i}\right)_{4}\left(\frac{x(x+2 d n)}{x+2 d n-2 c n i}\right)_{4}\left(\frac{y}{(x+2 d n)^{2}+4 c^{2} n^{2}}\right) \\
& =(-1)^{n} i^{(-1)^{(x+1) / 2} n}(-1)^{\frac{x(x+2 d n)-1}{2}}\left(\frac{x+2 d n-2 c n i}{x(x+2 d n)}\right)_{4}\left(\frac{(x+2 d n)^{2}+4 c^{2} n^{2}}{y}\right) \\
& =(-1)^{n} \cdot\left((-1)^{\frac{x+1}{2}} i\right)^{n}\left(\frac{2 n(d-c i)}{x}\right)_{4}\left(\frac{-2 c n i}{x+2 d n}\right)_{4}\left(\frac{2 x(x+2 d n)+q y^{2}}{y}\right) \\
& =(-1)^{\frac{x-1}{2} n} i^{n}\left(\frac{d-c i}{x}\right)_{4}\left(\frac{i}{x+2 d n}\right)_{4}\left(\frac{2 x(x+2 d n)}{y}\right) .
\end{aligned}
$$

Thus, applying (1.5) we see that

$$
\left.\begin{array}{rl}
i^{k} & =(-1)^{\frac{x-1}{2} n} i^{n}\left(\frac{-i}{x}\right)_{4}\left(\frac{c+d i}{x}\right)_{4}(-1)^{\frac{(x+2 d n)^{2}-1}{8}} \cdot(-1)^{\frac{y^{2}-1}{8}}\left(\frac{x(x+2 d n)}{y}\right) \\
& =(-1)^{\frac{x-1}{2} n} i^{n} \cdot(-1)^{\frac{x^{2}-1}{8}}\left(\frac{c+d i}{x}\right)_{4}(-1)^{\frac{x^{2}-1}{8}+\frac{d n}{2}} \cdot(-1)^{\frac{4 n^{2} p-x^{2}-q}{8}}\left(\frac{x}{2 n}\left(\frac{x}{2 n}+d\right)\right. \\
y
\end{array}\right)
$$

$$
\begin{aligned}
& =(-1)^{\frac{x-1}{2} n+\frac{d n}{2}} i^{n} \cdot(-1)^{\frac{x-1}{2} \cdot \frac{d}{2}}\left(\frac{x}{c+d i}\right)_{4}(-1)^{\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{c+d i}{y}\right)_{4} \\
& =(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}} i^{n}\left(\frac{x}{c+d i}\right)_{4}(-1)^{\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{y}{c+d i}\right)_{4} \\
& =(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}} i^{n} \cdot(-1)^{\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{x / y}{c+d i}\right)_{4}\left(\frac{y^{2}}{c+d i}\right)_{4} \\
& =(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}} i^{n} \cdot(-1)^{\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{x / y}{c+d i}\right)_{4}\left(\frac{y}{c^{2}+d^{2}}\right)
\end{aligned}
$$

As $\left(\frac{y}{c^{2}+d^{2}}\right)=\left(\frac{c^{2}+d^{2}}{y}\right)=\left(\frac{4 n^{2}\left(c^{2}+d^{2}\right)}{y}\right)=\left(\frac{x^{2}+q y^{2}}{y}\right)=\left(\frac{x^{2}}{y}\right)=1$, from the above we deduce that

$$
\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}} \cdot(-1)^{\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]} i^{k-n}
$$

Clearly $(-1)^{\frac{d}{2}}=(-1)^{\frac{p-1}{4}}$ and $i \equiv d / c(\bmod c+d i)$. Since $c+d i$ or $-c-d i$ is primary in $\mathbb{Z}[i]$, we have

$$
\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv\left(\frac{x / y}{c+d i}\right)_{4} \equiv(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{k-n} \quad(\bmod c+d i)
$$

Note that $(x / y)^{2} \equiv-q(\bmod p)$ and $p=(c+d i)(c-d i)$. We then have

$$
(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{r}
\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{k-n} \quad(\bmod p) \\
\text { if } 8 \mid p-1 \\
\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \frac{y}{x} \equiv(-1)^{\left(\frac{x-1}{2}+\frac{d}{2}\right) n+\frac{x-1}{2} \cdot \frac{d}{2}+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{k-n} \frac{y}{x} \quad(\bmod p) \\
\text { if } 8 \mid p-5
\end{array}\right.
$$

Since $(-1)^{\frac{d}{2}}=(-1)^{\frac{p-1}{4}}$ we deduce the result.
Theorem 2.2. Let p be a prime of the form $4 m+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. Suppose that $q, n, x, y \in \mathbb{Z}, q \equiv 3(\bmod 4), p \nmid q, 4 n^{2} p=x^{2}+q y^{2}$, $y \equiv 1(\bmod 4),(q, n)=(x, y)=1,(d, x+2 c n)=1$ and $\left(\frac{-2 d n /(x+2 c n)+i}{q}\right)_{4}=i^{k}$. Then

$$
(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{ll}
(-1)^{n+\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } 8 \mid p-1 \\
(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{d}{c}\right)^{k} \frac{y}{x} & (\bmod p)
\end{array} \quad \text { if } 8 \mid p-5 .\right.
$$

Proof. By the proof of Theorem 2.1, $2 \nmid x, p \nmid x$ and $(n, x y)=1$. Thus $\left(x,(2 d n)^{2}+\right.$ $\left.(x+2 c n)^{2}\right)=\left(x, 4 n^{2} p\right)=1$. As $q y^{2}=(2 d n)^{2}+(x+2 c n)(2 c n-x)$ we see that $(q y, x+2 c n) \mid(2 d n)^{2}$. Note that $(q y, n)=1$ and $(d, x+2 c n)=1$. We get $(q y, x+2 c n)=$ 1. Since $(n, x+2 c n)=(n, x)=1$ and $(d, x+2 c n)=1$ we see that

$$
\begin{aligned}
& \left(q y^{2},(2 d n)^{2}+(x+2 c n)^{2}\right) \\
& =\left((2 d n)^{2}+(x+2 c n)^{2}-2 x(x+2 c n),(2 d n)^{2}+(x+2 c n)^{2}\right) \\
& =\left(2 x(x+2 c n),(2 d n)^{2}+(x+2 c n)^{2}\right) \\
& =\left(x+2 c n,(2 d n)^{2}+(x+2 c n)^{2}\right)=\left(x+2 c n,(2 d n)^{2}\right)=1
\end{aligned}
$$

Now using (1.1)-(1.4) and the fact that $\left(\frac{a}{m}\right)_{4}=1$ for $a, m \in \mathbb{Z}$ with $2 \nmid m$ and $(a, m)=1$ we deduce that

$$
\begin{aligned}
i^{k} & =\left(\frac{-2 d n+(x+2 c n) i}{q}\right)_{4}=\left(\frac{i}{q}\right)_{4}\left(\frac{x+2 c n+2 d n i}{q}\right)_{4} \\
& =(-1)^{\frac{q^{2}-1}{8}}\left(\frac{q}{x+2 c n+2 d n i}\right)_{4}=(-1)^{\frac{q+1}{4}}\left(\frac{q y^{2}}{x+2 c n+2 d n i}\right)_{4}\left(\frac{y^{2}}{x+2 c n+2 d n i}\right)_{4} \\
& =(-1)^{n}\left(\frac{(x+2 c n)^{2}+(2 d n)^{2}-2 x(x+2 c n)}{x+2 c n+2 d n i}\right)_{4}\left(\frac{y}{(x+2 c n)^{2}+4 d^{2} n^{2}}\right) \\
& =(-1)^{n}\left(\frac{2}{x+2 c n+2 d n i}\right)_{4}\left(\frac{x(x+2 c n)}{x+2 c n+2 d n i}\right)_{4}\left(\frac{y}{(x+2 c n)^{2}+4 d^{2} n^{2}}\right) \\
& =(-1)^{n+\frac{d n}{2}}\left(\frac{x+2 c n+2 d n i}{x(x+2 c n)}\right)_{4}\left(\frac{(x+2 c n)^{2}+4 d^{2} n^{2}}{y}\right) \\
& =(-1)^{n+\frac{p-1}{4} n}\left(\frac{2 n(c+d i)}{x}\right)_{4}\left(\frac{2 d n i}{x+2 c n}\right)_{4}\left(\frac{2 x(x+2 c n)+q y^{2}}{y}\right) .
\end{aligned}
$$

Thus, applying (1.5) we see that

$$
\begin{aligned}
i^{k} & =(-1)^{n+\frac{p-1}{4} n}\left(\frac{c+d i}{x}\right)_{4}\left(\frac{i}{x+2 c n}\right)_{4}\left(\frac{2 x(x+2 c n)}{y}\right) \\
& =(-1)^{n+\frac{p-1}{4} n}\left(\frac{c+d i}{x}\right)_{4}(-1)^{\frac{(x+2 c n)^{2}-1}{8}}\left(\frac{2}{y}\right)\left(\frac{x(x+2 c n)}{y}\right) \\
& =(-1)^{n+\frac{p-1}{4} n}\left(\frac{c+d i}{x}\right)_{4}(-1)^{\frac{x^{2}-1}{8}+\frac{c n(x+c n)}{2}}\left(\frac{i}{y}\right)_{4}\left(\frac{\frac{x}{2 n}\left(\frac{x}{2 n}+c\right)}{y}\right) \\
& =(-1)^{n+\frac{p-1}{4} n} \cdot(-1)^{\frac{x-1}{2} \cdot \frac{d}{2}}\left(\frac{x}{c+d i}\right)_{4}(-1)^{\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}\left(\frac{i}{y}\right)_{4}\left(\frac{d+c i}{y}\right)_{4}} \\
& =(-1)^{\left(1+\frac{p-1}{4}\right) n+\frac{p-1}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{x}{c+d i}\right)_{4}\left(\frac{-c+d i}{y}\right)_{4} \\
& =(-1)^{\left(1+\frac{p-1}{4}\right) n+\frac{p-1}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{x}{c+d i}\right)_{4}\left(\frac{c+d i}{y}\right)_{4}^{-1} \\
& =(-1)^{\left(1+\frac{p-1}{4}\right) n+\frac{p-1}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{x}{c+d i}\right)_{4}\left(\frac{y}{c+d i}\right)_{4}^{-1} \\
& =(-1)^{\left(1+\frac{p-1}{4}\right) n+\frac{p-1}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{x / y}{c+d i}\right)_{4} .
\end{aligned}
$$

Clearly $i \equiv d / c(\bmod c+d i)$. Since $c+d i$ or $-c-d i$ is primary in $\mathbb{Z}[i]$, we have

$$
\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv\left(\frac{x / y}{c+d i}\right)_{4} \equiv(-1)^{\left(1+\frac{p-1}{4}\right) n+\frac{p-1}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{d}{c}\right)^{k} \quad(\bmod c+d i)
$$

Note that $(x / y)^{2} \equiv-q(\bmod p)$ and $p=(c+d i)(c-d i)$. We then have

$$
(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{ll}
\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv(-1)^{n+\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}}\left(\frac{d}{c}\right)^{k} & (\bmod p)
\end{array} \quad \text { if } 8 \mid p-1, ~\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \frac{y}{x} \equiv(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}+\frac{n(x+n)}{2}}\left(\frac{d}{c}\right)^{k} \frac{y}{x}(\bmod p) \quad \text { if } 8 \mid p-5 .\right.
$$

This is the result.

Theorem 2.3. Let p be a prime of the form $4 k+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. Let q be a prime of the form $4 k+3$. Suppose that $4 n^{2} p=x^{2}+q y^{2}$, $n, x, y \in \mathbb{Z}, y \equiv 1(\bmod 4)$ and $(q, n)=(x, y)=1$. Assume that $(c, x+2 d n)=1$ or $(d, x+2 c n)=1$. Then for $m \in \mathbb{Z}$,

$$
\begin{aligned}
& (-q)^{\left[\frac{p}{8}\right]} \equiv \begin{cases}(-1)^{\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}}\left(\frac{d}{c}\right)^{m} & (\bmod p) \\
(-1)^{\frac{n(x+n)}{2}+\left[\frac{x}{4}\right]+n}\left(\frac{d}{c}\right)^{m} \frac{y}{x}(\bmod p) & \text { if } 8 \mid p-5\end{cases} \\
& \Longleftrightarrow\left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \equiv i^{m} \quad(\bmod q) .
\end{aligned}
$$

Proof. Clearly $q \nmid x$ and x is odd. We first assume $(c, x+2 d n)=1$. By the proof of Theorem $2.1,\left(q,(x+2 d n)\left((2 c n)^{2}+(x+2 d n)^{2}\right)\right)=1$. It is easily seen that $\frac{2 c n /(x+2 d n)-i}{2 c n /(x+2 d n)+i}=\frac{2 c n-(x+2 d n) i}{2 c n+(x+2 d n) i} \equiv \frac{2 n(c-d i)}{i x}(\bmod q)$. Thus, for $m \in \mathbb{Z}$ applying [9, Theorem 2.3(ii)] we get

$$
\begin{aligned}
& \left(\frac{2 c n /(x+2 d n)+i}{q}\right)_{4}=i^{m-\frac{q+1}{4}} \\
& \Leftrightarrow\left(\frac{\frac{2 c n}{x+2 d n}-i}{\frac{2 c n}{x+2 d n}+i}\right)^{\frac{q+1}{4}} \equiv i^{m-\frac{q+1}{4}} \quad(\bmod q) \Leftrightarrow\left(\frac{2 n(c-d i)}{i x}\right)^{\frac{q+1}{4}} \equiv i^{m-\frac{q+1}{4}} \quad(\bmod q) \\
& \Leftrightarrow\left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \equiv i^{m} \quad(\bmod q)
\end{aligned}
$$

Now applying Theorem 2.1 we derive that

$$
\begin{aligned}
& \left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \equiv i^{m} \quad(\bmod q) \\
& \Leftrightarrow(-q)^{\left[\frac{p}{8}\right]} \equiv \begin{cases}(-1)^{\frac{x-1}{2} n+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{m-\frac{q+1}{4}-n}(\bmod p) & \text { if } 8 \mid p-1 \\
(-1)^{\frac{x+1}{2} n+\frac{x-1}{2}+\frac{x^{2}-1}{8}+\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{m-\frac{q+1}{4}-n} \frac{y}{x} \quad(\bmod p) & \text { if } 8 \mid p-5\end{cases}
\end{aligned}
$$

Since $n^{2} p=\frac{q+1}{4}+\frac{x^{2}-1}{4}+\frac{y^{2}-1}{4} q$ we see that $n \equiv n^{2} p \equiv \frac{q+1}{4}(\bmod 2)$. Hence, $(-1)^{\left[\frac{q+1}{8}\right]}\left(\frac{d}{c}\right)^{-\frac{q+1}{4}-n} \equiv(-1)^{\left[\frac{q+1}{8}\right]+\frac{1}{2}\left(\frac{q+1}{4}+n\right)}=(-1)^{\left[\frac{n+1}{2}\right]}(\bmod p)$. Therefore,

$$
\begin{aligned}
& \left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \equiv i^{m} \quad(\bmod q) \\
& \Leftrightarrow(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{rll}
(-1)^{\frac{x-1}{2} n+\frac{x^{2}-1}{8}+\left[\frac{n+1}{2}\right]}\left(\frac{d}{c}\right)^{m} \\
=(-1)^{\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}}\left(\frac{d}{c}\right)^{m} & (\bmod p) & \text { if } 8 \mid p-1, \\
(-1)^{\frac{x+1}{2} n+\frac{x-1}{2}+\frac{x^{2}-1}{8}+\left[\frac{n+1}{2}\right]}\left(\frac{d}{c}\right)^{m} \frac{y}{x} & \\
=(-1)^{\frac{n(x+n)}{2}+\left[\frac{x}{4}\right]+n}\left(\frac{d}{c}\right)^{m} \frac{y}{x}(\bmod p) & \text { if } 8 \mid p-5 .
\end{array}\right.
\end{aligned}
$$

Now we assume $(d, x+2 c n)=1$. By the proof of Theorem $2.2,(q, x+2 c n)=$ $\left(q,(2 d n)^{2}+(x+2 c n)^{2}\right)=1$. It is easily seen that $\frac{2 d n+(x+2 c n) i}{2 d n-(x+2 c n) i} \equiv \frac{2 n(c-d i)}{-x}(\bmod q)$.

Thus, for $m \in \mathbb{Z}$ applying [9, Theorem 2.3(ii)] we get

$$
\begin{aligned}
& \left(\frac{-2 d n /(x+2 c n)+i}{q}\right)_{4}=i^{m-\frac{q+1}{2}} \Leftrightarrow\left(\frac{-\frac{2 d n}{x+2 c n}-i}{-\frac{2 d n}{x+2 c n}+i}\right)^{\frac{q+1}{4}} \equiv i^{m-\frac{q+1}{2}} \quad(\bmod q) \\
& \Leftrightarrow\left(\frac{2 d n+(x+2 c n) i}{2 d n-(x+2 c n) i}\right)^{\frac{q+1}{4}} \equiv i^{m-\frac{q+1}{2}} \quad(\bmod q) \\
& \Leftrightarrow\left(\frac{2 n(c-d i)}{-x}\right)^{\frac{q+1}{4}} \equiv i^{m-\frac{q+1}{2}} \quad(\bmod q) \Leftrightarrow\left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \equiv i^{m} \quad(\bmod q) .
\end{aligned}
$$

Note that $\left(\frac{d}{c}\right)^{-\frac{q+1}{2}} \equiv(-1)^{\frac{q+1}{4}}=(-1)^{n}(\bmod p)$ and $(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}}=(-1)^{\left[\frac{x}{4}\right]}$. From the above and Theorem 2.2 (with $k=m-\frac{q+1}{2}$) we deduce the result, which completes the proof.

Example 2.4. Let $n=p=29$ and $q=59$. As $29=5^{2}+2^{2}$ and $4 \cdot 29^{3}=$ $159^{2}+59 \cdot 35^{2}$, we have $c=5, d=2, x=159, y=-35$ and $(d, x+2 c n)=1$. It is clear that

$$
\left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}}=\left(\frac{58(5-2 i)}{159}\right)^{15} \equiv(-3+13 i)^{15} \equiv(19-17 i)^{5} \equiv i \quad(\bmod 59)
$$

and

$$
(-q)^{\left[\frac{p}{8}\right]}=(-59)^{3} \equiv-1 \equiv(-1)^{\frac{159+29}{2}+\left[\frac{159}{4}\right]+29} \cdot \frac{2}{5} \cdot \frac{-35}{159} \quad(\bmod 29)
$$

Thus, Theorem 2.3 is true in this case.
Corollary 2.5. Let p be a prime of the form $12 k+1$ and so $p=c^{2}+d^{2}=$ $\frac{1}{4}\left(x^{2}+27 y^{2}\right)$ with $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv y \equiv 1(\bmod 4)$. Assume $(c, x+2 d)=1$ or $(d, x+2 c)=1$. Then

$$
(-3)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{lll}
\pm(-1)^{\left[\frac{x}{4}\right]} \quad(\bmod p) & \text { if } p \equiv 1 \quad(\bmod 8) \text { and } x \equiv \pm c & (\bmod 3) \\
\mp(-1)^{\left[\frac{x}{4}\right]} \frac{d}{c}(\bmod p) & \text { if } p \equiv 1 \quad(\bmod 8) \text { and } x \equiv \pm d \quad(\bmod 3) \\
\pm(-1)^{\frac{x^{2}-1}{8}} \frac{3 y}{x} \quad(\bmod p) & \text { if } p \equiv 5 \quad(\bmod 8) \text { and } x \equiv \pm c \quad(\bmod 3) \\
\mp(-1)^{\frac{x^{2}-1}{8}} \frac{3 d y}{c x} \quad(\bmod p) & \text { if } p \equiv 5 \quad(\bmod 8) \text { and } x \equiv \pm d \quad(\bmod 3)
\end{array}\right.
$$

Proof. If $x \equiv \pm c(\bmod 3)$, then $d^{2}=p-c^{2} \equiv 4 p-x^{2}=27 y^{2} \equiv 0(\bmod 3)$ and so $3 \mid d$. Thus, $\frac{2(c-d i)}{x} \equiv \frac{2 c}{x} \equiv \pm 2 \equiv \mp 1(\bmod 3)$. If $x \equiv \pm d(\bmod 3)$, then $c^{2}=p-d^{2} \equiv 4 p-x^{2}=27 y^{2} \equiv 0(\bmod 3)$ and so $3 \mid c$. Thus, $\frac{2(c-d i)}{x} \equiv \frac{-2 d i}{x} \equiv \pm i$ $(\bmod 3)$. Now taking $q=3, n=1$ and replacing y with $-3 y$ in Theorem 2.3 we deduce the result.

Corollary 2.6. Suppose that the conditions in Theorem 2.3 hold. If $q \mid c d$, then $(-q)^{\left[\frac{p}{8}\right]}$

$$
\equiv\left\{\begin{array}{llll}
(-1)^{\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}} \cdot(\pm 1)^{n} & (\bmod p) & \text { if } 8 \mid p-1 \text { and } x \equiv \pm 2 c n & (\bmod q) \\
(-1)^{\frac{n(x+n)}{2}+\frac{x^{2}-1}{8}}\left(\mp \frac{d}{c}\right)^{\frac{q+1}{4}} & (\bmod p) & \text { if } 8 \mid p-1 \text { and } x \equiv \pm 2 d n & (\bmod q) \\
(-1)^{\frac{n(x+n)}{2}+\left[\frac{x}{4}\right]} \cdot(\mp 1)^{n} \frac{y}{x} & (\bmod p) & \text { if } 8 \mid p-5 \text { and } x \equiv \pm 2 c n & (\bmod q) \\
(-1)^{\frac{n(x+n)}{2}+\left[\frac{x}{4}\right]}\left(\pm \frac{d}{c}\right)^{\frac{q+1}{4}} \frac{y}{x} & (\bmod p) & \text { if } 8 \mid p-5 \text { and } x \equiv \pm 2 d n & (\bmod q)
\end{array}\right.
$$

Proof. Since $4 n^{2}\left(c^{2}+d^{2}\right)=x^{2}+q y^{2}$ we see that $q \mid d \Leftrightarrow x \equiv \pm 2 c n(\bmod q)$ and $q \mid c \Leftrightarrow x \equiv \pm 2 d n(\bmod q)$. If $x \equiv \pm 2 c n(\bmod q)$, then $\frac{2 n(c-d i)}{x} \equiv \pm 1(\bmod q)$. If $x \equiv \pm 2 d n(\bmod q)$, then $\frac{2 n(c-d i)}{x} \equiv \mp i(\bmod q)$. Now applying Theorem 2.3 and the fact $\frac{q+1}{4} \equiv n(\bmod 2)$ we deduce the result.

Theorem 2.7. Let p be a prime of the form $4 k+1$ and so $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. Let q be a prime of the form $8 k+7$. Suppose that $4 n^{2} p=x^{2}+q y^{2}$, $n, x, y \in \mathbb{Z}, y \equiv 1(\bmod 4)$ and $(q, n)=(x, y)=1$. Assume that $(c, x+2 d n)=1$ or $(d, x+2 c n)=1$. Then for $m \in \mathbb{Z}$,

$$
\begin{aligned}
& (-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{lll}
(-1)^{\frac{n}{2}+\frac{x^{2}-1}{8}}\left(\frac{d}{c}\right)^{m} & (\bmod p) & \text { if } 8 \mid p-1 \\
(-1)^{\frac{n}{2}+\left[\frac{x}{4}\right]}\left(\frac{d}{c}\right)^{m} \frac{y}{x} & (\bmod p) & \text { if } 8 \mid p-5
\end{array}\right. \\
& \Longleftrightarrow\left(\frac{c-d i}{c+d i}\right)^{\frac{q+1}{8}} \equiv i^{m} \quad(\bmod q)
\end{aligned}
$$

Proof. Since $4 n^{2} p=x^{2}+q y^{2} \equiv 1+7 \equiv 0(\bmod 8)$ we see that $2 \mid n$. Observe that

$$
\left(\frac{c-d i}{c+d i}\right)^{\frac{q+1}{8}}=\frac{(2 n(c-d i))^{\frac{q+1}{4}}}{\left(4 n^{2} p\right)^{\frac{q+1}{8}}} \equiv\left(\frac{2 n(c-d i)}{x}\right)^{\frac{q+1}{4}} \quad(\bmod q)
$$

The result follows from Theorem 2.3 immediately.
Remark 2.8 Under the conditions in Theorem 2.7, for $d \not \equiv 0(\bmod q)$ we see that $(-q)^{[p / 8]}(\bmod p)$ depends only on $c / d(\bmod q)$.

Example 2.9 Let $p=257, n=2$ and $q=31$. As $257=1^{2}+16^{2}$ and $16 \cdot 257=$ $19^{2}+31 \cdot 11^{2}$, we have $c=1, d=16, x=19$ and $y=-11$. Since

$$
\left(\frac{1-16 i}{1+16 i}\right)^{4}=\left(\frac{-255-32 i}{-255+32 i}\right)^{2} \equiv\left(\frac{7+i}{7-i}\right)^{2}=\frac{24+7 i}{24-7 i} \equiv \frac{-1+i}{-1-i}=i^{3} \quad(\bmod 31)
$$

by Theorem 2.7 we have

$$
(-31)^{\left[\frac{257}{8}\right]} \equiv(-1)^{\frac{2}{2}+\frac{19^{2}-1}{8}}\left(\frac{16}{1}\right)^{3}=16^{2} \cdot 16 \equiv-16 \quad(\bmod 257)
$$

Actually $(-31)^{\left[\frac{257}{8}\right]}=31^{32} \equiv 120^{8} \equiv 8^{4} \equiv-16(\bmod 257)$.
Corollary 2.10. Suppose that the conditions in Theorem 2.7 hold. If $c \equiv \pm d$ $(\bmod q)$, then

$$
(-q)^{\left[\frac{p}{8}\right]} \equiv\left\{\begin{array}{lll}
(-1)^{\frac{n}{2}+\frac{x^{2}-1}{8}}\left(\mp \frac{d}{c}\right)^{\frac{q+1}{8}} & (\bmod p) & \text { if } 8 \mid p-1 \\
(-1)^{\frac{n}{2}+\left[\frac{x}{4}\right]}\left(\mp \frac{d}{c}\right)^{\frac{q+1}{8}} \frac{y}{x} & (\bmod p) & \text { if } 8 \mid p-5
\end{array}\right.
$$

Proof. Since $c \equiv \pm d(\bmod q)$ we see that $\frac{c-d i}{c+d i} \equiv \frac{ \pm 1-i}{ \pm 1+i}=\mp i$. Now applying Theorem 2.7 we deduce the result.

Theorem 2.11. Let p be a prime of the form $4 k+1, p \equiv 1,3,4,5,9(\bmod 11)$ and so $p=c^{2}+d^{2}=\frac{1}{4}\left(x^{2}+11 y^{2}\right)$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}\left(2 \nmid d_{0}\right)$, $y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume that $(c, x+2 d)=1$ or $\left(d_{0}, x+2 c\right)=1$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
(-11)^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\left[\frac{x}{4}\right]} & (\bmod p) \\ \left. \pm(-1)^{\left[\frac{x}{4}\right]} \frac{d}{c} 2 \nmid \bmod p\right) & \text { if } 2 \nmid x \text { and } x \equiv \pm 4 c, \pm 9 c \quad(\bmod 11), \\ \mp(-1)^{\left[\frac{x}{8}\right]+\frac{y}{8}}(\bmod p) & \text { if } 2 \mid x \text { and } x \equiv \pm 4 c, \pm 9 c \quad(\bmod 11), \\ \mp(-1)^{\left[\frac{x}{8}\right]+\frac{y}{8}} \frac{d}{c}(\bmod p) & \text { if } 2 \mid x \text { and } x \equiv \pm 4 d, \pm 9 d \quad(\bmod 11) .\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
(-11)^{\frac{p-5}{8}} \equiv\left\{\begin{array}{llll}
\mp(-1)^{\frac{x^{2}-1}{8}} \frac{y}{x} & (\bmod p) & \text { if } 2 \nmid x \text { and } x \equiv \pm 4 c, \pm 9 c & (\bmod 11), \\
\mp(-1)^{\frac{x^{2}-1}{8}} \frac{d y}{c x} & (\bmod p) & \text { if } 2 \nmid x \text { and } x \equiv \pm 4 d, \pm 9 d & (\bmod 11), \\
\mp(-1)^{\frac{p-5}{8} \frac{y}{x}}(\bmod p) & \text { if } 2 \mid x \text { and } x \equiv \pm 4 c, \pm 9 c & (\bmod 11), \\
\mp(-1)^{\frac{p-5}{8}} \frac{d y}{c x} & (\bmod p) & \text { if } 2 \mid x \text { and } x \equiv \pm 4 d, \pm 9 d & (\bmod 11) .
\end{array}\right.
$$

Proof. As $\left(\frac{x}{2}\right)^{2} \equiv c^{2}+d^{2}(\bmod 11)$ and $(c-d i)^{3}=c\left(c^{2}-3 d^{2}\right)+d\left(d^{2}-3 c^{2}\right) i$, we see that

$$
\left(\frac{2(c-d i)}{x}\right)^{3} \equiv\left\{\begin{array}{llll}
\mp 1 & (\bmod 11) & \text { if } x \equiv \pm 4 c, \pm 9 c & (\bmod 11), \\
\mp i & (\bmod 11) & \text { if } x \equiv \pm 4 d, \pm 9 d & (\bmod 11) .
\end{array}\right.
$$

When $2 \nmid x$, from the above and Theorem 2.3 (with $n=1$ and $q=11$) we deduce the result. When $2 \mid x$ and $p \equiv 1(\bmod 8)$, we have $8 \mid y$ and so $(-1)^{\frac{p-1}{8}+\frac{x / 2-1}{2}}=$ $(-1)^{\frac{(x / 2)^{2}-1}{8}+\frac{x / 2-1}{2}}=(-1)^{\left[\frac{x}{8}\right]}$. Thus, applying the above and [13, Theorem 4.1 (with $q=11$)] we obtain the result.

Example 2.12. Let $p=449=(-7)^{2}+20^{2}$. Then $4 p=39^{2}+11 \cdot 5^{2}$. Since $(-7,39+2 \cdot 20)=1$ and $39 \equiv-4 \cdot(-7)(\bmod 11)$, by Theorem 2.11(i) we have $(-11)^{\frac{449-1}{8}} \equiv-(-1)^{\left[\frac{39}{4}\right]}=1(\bmod 449)$. Actually, $12^{8} \equiv-11(\bmod 449)$.

Acknowledgment

The author is supported by the National Natural Science Foundation of China (grant no. 11371163).

References

[1] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
[2] R.J. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 10691081.
[3] R.J. Evans, Classical congruences for parameters in binary quadratic forms, Finite Fields Appl. 7(2001), 110-124.
[4] R.H. Hudson, Diophantine determinations of $3^{(p-1) / 8}$ and $5^{(p-1) / 4}$, Pacific J. Math. 111 (1984), 49-55.
[5] R.H. Hudson and K.S. Williams, Some new residuacity criteria, Pacific J. Math. 91 (1980), 135-143.
[6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, New York, 1990.
[7] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
[8] L. Stickelberger, $̈$ Über eine Verallgemeinerung der Kreistheilung, Math. Ann. 37(1890), 321-367.
[9] Z.H. Sun, Supplements to the theory of quartic residues, Acta Arith. 97(2001), 361-377.
[10] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory $113(2005), 10-52$.
[11] Z.H. Sun, On the quadratic character of quadratic units, J. Number Theory 128 (2008), 1295-1335.
[12] Z.H. Sun, Quartic, octic residues and Lucas sequences, J. Number Theory 129(2009), 499-550.
[13] Z.H. Sun, Congruences for $q^{[p / 8]}(\bmod p)$, Acta Arith. 159 (2013), 1-25.

