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Abstract

Let Z be the set of integers, and let p be a prime of the form 4k+1 and so p = c2+d2

with c, d ∈ Z. Let q be an integer of the form 4k+3. Assume that 4n2p = x2+qy2 with
c, d, n, x, y ∈ Z and (q, n) = (x, y) = 1, where (a, b) is the greatest common divisor of
integers a and b. In this paper we establish congruences for (−q)[p/8] (mod p) in terms
of c, d, n, x and y, where [·] is the greatest integer function. In particular, we establish
a reciprocity law and give an explicit criterion for (−11)[p/8] (mod p).
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1. Introduction

Let Z be the set of integers, i =
√−1 and Z[i] = {a + bi | a, b ∈ Z}. For any

positive odd number m and a ∈ Z let ( a
m) be the (quadratic) Jacobi symbol. For

convenience we also define (a
1 ) = 1 and ( a

−m) = ( a
m). Then for any two odd numbers

m and n with m > 0 or n > 0 we have the following general quadratic reciprocity law:
(m

n ) = (−1)
m−1

2
·n−1

2 ( n
m).

For a, b, c, d ∈ Z with 2 - c and 2 | d, one can define the quartic Jacobi symbol(
a+bi
c+di

)
4

as in [9,10,12]. From [6] we know that
(

a+bi
c+di

)
4

=
(

a−bi
c−di

)
4

=
(

a+bi
c+di

)−1

4
, where

x̄ means the complex conjugate of x. For m,n ∈ Z (not both zero) let (m,n) be the
greatest common divisor of m and n. From [9,11,12,13] we have the following properties
of the quartic Jacobi symbol:

(1.1) ([12]) Let a, b ∈ Z with 2 - a and 2 | b. Then

( i

a + bi

)
4

= i
a2+b2−1

4 = (−1)
a2−1

8 i(1−(−1)
b
2 )/2,

( 1 + i

a + bi

)
4

=





i((−1)
a−1
2 (a−b)−1)/4 if 4 | b,

i
(−1)

a−1
2 (b−a)−1

4
−1 if 4 | b− 2,

( −1
a + bi

)
4

= (−1)
b
2 and

( 2
a + bi

)
4

= i(−1)
a−1
2 b

2 = i
ab
2 .
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(1.2) ([12]) Let a, b, c, d ∈ Z with 2 - ac, 2 | b and 2 | d. If a + bi and c + di
are relatively prime elements of Z[i], we have the following general law of quartic
reciprocity: (a + bi

c + di

)
4

= (−1)
b
2
· c−1

2
+ d

2
·a+b−1

2

(c + di

a + bi

)
4
.

In particular, if 4 | b, then
(

a+bi
c+di

)
4

= (−1)
a−1
2
· d
2

(
c+di
a+bi

)
4
.

(1.3) ([2], [9, Lemma 2.1]) Let a, b, m ∈ Z with 2 - m and (m,a2 + b2) = 1. Then
(a+bi

m )24 = (a2+b2

m ).
(1.4) ([11, Lemma 4.3]) Let a, b ∈ Z with 2 - a and 2 | b. For any integer x with

(x, a2 + b2) = 1 we have ( x2

a+bi)4 = ( x
a2+b2

).
(1.5) ([13, Lemma 2.9]) Suppose c, d, m, x ∈ Z, 2 - m, x2 ≡ c2 + d2 (mod m) and

(m,x(x + d)) = 1. Then ( c+di
m )4 = (x(x+d)

m ).
For the history of quartic reciprocity laws, see [6,7]. Let p be a prime of the form

8k + 1, q ∈ Z, 2 - q and p - q. Then q is an octic residue (mod p) if and only if
q(p−1)/8 ≡ 1 (mod p). In the classical octic reciprocity laws (see [1,7]), we always write
that p = c2 + d2 = a2 + 2b2 (a, b, c, d ∈ Z).

For a prime p = 24k + 1 = c2 + d2 = x2 + 3y2 with k, c, d, x, y ∈ Z and c ≡ 1
(mod 4), by using cyclotomic numbers and Jacobi sums Hudson and Williams ([4,5])
proved that

3
p−1
8 ≡

{±1 (mod p) if c ≡ ±(−1)
y
4 (mod 3),

±d

c
(mod p) if d ≡ ±(−1)

y
4 (mod 3).

Let p be a prime of the form 4k + 1 and so p = c2 + d2 with c, d ∈ Z, c ≡ 1 (mod 4),
d = 2rd0 and d0 ≡ 1 (mod 4). Suppose q, x, y ∈ Z, 2 - q, p - q and p = x2 + qy2.
Assume that (c, x + d) = 1 or (d0, x + c) = 1. In [13], using (1.1)-(1.5) the author
deduced some congruences for q[p/8] (mod p) in terms of c, d, x and y, where [a] is the
greatest integer not exceeding a.

In 1890 Stickelberger (see [3,8]) proved the following elegant theorem.
Theorem 1.1 Let Q(

√−q) be an imaginary quadratic field of discriminant −q and
class number h. Assume that q 6= 3, 4, 8. Let p be an odd prime such that (−q

p ) = 1.
Then there are integers x, y, unique up to sign, for which 4ph = x2 + qy2 and p - x.

For q ∈ {11, 19, 43, 67, 163} and an odd prime p with (p
q ) = 1, it follows from

Theorem 1.1 that 4p = x2 + qy2 for some x, y ∈ Z.
Inspired by [13] and Theorem 1.1, in this paper we establish congruences for

(−q)[p/8] (mod p) under the condition that p = c2 + d2 and 4n2p = x2 + qy2, where
p ≡ 1 (mod 4) is a prime and q ≡ 3 (mod 4). In particular, we establish a reciprocity
law and give a useful and explicit criterion for (−11)[p/8] (mod p), see Theorems 2.3-
2.5.

2. Main results

Theorem 2.1. Let p be a prime of the form 4m+1 and so p = c2+d2 with c, d ∈ Z
and c ≡ 1 (mod 4). Suppose that q, n, x, y ∈ Z, q ≡ 3 (mod 4), p - q, 4n2p = x2 + qy2,
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y ≡ 1 (mod 4), (q, n) = (x, y) = 1, (c, x + 2nd) = 1 and (2cn/(x+2dn)+i
q )4 = ik. Then

(−q)[
p
8
] ≡





(−1)
x−1
2

n+x2−1
8

+[ q+1
8

](
d

c
)k−n (mod p) if 8 | p− 1,

(−1)
x+1
2

n+x−1
2

+x2−1
8

+[ q+1
8

](
d

c
)k−n y

x
(mod p) if 8 | p− 5.

Proof. Clearly (n, x)2 | 4n2p − x2 and so (n, x)2 | qy2. Since (q, n) = (x, y) = 1
we get (n, x) = 1. Note that (y, n)2 | x2 and (x, y) = 1. We also have (y, n) = 1.
Since 4n2p = x2 + qy2, (x, y) = 1 and p - q we see that 2 - x and p - x. Thus
(x, (2cn)2 + (x + 2dn)2) = (x, 4n2p) = 1. As qy2 = (2cn)2 + (x + 2dn)(2dn − x) we
see that (qy, x + 2dn) | 4c2n2. Recall that (qy, n) = 1 and (c, x + 2dn) = 1. We get
(qy, x + 2dn) = 1. Also,

(qy2, (2cn)2 + (x + 2dn)2)
= ((2cn)2 + (x + 2dn)2 − 2x(x + 2dn), (2cn)2 + (x + 2dn)2)
= (2x(x + 2dn), (2c)2 + (x + 2dn)2)
= (x + 2dn, (2c)2 + (x + 2dn)2) = (x + 2dn, 4c2) = 1.

Since n2p = q+1
4 + x2−1

4 + y2−1
4 q we see that n ≡ n2p ≡ q+1

4 (mod 2). Now using
(1.1)-(1.4) and the fact that ( a

m)4 = 1 for a,m ∈ Z with 2 - m and (a,m) = 1 we see
that

ik =
(2cn + (x + 2dn)i

q

)
4

=
( i

q

)
4

(x + 2dn− 2cni

q

)
4

= (−1)
q2−1

8
+ q−1

2
n
( q

x + 2dn− 2cni

)
4

= (−1)
q+1
4

+n
( qy2

x + 2dn− 2cni

)
4

( y2

x + 2dn− 2cni

)
4

=
((x + 2dn)2 + (2cn)2 − 2x(x + 2dn)

x + 2dn− 2cni

)
4

( y

(x + 2dn)2 + 4c2n2

)

=
( −2x(x + 2dn)

x + 2dn− 2cni

)
4

( y

(x + 2dn)2 + 4c2n2

)

= (−1)n
( 2

x + 2dn− 2cni

)
4

( x(x + 2dn)
x + 2dn− 2cni

)
4

( y

(x + 2dn)2 + 4c2n2

)

= (−1)ni(−1)(x+1)/2n(−1)
x(x+2dn)−1

2

(x + 2dn− 2cni

x(x + 2dn)

)
4

((x + 2dn)2 + 4c2n2

y

)

= (−1)n · ((−1)
x+1
2 i)n

(2n(d− ci)
x

)
4

( −2cni

x + 2dn

)
4

(2x(x + 2dn) + qy2

y

)

= (−1)
x−1
2

nin
(d− ci

x

)
4

( i

x + 2dn

)
4

(2x(x + 2dn)
y

)
.

Thus, applying (1.5) we see that

ik = (−1)
x−1
2

nin
(−i

x

)
4

(c + di

x

)
4
(−1)

(x+2dn)2−1
8 · (−1)

y2−1
8

(x(x + 2dn)
y

)

= (−1)
x−1
2

nin · (−1)
x2−1

8

(c + di

x

)
4
(−1)

x2−1
8

+ dn
2 · (−1)

4n2p−x2−q
8

( x
2n( x

2n + d)
y

)
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= (−1)
x−1
2

n+ dn
2 in · (−1)

x−1
2
· d
2

( x

c + di

)
4
(−1)

x2−1
8

+[ q+1
8

]
(c + di

y

)
4

= (−1)(
x−1
2

+ d
2
)n+x−1

2
· d
2 in

( x

c + di

)
4
(−1)

x2−1
8

+[ q+1
8

]
( y

c + di

)
4

= (−1)(
x−1
2

+ d
2
)n+x−1

2
· d
2 in · (−1)

x2−1
8

+[ q+1
8

]
( x/y

c + di

)
4

( y2

c + di

)
4

= (−1)(
x−1
2

+ d
2
)n+x−1

2
· d
2 in · (−1)

x2−1
8

+[ q+1
8

]
( x/y

c + di

)
4

( y

c2 + d2

)
.

As
( y

c2+d2

)
=

(
c2+d2

y

)
=

(4n2(c2+d2)
y

)
=

(x2+qy2

y

)
=

(
x2

y

)
= 1, from the above we deduce

that ( x/y

c + di

)
4

= (−1)(
x−1
2

+ d
2
)n+x−1

2
· d
2 · (−1)

x2−1
8

+[ q+1
8

]ik−n.

Clearly (−1)
d
2 = (−1)

p−1
4 and i ≡ d/c (mod c + di). Since c + di or −c− di is primary

in Z[i], we have

(x

y

) p−1
4 ≡

( x/y

c + di

)
4
≡ (−1)(

x−1
2

+ d
2
)n+x−1

2
· d
2
+x2−1

8
+[ q+1

8
]
(d

c

)k−n
(mod c + di).

Note that (x/y)2 ≡ −q (mod p) and p = (c + di)(c− di). We then have

(−q)[
p
8
] ≡





(
x

y
)

p−1
4 ≡ (−1)(

x−1
2

+ d
2
)n+x−1

2
· d
2
+x2−1

8
+[ q+1

8
](

d

c
)k−n (mod p)

if 8 | p− 1,

(
x

y
)

p−1
4

y

x
≡ (−1)(

x−1
2

+ d
2
)n+x−1

2
· d
2
+x2−1

8
+[ q+1

8
](

d

c
)k−n y

x
(mod p)

if 8 | p− 5.

Since (−1)
d
2 = (−1)

p−1
4 we deduce the result.

Theorem 2.2. Let p be a prime of the form 4m+1 and so p = c2+d2 with c, d ∈ Z
and c ≡ 1 (mod 4). Suppose that q, n, x, y ∈ Z, q ≡ 3 (mod 4), p - q, 4n2p = x2 + qy2,
y ≡ 1 (mod 4), (q, n) = (x, y) = 1, (d, x + 2cn) = 1 and (−2dn/(x+2cn)+i

q )4 = ik. Then

(−q)[
p
8
] ≡





(−1)n+
n(x+n)

2
+x2−1

8 (
d

c
)k (mod p) if 8 | p− 1,

(−1)
x−1
2

+x2−1
8

+
n(x+n)

2 (
d

c
)k y

x
(mod p) if 8 | p− 5.

Proof. By the proof of Theorem 2.1, 2 - x, p - x and (n, xy) = 1. Thus (x, (2dn)2 +
(x + 2cn)2) = (x, 4n2p) = 1. As qy2 = (2dn)2 + (x + 2cn)(2cn − x) we see that
(qy, x+2cn) | (2dn)2. Note that (qy, n) = 1 and (d, x+2cn) = 1. We get (qy, x+2cn) =
1. Since (n, x + 2cn) = (n, x) = 1 and (d, x + 2cn) = 1 we see that

(qy2, (2dn)2 + (x + 2cn)2)
= ((2dn)2 + (x + 2cn)2 − 2x(x + 2cn), (2dn)2 + (x + 2cn)2)
= (2x(x + 2cn), (2dn)2 + (x + 2cn)2)
= (x + 2cn, (2dn)2 + (x + 2cn)2) = (x + 2cn, (2dn)2) = 1.
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Now using (1.1)-(1.4) and the fact that ( a
m)4 = 1 for a,m ∈ Z with 2 - m and (a,m) = 1

we deduce that

ik =
(−2dn + (x + 2cn)i

q

)
4

=
( i

q

)
4

(x + 2cn + 2dni

q

)
4

= (−1)
q2−1

8

( q

x + 2cn + 2dni

)
4

= (−1)
q+1
4

( qy2

x + 2cn + 2dni

)
4

( y2

x + 2cn + 2dni

)
4

= (−1)n
((x + 2cn)2 + (2dn)2 − 2x(x + 2cn)

x + 2cn + 2dni

)
4

( y

(x + 2cn)2 + 4d2n2

)

= (−1)n
( 2

x + 2cn + 2dni

)
4

( x(x + 2cn)
x + 2cn + 2dni

)
4

( y

(x + 2cn)2 + 4d2n2

)

= (−1)n+ dn
2

(x + 2cn + 2dni

x(x + 2cn)

)
4

((x + 2cn)2 + 4d2n2

y

)

= (−1)n+ p−1
4

n
(2n(c + di)

x

)
4

( 2dni

x + 2cn

)
4

(2x(x + 2cn) + qy2

y

)
.

Thus, applying (1.5) we see that

ik = (−1)n+ p−1
4

n
(c + di

x

)
4

( i

x + 2cn

)
4

(2x(x + 2cn)
y

)

= (−1)n+ p−1
4

n
(c + di

x

)
4
(−1)

(x+2cn)2−1
8

(2
y

)(x(x + 2cn)
y

)

= (−1)n+ p−1
4

n
(c + di

x

)
4
(−1)

x2−1
8

+
cn(x+cn)

2

( i

y

)
4

( x
2n( x

2n + c)
y

)

= (−1)n+ p−1
4

n · (−1)
x−1
2
· d
2

( x

c + di

)
4
(−1)

x2−1
8

+
n(x+n)

2

( i

y

)
4

(d + ci

y

)
4

= (−1)(1+
p−1
4

)n+ p−1
4
·x−1

2
+x2−1

8
+

n(x+n)
2

( x

c + di

)
4

(−c + di

y

)
4

= (−1)(1+
p−1
4

)n+ p−1
4
·x−1

2
+x2−1

8
+

n(x+n)
2

( x

c + di

)
4

(c + di

y

)−1

4

= (−1)(1+
p−1
4

)n+ p−1
4
·x−1

2
+x2−1

8
+

n(x+n)
2

( x

c + di

)
4

( y

c + di

)−1

4

= (−1)(1+
p−1
4

)n+ p−1
4
·x−1

2
+x2−1

8
+

n(x+n)
2

( x/y

c + di

)
4
.

Clearly i ≡ d/c (mod c + di). Since c + di or −c− di is primary in Z[i], we have

(x

y

) p−1
4 ≡

( x/y

c + di

)
4
≡ (−1)(1+ p−1

4
)n+ p−1

4
·x−1

2
+x2−1

8
+

n(x+n)
2

(d

c

)k
(mod c + di).

Note that (x/y)2 ≡ −q (mod p) and p = (c + di)(c− di). We then have

(−q)[
p
8
] ≡





(
x

y
)

p−1
4 ≡ (−1)n+

n(x+n)
2

+x2−1
8 (

d

c
)k (mod p) if 8 | p− 1,

(
x

y
)

p−1
4

y

x
≡ (−1)

x−1
2

+x2−1
8

+
n(x+n)

2 (
d

c
)k y

x
(mod p) if 8 | p− 5.

This is the result.
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Theorem 2.3. Let p be a prime of the form 4k+1 and so p = c2 +d2 with c, d ∈ Z
and c ≡ 1 (mod 4). Let q be a prime of the form 4k+3. Suppose that 4n2p = x2 +qy2,
n, x, y ∈ Z, y ≡ 1 (mod 4) and (q, n) = (x, y) = 1. Assume that (c, x + 2dn) = 1 or
(d, x + 2cn) = 1. Then for m ∈ Z,

(−q)[
p
8
] ≡





(−1)
n(x+n)

2
+x2−1

8 (
d

c
)m (mod p) if 8 | p− 1,

(−1)
n(x+n)

2
+[x

4
]+n(

d

c
)m y

x
(mod p) if 8 | p− 5

⇐⇒
(2n(c− di)

x

) q+1
4 ≡ im (mod q).

Proof. Clearly q - x and x is odd. We first assume (c, x + 2dn) = 1. By the
proof of Theorem 2.1, (q, (x + 2dn)((2cn)2 + (x + 2dn)2)) = 1. It is easily seen that
2cn/(x+2dn)−i
2cn/(x+2dn)+i = 2cn−(x+2dn)i

2cn+(x+2dn)i ≡
2n(c−di)

ix (mod q). Thus, for m ∈ Z applying [9, Theo-
rem 2.3(ii)] we get

(2cn/(x + 2dn) + i

q

)
4

= im−
q+1
4

⇔
( 2cn

x+2dn − i
2cn

x+2dn + i

) q+1
4 ≡ im−

q+1
4 (mod q) ⇔

(2n(c− di)
ix

) q+1
4 ≡ im−

q+1
4 (mod q)

⇔
(2n(c− di)

x

) q+1
4 ≡ im (mod q).

Now applying Theorem 2.1 we derive that

(2n(c− di)
x

) q+1
4 ≡ im (mod q)

⇔ (−q)[
p
8
] ≡





(−1)
x−1
2

n+x2−1
8

+[ q+1
8

](
d

c
)m− q+1

4
−n (mod p) if 8 | p− 1,

(−1)
x+1
2

n+x−1
2

+x2−1
8

+[ q+1
8

](
d

c
)m− q+1

4
−n y

x
(mod p) if 8 | p− 5.

Since n2p = q+1
4 + x2−1

4 + y2−1
4 q we see that n ≡ n2p ≡ q+1

4 (mod 2). Hence,
(−1)[

q+1
8

](d
c )−

q+1
4
−n ≡ (−1)[

q+1
8

]+ 1
2
( q+1

4
+n) = (−1)[

n+1
2

] (mod p). Therefore,

(2n(c− di)
x

) q+1
4 ≡ im (mod q)

⇔ (−q)[
p
8
] ≡





(−1)
x−1
2

n+x2−1
8

+[n+1
2

](
d

c
)m

= (−1)
n(x+n)

2
+x2−1

8 (
d

c
)m (mod p) if 8 | p− 1,

(−1)
x+1
2

n+x−1
2

+x2−1
8

+[n+1
2

](
d

c
)m y

x

= (−1)
n(x+n)

2
+[x

4
]+n(

d

c
)m y

x
(mod p) if 8 | p− 5.

Now we assume (d, x + 2cn) = 1. By the proof of Theorem 2.2, (q, x + 2cn) =
(q, (2dn)2 + (x + 2cn)2) = 1. It is easily seen that 2dn+(x+2cn)i

2dn−(x+2cn)i ≡
2n(c−di)
−x (mod q).
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Thus, for m ∈ Z applying [9, Theorem 2.3(ii)] we get
(−2dn/(x + 2cn) + i

q

)
4

= im−
q+1
2 ⇔

(− 2dn
x+2cn − i

− 2dn
x+2cn + i

) q+1
4 ≡ im−

q+1
2 (mod q)

⇔
(2dn + (x + 2cn)i

2dn− (x + 2cn)i

) q+1
4 ≡ im−

q+1
2 (mod q)

⇔
(2n(c− di)

−x

) q+1
4 ≡ im−

q+1
2 (mod q) ⇔

(2n(c− di)
x

) q+1
4 ≡ im (mod q).

Note that (d
c )−

q+1
2 ≡ (−1)

q+1
4 = (−1)n (mod p) and (−1)

x−1
2

+x2−1
8 = (−1)[

x
4
]. From

the above and Theorem 2.2 (with k = m− q+1
2 ) we deduce the result, which completes

the proof.

Example 2.4. Let n = p = 29 and q = 59. As 29 = 52 + 22 and 4 · 293 =
1592 + 59 · 352, we have c = 5, d = 2, x = 159, y = −35 and (d, x + 2cn) = 1. It is
clear that

(2n(c− di)
x

) q+1
4 =

(58(5− 2i)
159

)15
≡ (−3 + 13i)15 ≡ (19− 17i)5 ≡ i (mod 59)

and
(−q)[

p
8
] = (−59)3 ≡ −1 ≡ (−1)

159+29
2

+[ 159
4

]+29 · 2
5
· −35

159
(mod 29).

Thus, Theorem 2.3 is true in this case.
Corollary 2.5. Let p be a prime of the form 12k + 1 and so p = c2 + d2 =

1
4(x2 + 27y2) with c, d, x, y ∈ Z. Suppose c ≡ y ≡ 1 (mod 4). Assume (c, x + 2d) = 1
or (d, x + 2c) = 1. Then

(−3)[
p
8
] ≡





±(−1)[
x
4
] (mod p) if p ≡ 1 (mod 8) and x ≡ ±c (mod 3),

∓(−1)[
x
4
] d

c
(mod p) if p ≡ 1 (mod 8) and x ≡ ±d (mod 3),

±(−1)
x2−1

8
3y

x
(mod p) if p ≡ 5 (mod 8) and x ≡ ±c (mod 3),

∓(−1)
x2−1

8
3dy

cx
(mod p) if p ≡ 5 (mod 8) and x ≡ ±d (mod 3).

Proof. If x ≡ ±c (mod 3), then d2 = p − c2 ≡ 4p − x2 = 27y2 ≡ 0 (mod 3)
and so 3 | d. Thus, 2(c−di)

x ≡ 2c
x ≡ ±2 ≡ ∓1 (mod 3). If x ≡ ±d (mod 3), then

c2 = p − d2 ≡ 4p − x2 = 27y2 ≡ 0 (mod 3) and so 3 | c. Thus, 2(c−di)
x ≡ −2di

x ≡ ±i
(mod 3). Now taking q = 3, n = 1 and replacing y with −3y in Theorem 2.3 we deduce
the result.

Corollary 2.6. Suppose that the conditions in Theorem 2.3 hold. If q | cd, then

(−q)[
p
8
]

≡





(−1)
n(x+n)

2
+x2−1

8 · (±1)n (mod p) if 8 | p− 1 and x ≡ ±2cn (mod q),

(−1)
n(x+n)

2
+x2−1

8 (∓d

c
)

q+1
4 (mod p) if 8 | p− 1 and x ≡ ±2dn (mod q),

(−1)
n(x+n)

2
+[x

4
] · (∓1)n y

x
(mod p) if 8 | p− 5 and x ≡ ±2cn (mod q),

(−1)
n(x+n)

2
+[x

4
](±d

c
)

q+1
4

y

x
(mod p) if 8 | p− 5 and x ≡ ±2dn (mod q).
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Proof. Since 4n2(c2 + d2) = x2 + qy2 we see that q | d ⇔ x ≡ ±2cn (mod q) and
q | c ⇔ x ≡ ±2dn (mod q). If x ≡ ±2cn (mod q), then 2n(c−di)

x ≡ ±1 (mod q). If
x ≡ ±2dn (mod q), then 2n(c−di)

x ≡ ∓i (mod q). Now applying Theorem 2.3 and the
fact q+1

4 ≡ n (mod 2) we deduce the result.
Theorem 2.7. Let p be a prime of the form 4k+1 and so p = c2 +d2 with c, d ∈ Z

and c ≡ 1 (mod 4). Let q be a prime of the form 8k+7. Suppose that 4n2p = x2 +qy2,
n, x, y ∈ Z, y ≡ 1 (mod 4) and (q, n) = (x, y) = 1. Assume that (c, x + 2dn) = 1 or
(d, x + 2cn) = 1. Then for m ∈ Z,

(−q)[
p
8
] ≡





(−1)
n
2
+x2−1

8 (
d

c
)m (mod p) if 8 | p− 1,

(−1)
n
2
+[x

4
](

d

c
)m y

x
(mod p) if 8 | p− 5

⇐⇒
(c− di

c + di

) q+1
8 ≡ im (mod q).

Proof. Since 4n2p = x2 + qy2 ≡ 1 + 7 ≡ 0 (mod 8) we see that 2 | n. Observe that

(c− di

c + di

) q+1
8 =

(2n(c− di))
q+1
4

(4n2p)
q+1
8

≡
(2n(c− di)

x

) q+1
4 (mod q).

The result follows from Theorem 2.3 immediately.

Remark 2.8 Under the conditions in Theorem 2.7, for d 6≡ 0 (mod q) we see that
(−q)[p/8] (mod p) depends only on c/d (mod q).

Example 2.9 Let p = 257, n = 2 and q = 31. As 257 = 12 + 162 and 16 · 257 =
192 + 31 · 112, we have c = 1, d = 16, x = 19 and y = −11. Since

(1− 16i

1 + 16i

)4
=

(−255− 32i

−255 + 32i

)2
≡

(7 + i

7− i

)2
=

24 + 7i

24− 7i
≡ −1 + i

−1− i
= i3 (mod 31),

by Theorem 2.7 we have

(−31)[
257
8

] ≡ (−1)
2
2
+ 192−1

8
(16

1
)3 = 162 · 16 ≡ −16 (mod 257).

Actually (−31)[
257
8

] = 3132 ≡ 1208 ≡ 84 ≡ −16 (mod 257).
Corollary 2.10. Suppose that the conditions in Theorem 2.7 hold. If c ≡ ±d

(mod q), then

(−q)[
p
8
] ≡





(−1)
n
2
+x2−1

8 (∓d

c
)

q+1
8 (mod p) if 8 | p− 1,

(−1)
n
2
+[x

4
](∓d

c
)

q+1
8

y

x
(mod p) if 8 | p− 5.

Proof. Since c ≡ ±d (mod q) we see that c−di
c+di ≡ ±1−i

±1+i = ∓i. Now applying
Theorem 2.7 we deduce the result.

Theorem 2.11. Let p be a prime of the form 4k +1, p ≡ 1, 3, 4, 5, 9 (mod 11) and
so p = c2 + d2 = 1

4(x2 + 11y2) with c, d, x, y ∈ Z, c ≡ 1 (mod 4), d = 2rd0(2 - d0),
y = 2ty0 and d0 ≡ y0 ≡ 1 (mod 4). Assume that (c, x + 2d) = 1 or (d0, x + 2c) = 1.
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(i) If p ≡ 1 (mod 8), then

(−11)
p−1
8 ≡





±(−1)[
x
4
] (mod p) if 2 - x and x ≡ ±4c,±9c (mod 11),

±(−1)[
x
4
] d

c
(mod p) if 2 - x and x ≡ ±4d,±9d (mod 11),

∓(−1)[
x
8
]+ y

8 (mod p) if 2 | x and x ≡ ±4c,±9c (mod 11),

∓(−1)[
x
8
]+ y

8
d

c
(mod p) if 2 | x and x ≡ ±4d,±9d (mod 11).

(ii) If p ≡ 5 (mod 8), then

(−11)
p−5
8 ≡





∓(−1)
x2−1

8
y

x
(mod p) if 2 - x and x ≡ ±4c,±9c (mod 11),

∓(−1)
x2−1

8
dy

cx
(mod p) if 2 - x and x ≡ ±4d,±9d (mod 11),

∓(−1)
p−5
8

y

x
(mod p) if 2 | x and x ≡ ±4c,±9c (mod 11),

∓(−1)
p−5
8

dy

cx
(mod p) if 2 | x and x ≡ ±4d,±9d (mod 11).

Proof. As (x
2 )2 ≡ c2 + d2 (mod 11) and (c − di)3 = c(c2 − 3d2) + d(d2 − 3c2)i, we

see that
(2(c− di)

x

)3
≡

{∓1 (mod 11) if x ≡ ±4c,±9c (mod 11),
∓i (mod 11) if x ≡ ±4d,±9d (mod 11).

When 2 - x, from the above and Theorem 2.3 (with n = 1 and q = 11) we deduce
the result. When 2 | x and p ≡ 1 (mod 8), we have 8 | y and so (−1)

p−1
8

+
x/2−1

2 =

(−1)
(x/2)2−1

8
+

x/2−1
2 = (−1)[

x
8
]. Thus, applying the above and [13, Theorem 4.1 (with

q = 11)] we obtain the result.

Example 2.12. Let p = 449 = (−7)2 + 202. Then 4p = 392 + 11 · 52. Since
(−7, 39 + 2 · 20) = 1 and 39 ≡ −4 · (−7) (mod 11), by Theorem 2.11(i) we have
(−11)

449−1
8 ≡ −(−1)[

39
4

] = 1 (mod 449). Actually, 128 ≡ −11 (mod 449).

Acknowledgment
The author is supported by the National Natural Science Foundation of China (grant
no. 11371163).

References

[1] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley, New
York, 1998.

[2] R.J. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 1069-
1081.

[3] R.J. Evans, Classical congruences for parameters in binary quadratic forms, Finite
Fields Appl. 7(2001), 110-124.

9



[4] R.H. Hudson, Diophantine determinations of 3(p−1)/8 and 5(p−1)/4, Pacific J. Math.
111 (1984), 49-55.

[5] R.H. Hudson and K.S. Williams, Some new residuacity criteria, Pacific J. Math.
91 (1980), 135-143.

[6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
2nd ed., Springer, New York, 1990.

[7] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin,
2000.
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