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Abstract

For a 6= 0 we define {E(a)
n } by ∑[n/2]

k=0

( n
2k

)
a2kE(a)

n−2k = (1− a)n (n = 0,1,2, . . .),
where [n/2] = n/2 or (n−1)/2 according as 2 | n or 2 - n. In the paper we establish
many congruences for E(a)

n modulo prime powers, and show that there is a set X and
a map T : X → X such that (−1)nE(a)

2n is the number of fixed points of T n.
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1. Introduction
The Euler numbers {En} and Euler polynomials {En(x)} are defined by

(1.1)
2et

e2t +1
=

∞

∑
n=0

En
tn

n!
(|t|< π

2
) and

2ext

et +1
=

∞

∑
n=0

En(x)
tn

n!
(|t|< π),
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which are equivalent to (see [6])

(1.2) E0 = 1, E2n−1 = 0,
n

∑
r=0

(
2n
2r

)
E2r = 0 (n≥ 1)

and

En(x)+
n

∑
r=0

(
n
r

)
Er(x) = 2xn (n≥ 0).

Euler numbers {En} is an important sequence of integers and it has many prop-
erties and applications. For example, according to [3] we have E(p−1)/2 ≡
2h(−4p) (mod p), where p is a prime of the form 4k+1 and h(d) is the class number
of the form class group consisting of classes of primitive, integral binary quadratic
forms of discriminant d. In 2005, Arias de Reyna[1] showed that there is a set X and
a map T : X → X such that (−1)nE2n is the number of fixed points of T n.

In [12] the author introduced the sequence Sn = 4nEn(1
4) and showed that

h(−8p)≡ S p−1
2

(mod p) for any odd prime p. In [14] the author systematically studied

the sequence U2n = 32nE2n(1
3). Inspired by the properties of {En}, {Sn} and {U2n},

we try to introduce more sequences of integers similar to Euler numbers. For this
purpose, we introduce the sequence {E(a)

n } for a 6= 0 given by

[n/2]

∑
k=0

(
n
2k

)
a2kE(a)

n−2k = (1−a)n (n = 0,1,2, . . .),

where [x] is the greatest integer not exceeding x. Actually, E(a)
n = (2a)nEn( 1

2a), E(1)
n =

En, E(2)
n = Sn and {E(a)

n } is a sequence of integers. In the paper we mainly study the
properties of E(a)

n . We show that there is a set X and a map T : X → X such that
(−1)nE(a)

2n is the number of fixed points of T n. This generalizes Arias de Reyna’s
result for Euler numbers.

In Section 2 we establish some congruences for E(a)
n modulo a prime. For exam-

ple, for a prime p > 3 we have E(3)
(p−1)/2 ≡ 0,2h(−4p) or h(−12p) (mod p) according

as p≡ 5 (mod 12), p≡ 1 (mod 12) or p≡ 3 (mod 4).
Let Z andN be the sets of integers and positive integers, respectively. In Section 3

we establish some general congruences for E(a)
2mk+b modulo 2n, where a ∈ Z, k,m,n ∈

N and b ∈ {0,1,2, . . .}. For example, we determine E(a)
2mk+b (mod 2m+4+3t), where t is

the nonnegative integer given by 2t | a and 2t+1 - a. In the case a = 1, the congruence
was given in [13]. The congruence can be viewed as a generalization of the Stern’s
congruence ([8,16]) E2mk+b ≡ Eb−2mk (mod 2m+1) for even b.

For m ∈ N let Zm be the set of rational numbers whose denominator is coprime
to m. For a prime p, in [10] the author introduced the notion of p-regular functions.
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If f (k) ∈ Zp for k = 0,1,2, . . . and ∑n
k=0

(n
k

)
(−1)k f (k) ≡ 0 (mod pn) for all n ∈ N,

then f is called a p-regular function. If f and g are p-regular functions, from [10,
Theorem 2.3] we know that f ·g is also a p-regular function.

Let p be an odd prime, and let b be a nonnegative integer. In Section 4
we show that f2(k) =

(
1− (−1)

p−1
2 b+[ p−1

4 ]pk(p−1)+b
)
E(2)

k(p−1)+b and f3(k) =
(
1−

(−1)[ p+1
6 ]( p

3

)b+1 pk(p−1)+b
)
E(3)

k(p−1)+b are p-regular functions, where ( a
m) is the Ja-

cobi symbol. Using the properties of p-regular functions in [10,12], we deduce
many congruences for E(2)

n and E(3)
n (mod pm). For example, for k,m ∈ N we have

E(2)
kϕ(pm)+b≡ (1−(−1)

p−1
2 b+[ p−1

4 ]pb)E(2)
b (mod pm), where ϕ(n) is Euler’s totient func-

tion.
In addition to the above notation, we also use throughout this paper the following

notation: {x} the fractional part of x, ordpn the nonnegative integer α such that
pα | n but pα+1 - n (that is pα ‖ n), µ(n) the Möbius function.

2. Congruences for E(a)
n modulo a prime

Definition 2.1. For a 6= 0 we define {E(a)
n } by

[n/2]

∑
k=0

(
n
2k

)
a2kE(a)

n−2k = (1−a)n (n = 0,1,2, . . .).

By the definition we have E(a)
n ∈ Z for a ∈ Z and E(1)

n = En. The first few Euler
numbers are shown below:

E0 = 1, E2 =−1, E4 = 5, E6 =−61, E8 = 1385, E10 =−50521,

E12 = 2702765, E14 =−199360981, E16 = 19391512145.

The first few values of E(2)
n and E(3)

n are given below:

E(2)
0 = 1, E(2)

1 =−1, E(2)
2 =−3, E(2)

3 = 11, E(2)
4 = 57, E(2)

5 =−361, E(2)
6 =−2763,

E(2)
7 = 24611, E(2)

8 = 250737, E(2)
9 =−2873041, E(2)

10 =−36581523;

E(3)
0 = 1, E(3)

1 =−2, E(3)
2 =−5, E(3)

3 = 46, E(3)
4 = 205, E(3)

5 =−3362,

E(3)
6 =−22265, E(3)

7 = 515086, E(3)
8 = 4544185, E(3)

9 =−135274562.

The Bernoulli numbers {Bn} and Bernoulli polynomials {Bn(x)} are defined by

B0 = 1,
n−1

∑
k=0

(
n
k

)
Bk = 0 (n≥ 2) and Bn(x) =

n

∑
k=0

(
n
k

)
Bkxn−k (n≥ 0).
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It is well known that (see [6])
(2.1)

En(x) =
1
2n

n

∑
r=0

(
n
r

)
(2x−1)n−rEr

=
2

n+1

(
Bn+1(x)−2n+1Bn+1

( x
2

))
=

2n+1

n+1

(
Bn+1

(x+1
2

)
−Bn+1

( x
2

))
.

In particular,

(2.2) En = 2nEn

(1
2

)
and En(0) =

2(1−2n+1)Bn+1

n+1
.

It is also known that (see [6])

(2.3) B2n+3 = 0, Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x).

Theorem 2.1. Let n be a nonnegative integer and a 6= 0. Then

E(a)
n = (2a)nEn

( 1
2a

)
=

[n/2]

∑
k=0

(
n
2k

)
(1−a)n−2ka2kE2k

=
n

∑
k=0

(
n
k

)
2k+1(1−2k+1) Bk+1

k +1
ak.

Proof. By Definition 2.1 we have

e(1−a)t =
∞

∑
n=0

(1−a)n tn

n!
=

∞

∑
n=0

( [n/2]

∑
k=0

(
n
2k

)
a2kE(a)

n−2k

) tn

n!

=
( ∞

∑
k=0

a2k t2k

(2k)!

)( ∞

∑
m=0

E(a)
m

tm

m!

)
=

eat + e−at

2

( ∞

∑
m=0

E(a)
m

tm

m!

)
.

Thus,

(2.4)
∞

∑
n=0

E(a)
n

tn

n!
=

e(1−a)t

(eat + e−at)/2
=

2et

e2at +1
.

From (1.1) we know that ∑∞
n=0 En( 1

2a) (2at)n

n! = 2et

e2at+1 . Hence, from the above and (2.1)
we deduce

E(a)
n = (2a)nEn

( 1
2a

)
=

n

∑
r=0

(
n
r

)
(1−a)n−rarEr =

[n/2]

∑
k=0

(
n
2k

)
(1−a)n−2ka2kE2k.

By (1.1) and (2.2) we have

∞

∑
n=0

2(1−2n+1)Bn+1

n+1
· (2at)n

n!
=

∞

∑
n=0

En(0)
(2at)n

n!
=

2
e2at +1

.
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Thus
∞

∑
n=0

E(a)
n

tn

n!
= et · 2

e2at +1
=

( ∞

∑
m=0

tm

m!

)( ∞

∑
k=0

2k+1(1−2k+1)ak Bk+1

k +1

) tk

k!

=
∞

∑
n=0

( n

∑
k=0

(
n
k

)
2k+1(1−2k+1)ak Bk+1

k +1

) tn

n!

and so E(a)
n = ∑n

k=0
(n

k

)
2k+1(1−2k+1)ak Bk+1

k+1 . The proof is now complete.
Corollary 2.1. Let a 6= 0 and n ∈ N. Then

n

∑
k=0

(
n
k

)
(−1)kE(a)

k =

{0 if 2 | n,

2n+1(2n+1−1)an Bn+1

n+1
if 2 - n.

Proof. By Theorem 2.1 and the binomial inversion formula we have ∑n
k=0

(n
k

)

(−1)n−kE(a)
k = 2n+1(1−2n+1)an Bn+1

n+1 . Noting that Bn+1 = 0 for even n we deduce the
result.

Lemma 2.1. For n ∈ N we have E(3)
2n = 1

2(32n +1)E2n.
Proof. Using (1.1), (1.2) and (2.4) we see that

2
∞

∑
n=0

E(3)
2n

t2n

(2n)!
=

∞

∑
n=0

E(3)
n

tn +(−t)n

n!
=

2et

e6t +1
+

2e−t

e−6t +1
=

2et +2e5t

e6t +1

=
2et

e2t +1
+

2e3t

e6t +1
=

∞

∑
n=0

(1+3n)En
tn

n!
=

∞

∑
n=0

(1+32n)E2n
t2n

(2n)!
.

So the result follows.
In [3], Ernvall showed that for a prime p≡ 1 (mod 4),

(2.5) E(p−1)/2 ≡ 2h(−4p) (mod p) and so p - E(p−1)/2.

In [12] the author defined {Sn} by Sn = 1−∑n−1
k=0

(n
k

)
22n−2k−1Sk (n ≥ 0) and showed

that Sn = 4nEn(1
4). Thus, by Theorem 2.1 we have Sn = E(2)

n . From [12, Theorem 3.1
and Corollary 3.1] we know that for any odd prime p,

(2.6) h(−8p)≡ E(2)
(p−1)/2 (mod p) and hence p - E(2)

(p−1)/2.

Now we state the similar congruence for E(3)
(p−1)/2 (mod p).

Theorem 2.2. Let p be a prime greater than 3. Then

E(3)
p−1

2
≡





0 (mod p) if p≡ 5 (mod 12),
E(p−1)/2 ≡ 2h(−4p) (mod p) if p≡ 1 (mod 12),
h(−12p) (mod p) if p≡ 3 (mod 4).
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Proof. If p≡ 1 (mod 4), by Lemma 2.1 and (2.5) we have

E(3)
p−1

2
=

1
2
(
3

p−1
2 +1

)
E p−1

2
≡ 1

2

(
1+

( 3
p

))
E p−1

2

≡
{

0 (mod p) if p≡ 5 (mod 12),
E p−1

2
≡ 2h(−4p) (mod p) if p≡ 1 (mod 12).

Now assume p ≡ 3 (mod 4). It is known that (see [6]) B2n
(1

6

)
= 1

2(21−2n −
1)(31−2n−1)B2n. Thus,

B p+1
2

(1
6
)

=
1
2
(2−

p−1
2 −1)(3−

p−1
2 −1)B p+1

2
≡ 1

2

(( 2
p

)
−1

)(( 3
p

)
−1

)
B p+1

2

≡
{

0 (mod p) if p≡ 7,11,23 (mod 24),
2B p+1

2
(mod p) if p≡ 19 (mod 24).

Hence, by Theorem 2.1 and (2.1) we have

E(3)
p−1

2
= 6

p−1
2 E p−1

2

(1
6

)
= 6

p−1
2 · 2

(p+1)/2

(
B p+1

2

(1
6

)
−2

p+1
2 B p+1

2

( 1
12

))

≡ 4
( 6

p

)(
B p+1

2

(1
6
)−2

( 2
p

)
B p+1

2

( 1
12

))

≡





8B p+1
2

( 1
12

)
(mod p) if p≡ 7 (mod 24),

−8B p+1
2

( 1
12

)
(mod p) if p≡ 11,23 (mod 24),

8B p+1
2

+8B p+1
2

( 1
12

)
(mod p) if p≡ 19 (mod 24).

Now applying [12, Theorem 3.2(ii)] we obtain E(3)
(p−1)/2 ≡ h(−12p) (mod p). So the

theorem is proved.

Remark 2.1 In a similar way, one can show that for any prime p ≡
11,19 (mod 20), (1+2(−1)

p+1
4 )h(−5p)≡ 2E

( 5
2 )

p−1
2

(mod p).

Corollary 2.2. Let p be an odd prime with p 6≡ 5 (mod 12). Then p - E(3)
(p−1)/2.

Proof. For p≡ 3 (mod 4), it is well known that ([15, pp.3-5]) 1≤ h(−12p) < p.
So the result follows from Theorem 2.2 and (2.5).

Theorem 2.3. Let p be an odd prime, m ∈ {2,3,4, . . .} and p ≡ ±1 (mod m).
Then

∑
p
m <i< p

2

(−1)i−1 1
i
≡∓(−1)[ p

m ] m
2

E(m/2)
p−2 (mod p)
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and

[p/m]

∑
i=1

(−1)i−1 1
ik
≡−(−1)[p/m] m

k

2
E(m/2)

p−1−k (mod p) for k = 2,4, . . . , p−3.

Proof. Let k ∈ {1}∪{2,4, . . . , p−3}. Putting s = 1 and substituting k by p−1−k
in [12, Corollary 2.2] we see that

Ep−1−k(0)− (−1)[ p
m ]Ep−1−k

({ p
m

})

≡ 2(−1)p−1−k−1
[p/m]

∑
i=1

(−1)iip−1−k ≡ 2(−1)k
[p/m]

∑
i=1

(−1)i−1 1
ik

(mod p).

It is well known that ([5]) pBp−1 ≡ p− 1 (mod p). Thus, in view of (2.2) and (2.3)
we have

Ep−1−k(0) =
2(1−2p−k)Bp−k

p− k
=





0 (mod p) if 2 | k,
2−2p

p
· pBp−1

p−1
≡−2p−2

p
(mod p) if k = 1.

Using (2.3) and Theorem 2.1 we see that

Ep−2

({ p
m

})
=





Ep−2(
1
m

) = m2−pE(m/2)
p−2 ≡ mE(m/2)

p−2 (mod p) if m | p−1,

Ep−2(1− 1
m

) =−Ep−2(
1
m

)≡−mE(m/2)
p−2 (mod p) if m | p+1.

From the above we deduce

[p/m]

∑
i=1

(−1)i−1 1
i
≡ 2p−1−1

p
± (−1)[p/m] m

2
E(m/2)

p−2 (mod p).

Taking m = 2 we have the known result ∑[p/2]
i=1 (−1)i−1 1

i ≡ 2p−1−1
p (mod p). Hence

∑
p
m <i< p

2

(−1)i−1 1
i

=
[p/2]

∑
i=1

(−1)i−1 1
i
−

[p/m]

∑
i=1

(−1)i−1 1
i
≡∓(−1)[p/m] m

2
E(m/2)

p−2 (mod p).

For k ∈ {2,4, . . . , p−3}, using (2.3) and Theorem 2.1 we see that

Ep−1−k

({ p
m

})
= Ep−1−k

( 1
m

)
= m−(p−1−k)E(m/2)

p−1−k ≡ mkE(m/2)
p−1−k (mod p).

Now putting all the above together we deduce the result.
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3. Congruences for E(a)
n modulo 2m

In [12] the author established many congruences for E2n (mod 2m), where m,n∈N.
In the section we extend such congruences to E(a)

2n+b (mod 2m), where a is a nonzero
integer and b ∈ {0,1,2, . . .}.

Lemma 3.1. Let s and n be nonnegative integers. Then
(i)

n

∑
k=0

(
n
k

)
(−1)n−k

(
2k
s

)
=





(
n

s−n

)
22n−s if s≥ n,

0 if s < n.

(ii)

n

∑
k=0

(
n
k

)
(−1)n−k

(
2k +1

s

)
=





s+1
n+1

(
n+1
s−n

)
22n−s if s≥ n,

0 if s < n.

Proof. (i) can be found in [4, (3.64)]. We now use (i) to deduce (ii). By (i) we
have

n

∑
k=0

(
n
k

)
(−1)n−k

(
2k +1

s

)

=
n

∑
k=0

(
n
k

)
(−1)n−k

((
2k
s

)
+

(
2k

s−1

))

=





(
n

s−n

)
22n−s +

(
n

s−1−n

)
22n−(s−1) =

s+1
n+1

(
n+1
s−n

)
22n−s if s≥ n+1,

2n +0 if s = n,

0+0 if s < n.

This proves (ii).
Theorem 3.1.Let a be a nonzero integer, n ∈N and let b be a nonnegative integer.

Suppose that αn ∈ N is given by 2αn−1 ≤ n < 2αn .
(i) If p is an odd prime divisor of a, then

n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+b ≡
{

0 (mod pnordpa) if 2 - n,

0 (mod p(n+1)ordpa) if 2 | n.

(ii) We have

n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k ≡
{

0 (mod 2(n+1)ord2a−αn+ord2n+2n) if 2 | n,

0 (mod 2nord2a+2n−αn) if 2 - n

8



and
n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k+1 ≡
{

0 (mod 2(n+1)ord2a+2n) if 2 | n,

0 (mod 2nord2a+2n−ord2(n+1)) if 2 - n.

(iii) We have

n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+b ≡ 0 (mod 2(2+ord2a)n−αn).

Moreover, if 2 | n and 2 - b, then

n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+b ≡ 0 (mod 2(2+ord2a)(n+1)−αn).

Proof. Using Theorem 2.1, Lemma 3.1 and (2.3) we see that

n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k =
n

∑
k=0

(
n
k

)
(−1)n−k

2k

∑
s=0

(
2k
s

)
2s+1as(1−2s+1)Bs+1

s+1

=
2n

∑
s=0

2s+1as(1−2s+1)Bs+1

s+1 ∑
s
2≤k≤n

(
n
k

)
(−1)n−k

(
2k
s

)

=
2n

∑
s=1

2s+1as(1−2s+1)Bs+1

s+1

n

∑
k=0

(
n
k

)
(−1)n−k

(
2k
s

)

=
2n

∑
s=n

2s+1as(1−2s+1)Bs+1

s+1

(
n

s−n

)
22n−s

=
2n−1

∑
s=n
2-s

22n+1as(1−2s+1)Bs+1

s+1

(
n

s−n

)

and

n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k+1 =
n

∑
k=0

(
n
k

)
(−1)n−k

2k+1

∑
s=0

(
2k +1

s

)
2s+1as(1−2s+1)Bs+1

s+1

=
2n+1

∑
s=0

2s+1as(1−2s+1)Bs+1

s+1

n

∑
k=0

(
n
k

)
(−1)n−k

(
2k +1

s

)

=
1

n+1

2n+1

∑
s=n
2-s

22n+1as(1−2s+1)Bs+1

(
n+1
s−n

)
.

From Corollary 2.1 we see that for odd s,

(3.1)
2s+1(1−2s+1)Bs+1

s+1
=−

s

∑
r=0

(
s
r

)
(−1)rEr ∈ Z.
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Thus, if p is an odd prime with p | a, then 2s+1as(1−2s+1)Bs+1
s+1 ≡ 0 (mod psordpa). Now,

from the above we deduce that for i = 0,1,

(3.2)
n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+i ≡
{

0 (mod pnordpa) if 2 - n,

0 (mod p(n+1)ordpa) if 2 | n.

From [10, (2.5)] we know that for any function f ,

(3.3)
n

∑
k=0

(
n
k

)
(−1)k f (k +m) =

m

∑
k=0

(
m
k

)
(−1)k

k+n

∑
r=0

(
k +n

r

)
(−1)r f (r).

Thus,

(3.4)

n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+b =
n

∑
k=0

(
n
k

)
(−1)kE(a)

2(k+[ b
2 ])+b−2[ b

2 ]

=
[b/2]

∑
k=0

(
[b

2 ]
k

)
(−1)k

k+n

∑
r=0

(
k +n

r

)
(−1)rE(a)

2r+b−2[ b
2 ]
.

Now applying (3.2) we deduce (i).
Suppose s ∈ {n,n+1, . . . ,2n−1} and 2 - s. If 2 | n, then 2 - s−n and so

( n
s−n

)
=

n
s−n

( n−1
s−n−1

)≡ 0 (mod 2ord2n). Since 2Bs+1 ≡ 1 (mod 2) and 2ord2(s+1) ≤ s+1≤ 2n <

2αn+1, we see that ord2(s+1)≤ αn and so

ord2

(2as(1−2s+1)Bs+1

s+1

(
n

s−n

))
≥ s ord2a−αn +ord2n

≥ (n+1)ord2a−αn +ord2n.

If 2 - n, we see that

ord2

(2as(1−2s+1)Bs+1

s+1

(
n

s−n

))
≥ ord2

( as

s+1

)
≥ nord2a−αn.

Therefore,
n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k =
2n−1

∑
s=n
2-s

2as(1−2s+1)Bs+1

s+1

(
n

s−n

)
22n

≡
{

0 (mod 2(n+1)ord2a−αn+ord2n+2n) if 2 | n,

0 (mod 2nord2a+2n−αn) if 2 - n.

Since 2Bs+1 ≡ 1 (mod 2) for odd s we also have

n

∑
k=0

(
n
k

)
(−1)n−kE(a)

2k+1 =
1

n+1

2n+1

∑
s=n
2-s

22n+1as(1−2s+1)Bs+1

(
n+1
s−n

)

≡
{

0 (mod 2(n+1)ord2a+2n) if 2 | n,

0 (mod 2nord2a+2n−ord2(n+1)) if 2 - n.
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So (ii) holds.
Since 2ord2(n+1) ≤ n + 1 ≤ 2αn we see that ord2(n + 1) ≤ αn. Thus, from (ii) we

deduce

(3.5)
n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+i ≡ 0 (mod 22n+nord2a−αn) for i = 0,1.

As αs+1 = αs or αs + 1, we see that 2(s + 1)−αs+1 ≥ 2s−αs and hence 2r−αr ≥
2s−αs for r ≥ s. For k ≥ 0, by (3.5) we have

k+n

∑
r=0

(
k +n

r

)
(−1)rE(a)

2r+b−2[ b
2 ]
≡ 0 (mod 22(k+n)−αk+n+(n+k)ord2a).

Since 2(k +n)−αk+n ≥ 2n−αn, we must have

k+n

∑
r=0

(
k +n

r

)
(−1)rE(a)

2r+b−2[ b
2 ]
≡ 0 (mod 22n−αn+nord2a).

Combining this with (3.4) we obtain

n

∑
k=0

(
n
k

)
(−1)kE(a)

2k+b ≡ 0 (mod 2(2+ord2a)n−αn).

Now we assume 2 | n and 2 - b. For k,n ∈ N we have n + k ≥ 2 > 17
15 and so

n+k+1
n+k−1 < 16. Hence

log2(n+ k +1)− log2(n+ k−1) = log2
n+ k +1
n+ k−1

< 4

and so

(n+ k)(2+ord2a)− log2(n+ k +1) > (n+ k−2)(2+ord2a)− log2(n+ k−1).

Since 2ord2(n+k+1) ≤ n+k+1 and n+2≤ 2αn we see that ord2(n+k+1)≤ log2(n+
k +1) and log2(n+2)≤ αn. Thus, for odd k we have

(n+ k)(2+ord2a)−ord2(n+ k +1)≥ (n+ k)(2+ord2a)− log2(n+ k +1)
≥ (n+ k−2)(2+ord2a)− log2(n+ k−1)
≥ ·· · ≥ (n+1)(2+ord2a)− log2(n+2)
≥ (n+1)(2+ord2a)−αn

and so (by (ii))

(3.6)
n+k

∑
r=0

(
n+ k

r

)
(−1)rE(a)

2r+1 ≡ 0 (mod 2(n+1)(2+ord2a)−αn).
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For even k, using (ii) and the fact

(n+ k +1)ord2a+2(n+ k)≥ (n+1)ord2a+2n≥ (n+1)(2+ord2a)−αn

we see that (3.6) is also true. Thus applying (3.4) we deduce that
∑n

k=0
(n

k

)
(−1)kE(a)

2k+b ≡ 0 (mod 2(n+1)(2+ord2a)−αn). This completes the proof.

Corollary 3.1. Let a be a nonzero integer and b∈{0,1,2, . . .}. Then f (k) = E(a)
2k+b

is a 2−regular function.
Proof. Let αn ∈ N be given by 2αn−1 ≤ n < 2αn . As 2n > n, we see that αn ≤ n

and so 2n−αn ≥ n. Now applying Theorem 3.1(iii) we obtain the result.
Theorem 3.2. Suppose that a is a nonzero integer, k,m,n, t ∈ N and b ∈

{0,1,2, . . .}. For s ∈ N let αs ∈ N be given by 2αs−1 ≤ s < 2αs and let es(a,b) =
2−s ∑s

r=0
(s

r

)
(−1)r E(a)

2r+b−2[ b
2 ]

. Then

E(a)
2mkt+b ≡

n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)
E(a)

2mrt+b (mod 2mn+(1+ord2a)n−αn).

Moreover,

E(a)
2mkt+b ≡

n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)
E(a)

2mrt+b

+2mn
(

k
n

)
(−t)nen(a,b) (mod 2mn+(1+ord2a)(n+1)−αn+1).

In particular, when 2 | n and 2 - b, we have

E(a)
2mkt+b ≡

n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)
E(a)

2mrt+b (mod 2mn+(1+ord2a)(n+1)−αn+1).

Proof. For r∈N set Ar(a,b)= 2−r ∑r
s=0

(r
s

)
(−1)sE(a)

2s+b. As αr ≤ r, using Theorem
3.1(iii) we see that Ar(a,b) ∈ Z2 and

(3.7) Ar(a,b)≡
{

0 (mod 2(1+ord2a)r−αr+2+ord2a) if 2 | r and 2 - b,

0 (mod 2(1+ord2a)r−αr) otherwise.

By [9, Lemma 2.1] we have

(3.8)

E(a)
2mkt+b−

n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)
E(a)

2mrt+b

=
k

∑
r=n

(
k
r

)
(−1)r

r

∑
s=0

(
r
s

)
(−1)sE(a)

2mst+b.
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From Corollary 3.1 and the proof of [12, Theorem 4.2] we know that

(3.9)

n

∑
s=0

(
n
s

)
(−1)sE(a)

2mst+b

= An(a,b)tn ·2mn +
2m−1nt

∑
r=n+1

(−2)n(−1)rAr(a,b)
((−1)r−ns(r,n)n!

r!
2r−n

×2(m−1)ntn +
r

∑
j=n+1

(−1)r− js(r, j) j!
r!

2r− j · S( j,n)n!
j!

2 j−n · (2m−1t) j
)
,

where {s(n,k)} and {S(n,k)} are Stirling numbers given by

x(x−1) · · ·(x−n+1) =
n

∑
k=0

(−1)n−ks(n,k)xk

and

xn =
n

∑
k=0

S(n,k)x(x−1) · · ·(x− k +1).

By [12, Lemma 4.2], for n+1≤ j ≤ r we have

(3.10)
s(r, j) j!

r!
2r− j,

S( j,n)n!
j!

2 j−n ∈ Z2 and
s(r,n)n!

r!
2r−n ≡

(
n

r−n

)
(mod 2).

As αs+1 ≤ αs +1 we have s+1−αs+1 ≥ s−αs and hence r−αr ≥ s−αs for r ≥ s.
Therefore, by (3.7) we have 2(n+1)ord2a+n+1−αn+1 | Ar(a,b) for r≥ n+1. Hence, using
(3.9) we get

(3.11)
n

∑
r=0

(
n
r

)
(−1)rE(a)

2mrt+b ≡ 2mntnAn(a,b) (mod 2mn+(n+1)(ord2a+1)−αn+1).

From (3.7) we have 2(1+ord2a)n−αn | An(a,b). Since αn+1 = αn or αn + 1 we see that
mn+(n+1)(1+ord2a)−αn+1 ≥ mn+(1+ord2a)n−αn. Hence, by (3.11) we get

(3.12)
n

∑
r=0

(
n
r

)
(−1)rE(a)

2mrt+b ≡ 0 (mod 2mn+(1+ord2a)n−αn).

For n′ ≥ n+1 we have n′−αn′ ≥ n+1−αn+1 and so

mn′+(1+ord2a)n′−αn′ ≥ (m+ord2a)(n+1)+n+1−αn+1.

Thus, using (3.12) we see that for n′ ≥ n+1,

(3.13)
n′

∑
r=0

(
n′

r

)
(−1)rE(a)

2mrt+b ≡ 0 (mod 2m+mn+(n+1)(ord2a+1)−αn+1).
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When 2 | n and 2 - b, by Theorem 3.1(iii) and the fact αn+1 ≥ αn we have

ord2An(a,b)≥ (2+ord2a)(n+1)−αn−n≥ (n+1)(1+ord2a)+1−αn+1.

Thus, it follows from (3.11) that

(3.14)
n

∑
r=0

(
n
r

)
(−1)rE(a)

2mr+b ≡ 0 (mod 2mn+(n+1)(ord2a+1)−αn+1).

By (3.4) we have

(3.15) An(a,b) =
1
2n

[b/2]

∑
r=0

(
[b/2]

r

)
(−1)r

r+n

∑
s=0

(
r +n

s

)
(−1)sE(a)

2s+b−2[ b
2 ]
.

From Theorem 3.1(iii) we know that

r+n

∑
s=0

(
r +n

s

)
(−1)sE(a)

2s+b−2[ b
2 ]
≡ 0 (mod 2(2+ord2a)(r+n)−αr+n).

For r ∈ N we have (2 + ord2a)(r + n)−αr+n ≥ (1 + ord2a)(n + 1)+ n + 1−αn+1.
Thus, from the above we deduce that

(3.16) An(a,b)≡ en(a,b) (mod 2(1+ord2a)(n+1)+1−αn+1).

Now combining (3.11)-(3.14), (3.16) with (3.8) we derive the result.
Theorem 3.3. Let a be a nonzero integer, k,m ∈ N, m ≥ 2 and b ∈ {0,1,2, . . .}.

Then

E(a)
2mk+b−E(a)

b

≡





2mk(a3((b−1)2 +5)−a+2mka3(b−1)) (mod 2m+4+3ord2a) if 2 | a,

2mka((b+1)2 +4−2mk(b+1)) (mod 2m+4) if 2 - a and 2 | b,

2mk(a2−1) (mod 2m+4) if 2 - ab.

Proof. For s ∈ N let αs ∈ Z be given by 2αs−1 ≤ s < 2αs , and let

As(a,b) = 2−s
s

∑
r=0

(
s
r

)
(−1)rE(a)

2r+b and es(a,b) = 2−s
s

∑
r=0

(
s
r

)
(−1)rE(a)

2r+b−2[ b
2 ]
.

Since s(r,1) = (r−1)! and S( j,1) = 1, taking n = 1 and t = k in (3.9) we see that

(3.17)
E(a)

b −E(a)
2mk+b = 2mk

{
A1(a,b)+

2m−1k

∑
r=2

Ar(a,b)
(2r−1

r

−2
r

∑
j=2

(−1) js(r, j) j!
r!

2r− j · 2 j−1

j!
·2(m−1) j−mk j−1

)}
.
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For j ≥ 3 it is easily seen that 2 j−1

j! ·2(m−1) j−m ≡ 0 (mod 4). By Theorem 3.1(iii) we
have 2(1+ord2a)r−αr | Ar(a,b). Thus, for r ≥ 5 we have ord2Ar(a,b)≥ (1 +ord2a)r−
αr ≥ 5ord2a+5−α5 = 2+5ord2a. Set Hk = 1+ 1

2 + · · ·+ 1
k . From the definition of

Stirling numbers we know that s(n,2) = (n−1)!Hn−1 for n≥ 2. Thus, for r ≥ 2,

(−1)2s(r,2)2!
r!

2r−2 · 22−1

2!
·2m−2k = Hr−1

2r−1

r
·2m−2k.

Hence, from the above we deduce that

E(a)
2mk+b−E(a)

b

≡−2mk
(

A1(a,b)+
2m−1k

∑
r=2

Ar(a,b)
(2r−1

r
−Hr−1

2r−1

r
·2m−1k

))
(mod 2m+4+3ord2a).

Set

f (r) = Hr−1
2r−1

r
= 2αr−1−1Hr−1 · 2r−αr−1

r
.

Since 2αr−1−1Hr−1 ∈ Z we see that f (r) ≡ 0 (mod 4) for r ≥ 5. It is easily seen that
f (2) = 1, f (3) = 2 and f (4) = 11

3 . Hence, from the above we deduce that
(3.18)

E(a)
2mk+b−E(a)

b +2mk
{

A1(a,b)+(1−2m−1k)A2(a,b)
}

≡





0 (mod 2m+4+3ord2a) if m = 2 and k = 1,

−2mk{(4
3
−2mk)A3(a,b)+(2− 11

3
·2m−1k)A4(a,b)} (mod 2m+4+3ord2a)

if m > 2 or k > 1.

From (3.16) we see that
(3.19)

A4(a,b)≡ e4(a,b) (mod 23+5ord2a) and A3(a,b)≡ e3(a,b) (mod 22+4ord2a).

If 2 - b, by Theorem 3.1(iii) we have

A4(a,b) =
1
24

4

∑
k=0

(
4
k

)
(−1)kE(a)

2k+b ≡ 0 (mod 23+5ord2a).

From Theorem 2.1 we have

(3.20)

E(a)
0 = 1, E(a)

1 = 1−a, E(a)
2 = 1−2a, E(a)

3 = 1−3a+2a3,

E(a)
4 = 1−4a+8a3, E(a)

5 = 1−5a+20a3−16a5,

E(a)
6 = 1−6a+40a3−96a5, E(a)

7 = 1−7a+70a3−336a5 +272a7,

E(a)
8 = 1−8a+112a3−896a5 +2176a7.
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Hence, if 2 | b, from (3.19) and (3.20) we deduce that

A4(a,b)≡ e4(a,b) =
1
16

(
E(a)

0 −4E(a)
2 +6E(a)

4 −4E(a)
6 +E(a)

8

)

= 8a5(17a2−4)≡ 0 (mod 23+5ord2a).

Therefore, we always have A4(a,b)≡ 0 (mod 23+5ord2a). From (3.20) we see that
(3.21)

e3(a,b) =





1
8
(E(a)

0 −3E(a)
2 +3E(a)

4 −E(a)
6 ) = 2a3(6a2−1) if 2 | b,

1
8
(E(a)

1 −3E(a)
3 +3E(a)

5 −E(a)
7 ) = 2a3(−17a4 +18a2−1) if 2 - b.

Thus, applying (3.19) we get A3(a,b) ≡ e3(a,b) ≡ (1 +(−1)ab)a3 (mod 22+3ord2a).
Therefore, (4

3 − 2mk)A3(a,b) ≡ (4
3 − 2mk)(1 + (−1)ab)a3 ≡ −4a3(1 + (−1)ab)(1 +

2m−2k) (mod 24+3ord2a). Hence, by the above and (3.18) we obtain

(3.22)
E(a)

2mk+b−E(a)
b ≡−2mk

{
A1(a,b)+(1−2m−1k)A2(a,b)

−4a3(1+(−1)ab)(1+2m−2k)
}

(mod 2m+4+3ord2a).

From Theorem 3.1(ii) we see that

(3.23)
r

∑
s=0

(
r
s

)
(−1)sE(a)

2s+b−2[ b
2 ]
≡ 0 (mod 27+5ord2a) for r ≥ 4.

Thus, by (3.15) we have

A2(a,b) =
1
4

[b/2]

∑
k=0

(
[b/2]

k

)
(−1)k

k+2

∑
s=0

(
k +2

s

)
(−1)sE(a)

2s+b−2[ b
2 ]

≡ 1
4

( 2

∑
s=0

(
2
s

)
(−1)sE(a)

2s+b−2[ b
2 ]
− [b

2
] 3

∑
s=0

(
3
s

)
(−1)sE(a)

2s+b−2[ b
2 ]

)

=
1
4

(
4e2(a,b)− [b

2
] ·8e3(a,b)

)
= e2(a,b)−2

[b
2
]
e3(a,b) (mod 24+3ord2a).

From (3.20) we know that

(3.24) e2(a,b) =
1
4
(
E(a)

b−2[ b
2 ]
−2E(a)

2+b−2[ b
2 ]

+E(a)
4+b−2[ b

2 ]

)
=

{
2a3 if 2 | b,

4a3(1−a2) if 2 - b.

This together with (3.21) yields

e2(a,b)−2
[b

2
]
e3(a,b)

=





2a3−b ·2a3(6a2−1) = 2a3(1+b−6a2b) if 2 | b,

4a3(1−a2)− (b−1) ·2a3(−17a4 +18a2−1)
= 2a3(17a4(b−1)+(16−18b)a2 +b+1) if 2 - b.
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Thus,

(3.25)

A2(a,b)≡ e2(a,b)−2
[b

2
]
e3(a,b)

≡





2a3(1+b) (mod 24+3ord2a) if 2 | a,

2a(1−b) (mod 24+3ord2a) if 2 - a and 2 | b,

0 (mod 24+3ord2a) if 2 - ab.

By (3.23) and (3.15) we have

A1(a,b) =
1
2

[b/2]

∑
k=0

(
[b/2]

k

)
(−1)k

k+1

∑
s=0

(
k +1

s

)
(−1)sE(a)

2s+b−2[ b
2 ]

≡ 1
2

2

∑
k=0

(
[b/2]

k

)
(−1)k

k+1

∑
s=0

(
k +1

s

)
(−1)sE(a)

2s+b−2[ b
2 ]

=
1
2

(
2e1(a,b)− [b

2
] ·4e2(a,b)+

(
[b

2 ]
2

)
·8e3(a,b)

)

= e1(a,b)−2
[b

2
]
e2(a,b)+2

[b
2
]([b

2
]−1

)
e3(a,b) (mod 24+3ord2a).

From (3.20) we have

(3.26) e1(a,b) =
1
2
(
E(a)

b−2[ b
2 ]
−E(a)

2+b−2[ b
2 ]

)
=

{
a if 2 | b,

a−a3 if 2 - b

Hence, from the above we deduce
(3.27)

A1(a,b)≡ e1(a,b)−2
[b

2
]
e2(a,b)+2

[b
2
]([b

2
]−1

)
e3(a,b)

=





a−b ·2a3 +
b(b−2)

2
·2a3(6a2−1) = a(1−a2b2 +6a4b(b−2))

≡ a−a3b2 (mod 24+3ord2a) if 2 | b,

a−a3− (b−1) ·4a3(1−a2)+(b−1)(b−3)a3(−17a4 +18a2−1)
≡ a−a3b2 (mod 24+3ord2a) if 2 | a and 2 - b,

a−a3− (b−1) ·4a3(1−a2)+(b−1)(b−3)a3(−17a4 +18a2−1)
≡ 1−a2 (mod 24+3ord2a) if 2 - a and 2 - b.

Now substituting (3.25) and (3.27) into (3.22) we obtain the result.

For a = 1, 2 | b and m≥ 4, by Theorem 3.3 we have

E2mk+b ≡
{

Eb +5 ·2mk (mod 2m+4) if b≡ 0,6 (mod 8),
Eb−3 ·2mk (mod 2m+4) if b≡ 2,4 (mod 8).
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This has been given by the author in [13].
Corollary 3.2. Let k be a nonnegative integer. Then

E(2)
4k ≡

{
56k +1 (mod 512) if 4 | k(k−1),
56k−255 (mod 512) if 4 - k(k−1),

E(2)
4k+2 ≡

{−200k−3 (mod 512) if 4 | k(k−1),
−200k +253 (mod 512) if 4 - k(k−1),

E(2)
4k+1 ≡ 152k−1 (mod 512), E(2)

4k+3 ≡ 24k +11 (mod 512).

Proof. Taking a = 2 and m = 2 in Theorem 3.3 we deduce the result for k ≥ 1.
Since E(2)

0 = 1, E(2)
1 = −1, E(2)

2 = −3 and E(3)
3 = 11, we see that the result is also

true for k = 0.
Theorem 3.4. Let a be a nonzero integer, k,m ∈ N and b ∈ {0,1,2, . . .}. Then

E(a)
2mk+b ≡ kE(a)

2m+b− (k−1)E(a)
b (mod 22m+1+3ord2a).

Proof. For s∈N set es(a,b) = 2−s ∑s
r=0

(s
r

)
(−1)rE(a)

2r+b−2[ b
2 ]

. From (3.24) we know

that 2a3 | e2(a,b) and so 21+3ord2a | e2(a,b). Now taking n = 2 and t = 1 in Theorem
3.2 and then applying the above we deduce the result.

4. Congruences for E(2)
k(p−1)+b and E(3)

k(p−1)+b (mod pn)

Let p be an odd prime. In [12] the author showed that f (k) = (1 −
(−1)

p−1
2 pk(p−1)+b) Ek(p−1)+b is a p-regular function when b is even. In this section we

establish similar results for E(2)
n and E(3)

n , and then use them to deduce congruences
for E(2)

k(p−1)+b and E(3)
k(p−1)+b (mod pn).

Lemma 4.1. Let m ∈ N, r ∈ {0,1,2, . . . ,m−1} and b ∈ {0,1,2, . . .}. Let p be an
odd prime not dividing m. Then

f (k) = mk(p−1)+b
(

Ek(p−1)+b

( r
m

)
− (−1)

pAr−r
m Ek(p−1)+b

(Ar

m

)
pk(p−1)+b

)

is a p-regular function, where Ar ∈ {0,1, . . . ,m−1} is given by pAr ≡ r (mod m).
Proof. For x ∈ Zp let 〈−x〉p be the least nonnegative residue of −x modulo p.

From [10,Theorem 3.1] we know that

Bk(p−1)+b+1(x)−Bk(p−1)+b+1

k(p−1)+b+1
− pk(p−1)+b

Bk(p−1)+b+1(
x+〈−x〉p

p )−Bk(p−1)+b+1

k(p−1)+b+1
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is a p-regular function. Hence

g(k) =
Bk(p−1)+b+1(m+r

2m )−Bk(p−1)+b+1( r
2m)

k(p−1)+b+1

− pk(p−1)+b
Bk(p−1)+b+1(

m+r
2m +〈−m+r

2m 〉p
p )−Bk(p−1)+b+1(

r
2m +〈− r

2m 〉p
p )

k(p−1)+b+1

is a p-regular function.
Let A′r ∈ {0,1, . . . ,2m− 1} be such that pA′r ≡ r (mod 2m). Then p(A′r ±m) ≡

m+r (mod 2m) and Ar = A′r or A′r−m according as A′r < m or A′r ≥m. As
r

2m +〈− r
2m 〉p

p =
r

2m + pA′r−r
2m

p = A′r
2m and

m+r
2m + 〈−m+r

2m 〉p

p
=





m+r
2m + p(A′r+m)−(m+r)

2m
p

=
A′r +m

2m
if A′r < m,

m+r
2m + p(A′r−m)−(m+r)

2m
p

=
A′r−m

2m
if A′r ≥ m,

using (2.1) we see that

Bk(p−1)+b+1(
m+r
2m +〈−m+r

2m 〉p
p )−Bk(p−1)+b+1(

r
2m +〈− r

2m 〉p
p )

k(p−1)+b+1

=





Bk(p−1)+b+1(
A′r+m

2m )−Bk(p−1)+b+1(
A′r
2m)

k(p−1)+b+1
= 2−(k(p−1)+b+1)Ek(p−1)+b(

A′r
m

)

if A′r < m,

Bk(p−1)+b+1(
A′r−m

2m )−Bk(p−1)+b+1(
A′r
2m)

k(p−1)+b+1
=−2−(k(p−1)+b+1)Ek(p−1)+b(

A′r−m
m

)

if A′r ≥ m.

= 2−(k(p−1)+b+1) · (−1)
pAr−r

m Ek(p−1)+b

(Ar

m

)
.

Also, by (2.1) we have

Bk(p−1)+b+1(m+r
2m )−Bk(p−1)+b+1( r

2m)
k(p−1)+b+1

= 2−(k(p−1)+b+1)Ek(p−1)+b

( r
m

)
.

Thus, from the above we see that

g(k) = 2−(k(p−1)+b+1)
(

Ek(p−1)+b

( r
m

)
− (−1)

pAr−r
m Ek(p−1)+b

(Ar

m

)
pk(p−1)+b

)
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is a p-regular function. By Fermat’s little theorem we have
n

∑
k=0

(
n
k

)
(−1)k(2m)k(p−1)+b = (2m)b(1− (2m)p−1)n ≡ 0 (mod pn).

Thus 2k(p−1)+b+1mk(p−1)+b is a p-regular function. Hence, by the product theorem
for p-regular functions ([10, Theorem 2.3]), f (k) = 2k(p−1)+b+1mk(p−1)+bg(k) is a
p-regular function as asserted.

From Lemma 4.1 we have the following result.
Lemma 4.2. Let p be an odd prime, m ∈ {2,3,4, . . .} and p ≡ ±1 (mod m). Let

b be a nonnegative integer and r ∈ {1,2, . . . ,m−1}. Then

f (k)=





(1− (−1)
r(p−1)

m pk(p−1)+b)mk(p−1)+bEk(p−1)+b(
r
m

) if p≡ 1 (mod m),

(1− (−1)b+1+ r(p+1)
m pk(p−1)+b)mk(p−1)+bEk(p−1)+b(

r
m

) if p≡−1 (mod m)

is a p-regular function.
Proof. Let Ar ∈ {1,2, . . . ,m− 1} be such that pAr ≡ r (mod m). Then clearly

Ar = r or m− r according as p ≡ 1 or −1 (mod m). Since En(1− x) = (−1)nEn(x),
we have

Ek(p−1)+b

(m− r
m

)
= (−1)k(p−1)+bEk(p−1)+b

( r
m

)
= (−1)bEk(p−1)+b

( r
m

)
.

Now applying the above and Lemma 4.1 we deduce the result.
Theorem 4.1. Let p be an odd prime and let b be a nonnegative integer. Then
(i) f2(k) = (1− (−1)

p−1
2 b+[ p−1

4 ]pk(p−1)+b)E(2)
k(p−1)+b is a p-regular function.

(ii) f3(k) = (1− (−1)[ p+1
6 ]( p

3

)b+1 pk(p−1)+b)E(3)
k(p−1)+b is a p-regular function.

Proof. Putting m = 4 and r = 1 in Lemma 4.2 and applying Theorem 2.1 we obtain
(i). Putting m = 6 and r = 1 in Lemma 4.2 and applying Theorem 2.1 we obtain (ii)
in the case p > 3. From Theorem 3.1(i) we see that (ii) is also true for p = 3. So the
theorem is proved.

From Theorem 4.1 and [12, Theorem 4.3 (with t = 1 and d = 0)] we deduce the
following results.

Theorem 4.2. Let p be an odd prime and k,m,n ∈ N. Let b be a nonnegative
integer. Then
(

1− (−1)
p−1

2 b+[ p−1
4 ]pkϕ(pm)+b

)
E(2)

kϕ(pm)+b

≡
n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)(
1− (−1)

p−1
2 b+[ p−1

4 ]prϕ(pm)+b
)

E(2)
rϕ(pm)+b (mod pmn)

and(
1− (−1)[ p+1

6 ]( p
3
)b+1 pkϕ(pm)+b

)
E(3)

kϕ(pm)+b

20



≡
n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)(
1− (−1)[ p+1

6 ]( p
3
)b+1 prϕ(pm)+b

)
E(3)

rϕ(pm)+b (mod pmn).

In particular, for n = 1 we have E(2)
kϕ(pm)+b ≡ (1− (−1)

p−1
2 b+[ p−1

4 ]pb)E(2)
b (mod pm)

and E(3)
kϕ(pm)+b ≡ (1− (−1)[ p+1

6 ]( p
3

)b+1 pb)E(3)
b (mod pm).

Lemma 4.3. (See [10, Theorem 2.1].) Let p be a prime, n ∈ N and let f be a
p-regular function. Then there are integers a0,a1, . . . ,an−1 such that

f (k)≡ an−1kn−1 + · · ·+a1k +a0 (mod pn) for k = 0,1,2, . . . .

Moreover, if p ≥ n, then a0,a1, . . . ,an−1 (mod pn) are uniquely determined and
ps−ordps! | as for s = 0,1, . . . ,n−1.

From Theorem 4.1 and Lemma 4.3 we deduce the following result.
Theorem 4.3. Let p be an odd prime, n ∈ N and p ≥ n. Let b be a non-

negative integer. Then there are unique integers a0,a1, . . . ,an−1,c0,c1, . . . ,cn−1 ∈
{0,±1,±2, . . . , ± pn−1

2 } such that for every nonnegative integer k,

(
1− (−1)

p−1
2 b+[ p−1

4 ]pk(p−1)+b)E(2)
k(p−1)+b ≡ an−1kn−1 + · · ·+a1k +a0 (mod pn)

and
(

1− (−1)[ p+1
6 ]

( p
3

)b+1
pk(p−1)+b

)
E(3)

k(p−1)+b ≡ cn−1kn−1 + · · ·+ c1k + c0 (mod pn).

Moreover, ps−ordps! | as and ps−ordps! | cs for s = 0,1, . . . ,n−1.
Corollary 4.1. Let k ∈ N. Then
(i) E(2)

2k ≡−9k2 +6k (mod 27), E(2)
2k+1 ≡ 9k2 +6k−4 (mod 27);

(ii) E(2)
4k ≡ 1375k3−375k2 +305k +2 (mod 3125) (k ≥ 2);

(iii) E(2)
4k+1 ≡−625k3−1475k2−1380k−6 (mod 3125);

(iv) E(2)
4k+2 ≡−375k3−975k2−1335k−78 (mod 3125);

(v) E(2)
4k+3 ≡−1500k3 +825k2−1100k +1386 (mod 3125).

Proof. As E(2)
0 = 1, E(2)

1 =−1 and E(2)
2 =−3, taking p = n = 3 in Theorem 4.3

we see that
(
1−32k

)
E(2)

2k ≡−9k2 +6k (mod 27) and
(
1+32k+1

)
E(2)

2k+1 ≡ 9k2 +6k−
4 (mod 27). This yields (i). Parts (ii)-(v) can be proved similarly.

Corollary 4.2. Let k ∈ N. Then
(i) E(3)

2k ≡−6k +1 (mod 27), E(3)
2k+1 ≡−6k−2 (mod 27);

(ii) E(3)
4k ≡ 375k3 +450k2−620k (mod 3125);

(iii) E(3)
4k+1 ≡ 1250k4−625k3−175k2−675k−12 (mod 3125);

(iv) E(3)
4k+2 ≡−625k4−500k3 +1000k2−385k +120 (mod 3125);

(v) E(3)
4k+3 ≡−625k4−625k3−525k2−1435k−454 (mod 3125).
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5. {(−1)nE(a)
2n } is realizable

Let {bn}(n ≥ 1) be a given sequence of integers, and let {an} be defined by a1 = b1
and nan = bn + a1bn−1 + · · ·+ an−1b1 (n = 2,3,4, . . .). If {an} is also a sequence of
integers, following [11] we say that {bn} is a Newton-Euler sequence.

Lemma 5.1. (See [14, Lemma 5.1].) Let {bn}∞
n=1 be a sequence of integers. Then

the following statements are equivalent:
(i) {bn} is a Newton-Euler sequence.
(ii) ∑d|n µ

( n
d

)
bd ≡ 0 (mod n) for every n ∈ N.

(iii) For any prime p and α,m ∈ N with p - m we have bmpα ≡ bmpα−1 (mod pα).
(iv) For any n, t ∈ N and prime p with pt ‖ n we have bn ≡ b n

p
(mod pt).

(v) There exists a sequence {cn} of integers such that bn = ∑d|n dcd for any n∈N.
Proof. From [1, Theorem 3] or [2] we know that (i), (ii) and (iii) are equivalent.

Clearly (iii) is equivalent to (iv). Using Möbius inversion formula we see that (ii) and
(v) are equivalent. So the lemma is proved.

Let {bn}∞
n=1 be a sequence of nonnegative integers. If there is a set X and a map

T : X → X such that bn is the number of fixed points of T n, following [7] and [1] we
say that {bn} is realizable.

In [7], Puri and Ward proved that a sequence {bn} of nonnegative integers is
realizable if and only if for any n ∈ N, 1

n ∑d|n µ( n
d )bd is a nonnegative integer. Thus,

using Möbius inversion formula we see that a sequence {bn} is realizable if and only
if there exists a sequence {cn} of nonnegative integers such that bn = ∑d|n dcd for any
n ∈ N. In [1] J. Arias de Reyna showed that {E2n} is a Newton-Euler sequence and
{|E2n|} is realizable.

Lemma 5.2. (See [6, p.30]). For n ∈ N and 0≤ x≤ 1 we have

En(x) = 4 · n!
πn+1

∞

∑
m=0

sin((2m+1)πx− nπ
2 )

(2m+1)n+1 .

Taking x = 1
4 in Lemma 5.2 and applying Theorem 2.1 we deduce

(5.1)
∞

∑
m=0

(−1)[ m−n
2 ] 1

(2m+1)n+1 =
√

2E(2)
n

n!

(π
4

)n+1
.

Theorem 5.1. Let a,n ∈ N. Then

(−1)nE(a)
2n >

4n+1a2n−1 · (2n)!
π2n+1

(
1− 1

(2a+1)2n+1

)
> 0
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and

(−1)nE(a)
2n <

4n+1a2n · (2n)!
π2n+1

a−1

∑
r=0

1
(2r +1)2n+1 <

4n+1a2n · (2n)!
π2n+1

(
1+

a−1
32n+1

)
.

Proof. By Theorem 2.1 and Lemma 5.2 we have

(−1)nE(a)
2n

= (−1)n(2a)2nE2n

( 1
2a

)
= (−4a2)n ·4 · (2n)!

π2n+1

∞

∑
m=0

sin( (2m+1)π
2a −nπ)

(2m+1)2n+1

=
4n+1a2n · (2n)!

π2n+1

∞

∑
m=0

sin (2m+1)π
2a

(2m+1)2n+1 =
4n+1a2n · (2n)!

π2n+1

∞

∑
k=0

2a−1

∑
r=0

sin (2r+1)π
2a

(4ak +2r +1)2n+1

=
4n+1a2n · (2n)!

π2n+1

∞

∑
k=0

a−1

∑
r=0

sin
(2r +1)π

2a

( 1
(4ak +2r +1)2n+1 −

1
(4ak +2a+2r +1)2n+1

)
.

For r ∈ {0,1, . . . ,a−1} we have sin (2r+1)π
2a > 0 and so

sin
(2r +1)π

2a

( 1
(4ak +2r +1)2n+1 −

1
(4ak +2a+2r +1)2n+1

)
> 0.

Thus,

(−1)nE(a)
2n >

4n+1a2n · (2n)!
π2n+1

(
1− 1

(2a+1)2n+1

)
sin

π
2a

.

It is well known that sinx≥ 2
π x for 0≤ x≤ π

2 . Thus sin π
2a ≥ 1

a . So the first inequality
is true. Since

∞

∑
k=0

a−1

∑
r=0

sin
(2r +1)π

2a

( 1
(4ak +2r +1)2n+1 −

1
(4ak +2a+2r +1)2n+1

)

<
a−1

∑
r=0

∞

∑
k=0

( 1
(4ak +2r +1)2n+1 −

1
(4ak +4a+2r +1)2n+1

)

=
a−1

∑
r=0

1
(2r +1)2n+1 < 1+(a−1)

1
32n+1 ,

combining the above we obtain the remaining inequality.
Theorem 5.2. Let n ∈ N with 2 - n. Then (−1)

n+1
2 E(2)

n > 0 and (−1)
n+1

2 E(3)
n > 0.

Proof. For k ≥ 0 we see that

1
(8k +1)n+1 −

1
(8k +3)n+1 −

1
(8k +5)n+1 +

1
(8k +7)n+1
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=
(8k +1)n+1 +(8k +7)n+1

(8k +1)n+1(8k +7)n+1 − (8k +3)n+1 +(8k +5)n+1

(8k +3)n+1(8k +5)n+1

>
(8k +1)n+1 +(8k +7)n+1− (8k +3)n+1− (8k +5)n+1

(8k +3)n+1(8k +5)n+1

=
∑n

r=0
(n+1

r

)
(8k +3)r4n+1−r−∑n

r=0
(n+1

r

)
(8k +1)r4n+1−r

(8k +3)n+1(8k +5)n+1 > 0.

Thus,

(−1)
n+1

2

∞

∑
m=0

(−1)[ m−n
2 ] 1

(2m+1)n+1

=
∞

∑
k=0

( 1
(8k +1)n+1 −

1
(8k +3)n+1 −

1
(8k +5)n+1 +

1
(8k +7)n+1

)
> 0.

Now applying (5.1) we deduce (−1)
n+1

2 E(2)
n > 0.

Similarly, for k ≥ 0 we have

1
(12k +1)n+1 −

1
(12k +5)n+1 −

1
(12k +7)n+1 +

1
(12k +11)n+1 > 0.

Thus, using Lemma 5.2 and Theorem 2.1 we obtain

(−1)
n+1

2
E(3)

n ·πn+1

4 ·6n ·n!

= (−1)
n+1

2
En

( 1
6

)
πn+1

4 ·n!
= (−1)

n+1
2

∞

∑
m=0

sin(2m+1−3n)π
6

(2m+1)n+1

=
√

3
2

∞

∑
k=0

( 1
(12k +1)n+1 −

1
(12k +5)n+1 −

1
(12k +7)n+1 +

1
(12k +11)n+1

)
> 0.

Hence, (−1)
n+1

2 E(3)
n > 0. The proof is now complete.

Theorem 5.3. Let a be a positive integer. For any prime divisor p of n ∈ N we
have E(a)

2n ≡ E(a)
2n/p (mod pordpn). Hence {E(a)

2n } is a Newton-Euler sequence.
Proof. Suppose 2 | n and n = 2mn0 with 2 - n0. From Theorem 3.3 we see that

E(a)
2mk ≡ E(a)

0 = 1 (mod 2m) for m ≥ 2 and k ∈ N. It is well known that 2 - E2k. Thus,
using Theorem 2.1 we see that E(a)

2k ≡ (1−a)2kE0 +a2kE2k ≡ 1 (mod 2). Hence,

E(a)
2n = E(a)

2m·2n0
≡ 1≡ E(a)

2mn0
= E(a)

n (mod 2m).

Now suppose that p is an odd prime divisor of n and n = pmn1 with p - n1. If p | a,
by Theorem 2.1 and the fact p2r−1

r ∈ Zp for r ≥ 1 we have

E(a)
2n = (1−a)2n +

n

∑
r=1

n
(

2n−1
2r−1

)
(1−a)2n−2r a2r

r
E2r ≡ (1−a)2n (mod pm)
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and

E(a)
2n
p

= (1−a)
2n
p +

n/p

∑
r=1

n
p

(
2 n

p −1
2r−1

)
(1−a)2 n

p−2r a2r

r
E2r ≡ (1−a)

2n
p (mod pm).

Since p | a, we have

(1−a)2n = (1−a)2n1ϕ(pm)+2n1 pm−1 ≡ (1−a)2n1 pm−1
= (1−a)

2n
p (mod pm).

Thus E(a)
2n ≡ E(a)

2n/p (mod pm).
Let us consider the case p - a. Suppose that A1 ∈ {0,1, . . . ,2a− 1} is given by

2a | (pA1−1). From Lemma 4.1 we know that for a given nonnegative integer b,

f (k)= (2a)k(p−1)+bEk(p−1)+b

( 1
2a

)
−(−1)

pA1−1
2a (2a)k(p−1)+bEk(p−1)+b

(A1

2a

)
pk(p−1)+b

is a p-regular function. By [10, Corollary 2.1] we have f (kpm−1)≡ f (0) (mod pm).
Thus, using Theorem 2.1 we obtain

(5.2) E(a)
kpm−1(p−1)+b ≡ E(a)

b (mod pm) for b≥ m.

As 2n1 pm−1 ≥ m, using (5.2) we see that

E(a)
2n = E(a)

2n1 pm = E(a)
2n1 pm−1(p−1)+2n1 pm−1 ≡ E(a)

2n1 pm−1 = E(a)
2n/p (mod pm).

Now putting all the above together with Lemma 5.1 we obtain the result.
Theorem 5.4. Let a ∈ N. Then {(−1)nE(a)

2n } is realizable.
Proof. Suppose that p is a prime divisor of n and t = ordpn. From Theorem 5.3

we know that E(a)
2n ≡ E(a)

2n/p (mod pt). It is easily seen that (−1)n ≡ (−1)n/p (mod pt).

Thus, (−1)nE(a)
2n ≡ (−1)n/pE(a)

2n/p (mod pt). Hence, using Lemma 5.1 we know that

{(−1)nE(a)
2n } is a Newton-Euler sequence and so 1

n ∑d|n µ( n
d )(−1)dE(a)

2d ∈ Z. By The-

orem 5.1, (−1)nE(a)
2n > 0. Now it remains to show that ∑d|n µ( n

d )(−1)dE(a)
2d ≥ 0. From

(3.20) we have E(a)
2 = 1−2a and E(a)

4 = 1−4a+8a3. Thus the inequality is true for
n = 1,2.

From now on we assume n ≥ 3. Observe that 1 + a−1
32m+1 < a and 1− 1

(2a+1)2m+1 ≥
1− 1

32m+1 ≥ 1− 1
27 = 26

27 for m ∈ N. Using Theorem 5.1 we see that for m ∈ N,

(5.3)
26
27
· 4m+1a2m−1 · (2m)!

π2m+1 < (−1)mE(a)
2m <

4m+1a2m+1 · (2m)!
π2m+1 .

Hence

∑
d|n

µ(n/d)(−1)dE(a)
2d
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= (−1)nE(a)
2n + ∑

d|n,d≤ n
2

µ(n/d)(−1)dE(a)
2d

≥ (−1)nE(a)
2n −

[n/2]

∑
d=1

(−1)dE(a)
2d >

26
27
· 4n+1a2n−1 · (2n)!

π2n+1 −
[n/2]

∑
d=1

4d+1a2d+1 · (2d)!
π2d+1

≥ 26
27
· 16a

π3 · (2n)!
(4a2

π2

)n−1
−

[n/2]

∑
d=1

4a
π

(4a2

π2

)d
·n!

=
26
27
· 16a

π3 ·n!
{

(n+1)(n+2) · · ·(2n)
(4a2

π2

)n−1
− 27

26
· π2

4
· (

4a2

π2 )[ n
2 ]+1− 4a2

π2

4a2

π2 −1

}
.

For a≥ 2 we have (4a2

π2 )n−1 > (4a2

π2 )[ n
2 ]+1− 4a2

π2 and

(n+1)(n+2) · · ·(2n)≥ 4 ·5 ·6 >
27
26
· π2/4

16/π2−1
≥ 27

26
· π2

4
· 1

4a2/π2−1
.

Thus, from the above we deduce ∑d|n µ
( n

d

)
(−1)dE(a)

2d > 0. For a = 1 we see that

(n+1)(n+2) · · ·(2n)
( 4

π2

)n−1
− 27

26
· π2

4
·

4
π2 − ( 4

π2 )[ n
2 ]+1

1− 4
π2

> 2n
(4(n+1)

π2

)n−1
− 27

26
· 1

1−4/π2 > 2n− 27
26
· 1

1−4/π2 > 0

and so ∑d|n µ
( n

d

)
(−1)dE(a)

2d > 0 by the above.
Now summarizing the above we prove the theorem.

Acknowledgements. The author thanks the referee for his helpful comments and
valuable suggestion on improving Theorem 3.3.
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