Advances in Applied Mathematics 48(2012), 106-120 **Constructing** x^2 for primes $p = ax^2 + by^2$

Zhi-Hong Sun

School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, P.R. China E-mail: zhihongsun@yahoo.com Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let *a* and *b* be positive integers and let *p* be an odd prime such that $p = ax^2 + by^2$ for some integers *x* and *y*. Let $\lambda(a, b; n)$ be given by $q \prod_{k=1}^{\infty} (1-q^{ak})^3 (1-q^{bk})^3 = \sum_{n=1}^{\infty} \lambda(a, b; n)q^n$. In this paper, using Jacobi's identity $\prod_{n=1}^{\infty} (1-q^n)^3 = \sum_{k=0}^{\infty} (-1)^k (2k+1)q^{\frac{k(k+1)}{2}}$, we construct x^2 in terms of $\lambda(a, b; n)$. For example, if $2 \nmid ab$ and $p \nmid ab(ab+1)$, then $(-1)^{\frac{a+b}{2}x+\frac{b+1}{2}}(4ax^2-2p) = \lambda(a, b; ((ab+1)p-a-b)/8+1)$. We also give formulas for $\lambda(1, 3; n+1), \lambda(1, 7; 2n+1), \lambda(3, 5; 2n+1)$ and $\lambda(1, 15; 4n+1)$.

MSC: Primary 11E16, Secondary 11E25 Keywords: Binary quadratic form; Jacobi's identity

1. Introduction

Let p be a prime of the form 4k + 1. The two squares theorem asserts that there are unique positive integers x and y such that $p = x^2 + y^2$ and $2 \nmid x$. Since Legendre and Gauss, there are several methods to construct x and y. For example, if we choose the sign of x so that $x \equiv 1 \pmod{4}$, we then have

(1.1) (Gauss [3], 1825)
$$2x \equiv \begin{pmatrix} \frac{p-1}{2} \\ \frac{p-1}{4} \end{pmatrix} \pmod{p},$$

(1.2) (Jacobsthal [3], 1907) $2x = -\sum_{n=0}^{p-1} \left(\frac{n^3 - 4n}{p}\right),$
(1.3) (Liouville [7], 1862) $6x = N(p = t^2 + u^2 + v^2 + 16w^2) - 3p - 3,$
(1.4) (Klein and Fricke [6], 1892) $4x^2 - 2p = [q^p]q \prod_{k=1}^{\infty} (1 - q^{4k})^6,$
(1.5) (Sun [13], 2006) $2y = 5p + 3 - 8V_p(z^4 - 3z^2 + 2z)$ for $p \equiv 5 \pmod{12}$

where $\left(\frac{a}{p}\right)$ is the Legendre-Jacobi-Kronecker symbol, $N(p = t^2 + u^2 + v^2 + 16w^2)$ is the number of integral solutions to $p = t^2 + u^2 + v^2 + 16w^2$, $[q^n]f(q)$ denotes the coefficient of

¹The author is supported by the Natural Sciences Foundation of China (grant No. 10971078).

 q^n in the power series expansion of f(q), and $V_p(f(z))$ is the number of $c \in \{0, 1, \ldots, p-1\}$ such that $f(z) \equiv c \pmod{p}$ is solvable. We note that (1.3) was conjectured by Liouville and proved by A. Alaca, S. Alaca, M. F. Lemire, and K. S. Williams ([1]).

Let \mathbb{Z} and \mathbb{N} denote the sets of integers and positive integers, respectively. For $a, b, n \in \mathbb{N}$ let $\lambda(a, b; n) \in \mathbb{Z}$ be given by

$$q\prod_{k=1}^{\infty} (1-q^{ak})^3 (1-q^{bk})^3 = \sum_{n=1}^{\infty} \lambda(a,b;n)q^n \quad (|q|<1).$$

In his "lost" notebook, Ramanujan ([9]) conjectured that $\lambda(1,7;n)$ is multiplicative and

$$\sum_{\substack{n=1\\2\nmid n}}^{\infty} \frac{\lambda(1,7;n)}{n^s} = \frac{1}{1+7^{1-s}} \prod_{p\equiv 3,5,6 \pmod{7}} \frac{1}{1-p^{2-2s}} \prod_{p\equiv 1,2,4 \pmod{7}} \frac{1}{1-(4x^2-2p)p^{-s}+p^{2-2s}},$$

where s > 1, p runs over all distinct primes and x^2 is given by $p = x^2 + 7y^2 \equiv 1, 2, 4 \pmod{7}$. This was proved by Hecke ([5]). See also [10]. The above assertion of Ramanujan implies

(1.6)
$$\lambda(1,7;p) = 4x^2 - 2p$$
 for primes $p = x^2 + 7y^2 \equiv 1,2,4 \pmod{7}$.

In his "lost" notebook, Ramanujan ([9]) also conjectured that $\lambda(4,4;n)$ is multiplicative. This was proved by Mordell ([8]) in 1917. It is easily seen that $\lambda(4,4;p) = \lambda(1,1;(p+3)/4)$ for $p \equiv 1 \pmod{4}$. Thus, (1.4) is equivalent to

(1.7)
$$\lambda(1,1;(p+3)/4) = 4x^2 - 2p$$
 for primes $p = x^2 + y^2 \equiv 1 \pmod{4}$ with $2 \nmid x$

In 1985 Stienstra and Beukers ([11]) proved

(1.8)
$$\lambda(2,6;p) = 4x^2 - 2p$$
 for primes $p = x^2 + 3y^2 \equiv 1 \pmod{3}$.

It is easily seen that $\lambda(2,6;p) = \lambda(1,3;(p+1)/2)$ for odd p.

In this paper, with the help of Jacobi's identity ([2])

(1.9)
$$\prod_{n=1}^{\infty} (1-q^n)^3 = \sum_{k=0}^{\infty} (-1)^k (2k+1)q^{\frac{k(k+1)}{2}} \quad (|q|<1),$$

we construct x^2 for primes $p = ax^2 + by^2$. For example, if $a, b \in \mathbb{N}$, $2 \nmid ab$ and p is an odd prime such that $p \nmid ab(ab+1)$ and $p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$, then

(1.10)
$$(-1)^{\frac{a+b}{2}x+\frac{b+1}{2}}(4ax^2-2p) = \lambda(a,b;n+1)$$
$$= \sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(a\sigma(\frac{1}{a})+b\sigma(\frac{1}{b}))^{k_1}\cdots(a\sigma(\frac{n}{a})+b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!},$$

where n = ((ab + 1)p - a - b)/8 and

(1.11)
$$\sigma(m) = \begin{cases} \sum_{d|m} d & \text{if } m \in \mathbb{N}, \\ 0 & \text{otherwise} \end{cases}$$

This can be viewed as a vast generalization of (1.6)-(1.8). In this paper we also give formulas for $\lambda(1,3;n+1), \lambda(1,7;2n+1), \lambda(3,5;2n+1)$ and $\lambda(1,15;4n+1)$.

2. Basic lemmas

A negative integer d with $d \equiv 0, 1 \pmod{4}$ is called a discriminant. Let d be a discriminant. The conductor of d is the largest positive integer f = f(d) such that $d/f^2 \equiv 0, 1 \pmod{4}$. As usual we set w(d) = 2, 4, 6 according as d < -4, d = -4 or d = -3. For $a, b, c \in \mathbb{Z}$ we denote the equivalence class containing the form $ax^2 + bxy + cy^2$ by [a, b, c]. Let H(d) be the form class group consisting of classes of primitive, integral binary quadratic forms of discriminant d. For more details concerning binary quadratic forms, see for example [4]. For $n \in \mathbb{N}$ and $[a, b, c] \in H(d)$, following [14] we define

$$R([a,b,c],n) = |\{\langle x,y \rangle \in \mathbb{Z} \times \mathbb{Z} : n = ax^2 + bxy + cy^2\}|.$$

It is known that R([a, b, c], n) = R([a, -b, c], n). If R([a, b, c], n) > 0, we say that n is represented by [a, b, c].

For $m, n \in \mathbb{N}$ let (m, n) denote the greatest common divisor of m and n.

Lemma 2.1 ([14, Lemma 5.2]). Let d < 0 be a discriminant with conductor f. Let p be a prime and $K \in H(d)$.

(i) p is represented by some class in H(d) if and only if $(\frac{d}{p}) = 0, 1$ and $p \nmid f$.

(ii) Suppose $p \mid d$ and $p \nmid f$. Then p is represented by exactly one class $A \in H(d)$, and $A = A^{-1}$. Moreover, R(A, p) = w(d).

(iii) Suppose $\left(\frac{d}{p}\right) = 1$. Then p is represented by some class $A \in H(d)$, and

$$R(K,p) = \begin{cases} 0 & \text{if } K \neq A, A^{-1}, \\ w(d) & \text{if } A \neq A^{-1} \text{ and } K \in \{A, A^{-1}\}, \\ 2w(d) & \text{if } K = A = A^{-1}. \end{cases}$$

Lemma 2.2 ([14, Theorem 7.1]). Let d be a negative discriminant and $K \in H(d)$. If $n_1, n_2 \in \mathbb{N}$ and $(n_1, n_2) = 1$, then

$$R(K, n_1 n_2) = \frac{1}{w(d)} \sum_{\substack{K_1 K_2 = K \\ K_1, K_2 \in H(d)}} R(K_1, n_1) R(K_2, n_2).$$

Lemma 2.3. Let $a, b \in \mathbb{N}$ and let p be an odd prime such that $p \neq a, b, p \nmid ab + 1$ and $p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$.

(i) If ab+1 is not a square, then R([a, 0, b], (ab+1)p) = 8 and all the integral solutions to the equation $(ab+1)p = aX^2 + bY^2$ are given by $\{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\}$ and $\{-(x \pm by), -(ax \mp y)\}$.

(ii) If $ab + 1 = m^2$ for $m \in \mathbb{N}$, then R([a, 0, b], (ab + 1)p) = 12 and all the integral solutions to the equation $(ab + 1)p = aX^2 + bY^2$ are given by $\{mx, \pm my\}, \{-mx, \pm my\}, \{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\}$ and $\{-(x \pm by), -(ax \mp y)\}$.

 $\{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\} \text{ and } \{-(x \pm by), -(ax \mp y)\}.$ Proof. Since $p \neq a, b$ and $p = ax^2 + by^2 < p^2$, we see that $p \nmid abxy, (a, b) = 1$ and $(\frac{-4ab}{p}) = (\frac{-aby^2}{p}) = (\frac{a^2x^2}{p}) = 1$. As $p \nmid ab + 1$ and [1, 0, ab][a, 0, b] = [a, 0, b], by Lemmas 2.1 and 2.2 we have

$$\begin{split} R([a,0,b],(ab+1)p) &= \frac{1}{w(-4ab)} \sum_{\substack{AB = [a,0,b]\\A,B \in H(-4ab)}} R(A,p)R(B,ab+1) \\ &= \frac{R([a,0,b],p)R([1,0,ab],ab+1)}{w(-4ab)} = 2R([1,0,ab],ab+1) \end{split}$$

If ab+1 is not a square and $ab+1 = X^2 + abY^2$ for some $X, Y \in \mathbb{Z}$, we must have $X^2 = Y^2 = 1$ and so R([1, 0, ab], ab+1) = 4. Hence R([a, 0, b], (ab+1)p) = 2R([1, 0, ab], ab+1) = 8. It is clear that

$$xy \neq 0$$
 and $(ab+1)p = (ab+1)(ax^2 + by^2) = a(x \pm by)^2 + b(ax \mp y)^2$.

Thus, $\{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\}, \{-(x \pm by), -(ax \mp y)\}$ are the eight integral solutions to the equation $(ab + 1)p = aX^2 + bY^2$. This proves (i).

If $ab + 1 = m^2$ for $m \in \mathbb{N}$ and $ab + 1 = X^2 + abY^2$ for some $X, Y \in \mathbb{Z}$, we must have $Y \in \{0, \pm 1\}$ and so R([1, 0, ab], ab+1) = 6. Hence R([a, 0, b], (ab+1)p) = 2R([1, 0, ab], ab+1) = 12. Since $xy \neq 0$ and

$$(ab+1)p = (ab+1)(ax^{2}+by^{2}) = a(mx)^{2} + b(my)^{2} = a(x\pm by)^{2} + b(ax\mp y)^{2},$$

we see that $\{mx, \pm my\}$, $\{-mx, \pm my\}$, $\{x \pm by, ax \mp y\}$, $\{x \pm by, -(ax \mp y)\}$, $\{-(x \pm by), ax \mp y\}$, $\{-(x \pm by), -(ax \mp y)\}$ are 12 integral solutions to the equation $(ab + 1)p = aX^2 + bY^2$. This proves (ii).

Lemma 2.4. Let $a, b \in \mathbb{N}$, (a, b) = 1 and let p be an odd prime such that $p \neq ab, ab + 1$ and $p = x^2 + aby^2$ with $x, y \in \mathbb{Z}$. Suppose $(a - 1)(b - 1) \neq 0$ or a + b is not a square. Then R([a, 0, b], (a + b)p) = 8 and all the integral solutions to the equation $(a + b)p = aX^2 + bY^2$ are given by

$$\{x \pm by, x \mp ay\}, \{x \pm by, -(x \mp ay)\}, \{-(x \pm by), x \mp ay\}, \{-(x \pm by), -(x \mp ay)\}.$$

Proof. Since $p \neq ab, ab + 1$, we see that $p = x^2 + aby^2 > 1 + ab \ge a + b$ and so $p \nmid a + b$. As [1, 0, ab][a, 0, b] = [a, 0, b], by Lemmas 2.1 and 2.2 we have

$$\begin{split} R([a,0,b],(a+b)p) &= \frac{1}{w(-4ab)} \sum_{\substack{AB = [a,0,b]\\A,B \in H(-4ab)}} R(A,p)R(B,a+b) \\ &= \frac{1}{w(-4ab)} R([1,0,ab],p)R([a,0,b],a+b) = 2R([a,0,b],a+b). \end{split}$$

If $a+b = aX^2+bY^2$ for some $X, Y \in \mathbb{Z}$, we must have $X^2 = Y^2 = 1$. Thus R([a, 0, b], a+b) = 4 and so R([a, 0, b], (a+b)p) = 2R([a, 0, b], a+b) = 8. It is clear that

$$xy \neq 0$$
 and $(a+b)p = (a+b)(x^2 + aby^2) = a(x \pm by)^2 + b(x \mp ay)^2$.

Thus, $\{x \pm by, x \mp ay\}$, $\{x \pm by, -(x \mp ay)\}$, $\{-(x \pm by), x \mp ay\}$, $\{-(x \pm by), -(x \mp ay)\}$ are the eight integral solutions to the equation $(a + b)p = aX^2 + bY^2$. This completes the proof.

Lemma 2.5. Let $a, b, n \in \mathbb{N}$. Then

$$\sum_{\substack{x,y\in\mathbb{Z},x\equiv y\equiv 1\pmod{4}\\ax^2+by^2=8n+a+b}} xy = \lambda(a,b;n+1).$$

Proof. Using Jacobi's identity (1.9) we see that

$$\begin{split} q \prod_{n=1}^{\infty} &(1-q^{an})^3 (1-q^{bn})^3 \\ &= q \Big(\sum_{k=0}^{\infty} (-1)^k (2k+1) q^{a\frac{k(k+1)}{2}} \Big) \Big(\sum_{m=0}^{\infty} (-1)^m (2m+1) q^{b\frac{m(m+1)}{2}} \Big) \\ &= \sum_{n=0}^{\infty} \sum_{\substack{k,m \ge 0 \\ a\frac{k(k+1)}{2} + b\frac{m(m+1)}{2} = n}} (-1)^k (2k+1) \cdot (-1)^m (2m+1) q^{n+1}. \end{split}$$

Thus,

$$\begin{split} \lambda(a,b;n+1) &= \sum_{\substack{k,m \ge 0 \\ a^{\frac{k(k+1)}{2} + b^{\frac{m(m+1)}{2}} = n}} (-1)^k (2k+1) \cdot (-1)^m (2m+1) \\ &= \sum_{\substack{k,m \ge 0 \\ a(2k+1)^2 + b(2m+1)^2 = 8n+a+b}} (-1)^k (2k+1) \cdot (-1)^m (2m+1) \\ &= \sum_{\substack{x \equiv y \equiv 1 \pmod{4} \\ ax^2 + by^2 = 8n+a+b}} xy. \end{split}$$

This proves the lemma.

Lemma 2.6. Let $a, b \in \mathbb{N}$ with (a, b) = 1 and $ab \equiv 1 \pmod{4}$. Let p be an odd prime such that R([a, 0, b], 2p) > 0. Then R([a, 0, b], 2p) = 2w(-4ab).

Proof. Suppose that $2p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$. Since $2p < p^2$ we see that $p \nmid xy$. We claim that $p \nmid ab$. If $p \mid a$, then $p \mid by^2$ and so $p \mid b$. This contradicts the fact (a, b) = 1. Hence $p \nmid a$. Similarly, we have $p \nmid b$. Since $-ab \equiv 3 \pmod{4}$ we see that $2 \nmid f(-4ab)$. Thus, by Lemma 2.1, there exists exactly one class $A \in H(-4ab)$ such that R(A, 2) > 0and we have $A = A^{-1}$. Using Lemmas 2.1, 2.2 and the fact R([a, 0, b], 2p) > 0 we see that $R([a, 0, b], 2p) = \frac{1}{w(-4ab)}R(A, 2)R(A[a, 0, b], p) = R(A[a, 0, b], p) = 2w(-4ab)$. This completes the proof.

Lemma 2.7. Let $a, b \in \mathbb{N}$, $ab \equiv 3 \pmod{4}$, $K \in H(-4ab)$ and $K = K^{-1}$. Let p be an odd prime such that $p \nmid ab$ and R(K, 4p) > 0. Then R(K, 4p) = 2w(-ab).

Proof. From Lemma 2.2 we have

$$2R(K,4p) = \sum_{\substack{AB=K\\A,B\in H(-4ab)}} R(A,p)R(B,4) > 0.$$

Since 2 | f(-4ab), by [14, Theorem 5.3(i)] we have R(B, 4) = 0 or w(-ab) for $B \in H(-4ab)$. Suppose R(A, p) > 0 for $A \in H(-4ab)$. Then $(AK)^{-1} = K^{-1}A^{-1} = KA^{-1} = A^{-1}K$ and so $R(A^{-1}K, 4) = R((AK)^{-1}, 4) = R(AK, 4)$. From the above and Lemma 2.1 we see that

$$\begin{split} &2R(K,4p) \\ &= \begin{cases} R(A,p)R(AK,4) = 4 \cdot w(-ab) & \text{if } A = A^{-1}, \\ R(A,p)R(A^{-1}K,4) + R(A^{-1},p)R(AK,4) = 2w(-ab) + 2w(-ab) & \text{if } A \neq A^{-1}. \end{cases} \end{split}$$

This yields the result.

If $\{a_n\}$ and $\{b_n\}$ are two sequences satisfying

$$a_1 = b_1$$
 and $b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 = n a_n \ (n = 2, 3, \dots),$

we say that (a_n, b_n) is a Newton-Euler pair as in [12]. For a rational number m let $\sigma(m)$ be given by (1.11). Now we state the following result.

Lemma 2.8. Let $a, b \in \mathbb{N}$. Then $(\lambda(a, b; n + 1), -3(a\sigma(n/a) + b\sigma(n/b)))$ is a Newton-Euler pair. That is, for $n \in \mathbb{N}$,

$$a\sigma(\frac{n}{a}) + b\sigma(\frac{n}{b}) + \sum_{k=1}^{n-1} \left(a\sigma(\frac{k}{a}) + b\sigma(\frac{k}{b})\right)\lambda(a,b;n+1-k) = -\frac{n}{3}\lambda(a,b;n+1).$$

Proof. Suppose that q is real and |q| < 1. As

$$1 - q^{n} = \prod_{r=0}^{n-1} \left(1 - e^{2\pi i \frac{r}{n}} q \right),$$

we see that

$$1 + \sum_{n=1}^{\infty} \lambda(a,b;n+1)q^n = \prod_{k=1}^{\infty} (1-q^{ak})^3 (1-q^{bk})^3$$
$$= \prod_{k=1}^{\infty} \prod_{r=0}^{ak-1} (1-e^{2\pi i \frac{r}{ak}}q)^3 \prod_{s=0}^{bk-1} (1-e^{2\pi i \frac{s}{bk}}q)^3.$$

Observe that

$$\sum_{k=1}^{\infty} \left\{ \sum_{r=0}^{ak-1} 3\left(e^{2\pi i \frac{r}{ak}}\right)^n + \sum_{s=0}^{bk-1} 3\left(e^{2\pi i \frac{s}{bk}}\right)^n \right\}$$
$$= 3\sum_{\substack{k\in\mathbb{N}\\ak|n}} ak + 3\sum_{\substack{k\in\mathbb{N}\\bk|n}} bk = 3a\sigma\left(\frac{n}{a}\right) + 3b\sigma\left(\frac{n}{b}\right).$$

From the above and [12, Example 1] we deduce the result.

Lemma 2.9. Let $a, b, n \in \mathbb{N}$. Then

$$\lambda(a,b;n+1) = \sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(a\sigma(\frac{1}{a})+b\sigma(\frac{1}{b}))^{k_1}\cdots(a\sigma(\frac{n}{a})+b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!}.$$

Proof. This is immediate from Lemma 2.8 and [12, Theorem 2.2].

3. Constructing x^2 for primes $p = ax^2 + by^2$

Theorem 3.1. Let $a, b \in \mathbb{N}$ with $2 \nmid ab$. Let p be an odd prime such that $p \neq a, b$, $p \nmid ab + 1$ and $p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$. Let n = ((ab + 1)p - a - b)/8. Then

$$(-1)^{\frac{a+b}{2}x+\frac{b+1}{2}}(4ax^2-2p) = \lambda(a,b;n+1) = \sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(a\sigma(\frac{1}{a})+b\sigma(\frac{1}{b}))^{k_1}\cdots(a\sigma(\frac{n}{a})+b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!}.$$

Proof. Clearly 2 | x or 2 | y. If 2 | y, then $p \equiv ax^2 \equiv a \pmod{4}$ and so $(ab+1)p \equiv (ab+1)a \equiv a+b \pmod{8}$. If 2 | x, then $p \equiv by^2 \equiv b \pmod{4}$ and so $(ab+1)p \equiv (ab+1)b \equiv a+b \pmod{8}$. Thus $n \in \mathbb{N}$. By Lemma 2.3, all the integral solutions $\{X,Y\}$ with $2 \nmid XY$ to the equation $8n+a+b = (ab+1)p = aX^2+bY^2$ are given by $\{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\}, \{-(x \pm by), -(ax \mp y)\}$. Since $x \pm by \equiv (-1)^{\frac{a+b}{2}x+\frac{b+1}{2}}(ax \mp y) \pmod{4}$, applying Lemma 2.5 we have

$$\begin{split} \lambda(a,b;n+1) &= \sum_{\substack{X \equiv Y \equiv 1 \pmod{4} \\ aX^2 + bY^2 = 8n + a + b}} XY \\ &= (x+by) \cdot (-1)^{\frac{a+b}{2}x + \frac{b+1}{2}} (ax-y) + (x-by) \cdot (-1)^{\frac{a+b}{2}x + \frac{b+1}{2}} (ax+y) \\ &= (-1)^{\frac{a+b}{2}x + \frac{b+1}{2}} 2(ax^2 - by^2) = (-1)^{\frac{a+b}{2}x + \frac{b+1}{2}} (4ax^2 - 2p). \end{split}$$

This together with Lemma 2.9 yields the result.

Corollary 3.1. Let p be a prime of the form 4k + 1 and so $p = x^2 + y^2$ with $x, y \in \mathbb{Z}$ and $2 \nmid x$. Let n = (p-1)/4. Then

$$4x^2 - 2p = \sum_{k_1 + 2k_2 + \dots + nk_n = n} (-6)^{k_1 + \dots + k_n} \frac{\sigma(1)^{k_1} \cdots \sigma(n)^{k_n}}{1^{k_1} \cdot k_1! \cdots n^{k_n} \cdot k_n!}.$$

Proof. Taking a = b = 1 in Theorem 3.1 we obtain the result.

Corollary 3.2. Suppose that $p \equiv 1, 9 \pmod{20}$ is a prime and so $p = x^2 + 5y^2$ for some $x, y \in \mathbb{Z}$. Let n = 3(p-1)/4. Then

$$(-1)^{x-1}(4x^2 - 2p) = \lambda(1,5;(3p+1)/4)$$

=
$$\sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(\sigma(1)+5\sigma(\frac{1}{5}))^{k_1}\cdots(\sigma(n)+5\sigma(\frac{n}{5}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!}.$$

Proof. Taking a = 1 and b = 5 in Theorem 3.1 we obtain the result.

Theorem 3.2. Let $a, b \in \mathbb{N}$ with (a, b) = 1. Let p be an odd prime such that $p \neq ab, ab+1$ and $p = x^2 + aby^2$ with $x, y \in \mathbb{Z}$. Let n = (a + b)(p - 1)/8.

(i) If $2 \nmid ab$, then

$$(-1)^{\frac{ab+1}{2}y}(4x^2 - 2p) = \lambda(a, b; n+1)$$

=
$$\sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(a\sigma(\frac{1}{a}) + b\sigma(\frac{1}{b}))^{k_1} \cdots (a\sigma(\frac{n}{a}) + b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1} \cdot k_1! \cdots n^{k_n} \cdot k_n!}$$

(ii) If $2 \nmid a, 2 \mid b, 8 \nmid b and 8 \mid p - 1$, then

$$(-1)^{\frac{g}{2}}(4x^2 - 2p) = \lambda(a, b; n+1)$$

$$=\sum_{k_1+2k_2+\dots+nk_n=n}(-3)^{k_1+\dots+k_n}\frac{(a\sigma(\frac{1}{a})+b\sigma(\frac{1}{b}))^{k_1}\cdots(a\sigma(\frac{n}{a})+b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!}.$$

Proof. If $(a-1)(b-1) \neq 0$ or a+b is not a square, using Lemma 2.4 we see that R([a,0,b], (a+b)p) = 8 and all the integral solutions to $(a+b)p = aX^2 + bY^2$ are given by $\{x \pm by, x \mp ay\}, \{x \pm by, -(x \mp ay)\}, \{-(x \pm by), x \mp ay\}, \{-(x \pm by), -(x \mp ay)\}$. If a = 1 and $b+1 = m^2$ for $m \in \mathbb{N}$, using Lemma 2.3(ii) we see that R([1,0,b], (b+1)p) = 12 and all the integral solutions to $(b+1)p = X^2 + bY^2$ are given by $\{mx, \pm my\}, \{-mx, \pm my\}, \{x \pm by, x \mp y\}, \{x \pm by, -(x \mp y)\}, \{-(x \pm by), x \mp y\}, \{-(x \pm by), -(x \mp y)\}$. If b = 1 and $a+1 = k^2$ for $k \in \mathbb{N}$, using Lemma 2.3(ii) we see that R([a, 0, 1], (a+1)p) = 12 and all the integral solutions to $(a+1)p = aX^2 + Y^2$ are given by $\{ky, \pm kx\}, \{-ky, \pm kx\}, \{x \pm y, x \mp ay\}, \{x \pm y, -(x \mp ay)\}, \{-(x \pm y), x \mp ay\}, \{-(x \pm y), -(x \mp ay)\}$.

We first assume $2 \nmid ab$. If $ab \equiv 1 \pmod{4}$, then $p = x^2 + aby^2 \equiv 1 \pmod{4}$ and so $(a+b)(p-1) \equiv 0 \pmod{8}$. If $ab \equiv 3 \pmod{4}$, then $4 \mid a+b$ and so $8 \mid (a+b)(p-1)$. Thus, we always have $8 \mid (a+b)(p-1)$. It is easily seen that $x \pm by \equiv 1 \pmod{2}$ and $x \pm by \equiv (-1)^{\frac{ab+1}{2}y}(x \mp ay) \pmod{4}$. Thus, applying the above and Lemma 2.5 we have

$$\begin{split} \lambda(a,b;n+1) &= \sum_{\substack{X \equiv Y \equiv 1 \pmod{4} \\ aX^2 + bY^2 = 8n + a + b}} XY \\ &= (x+by) \cdot (-1)^{\frac{ab+1}{2}y} (x-ay) + (x-by) \cdot (-1)^{\frac{ab+1}{2}y} (x+ay) \\ &= (-1)^{\frac{ab+1}{2}y} 2(x^2 - aby^2) = (-1)^{\frac{ab+1}{2}y} (4x^2 - 2p). \end{split}$$

This together with Lemma 2.9 proves (i).

Now we consider (ii). Since $2 \nmid a$, $2 \mid b$, $8 \nmid b$ and $8 \mid p - 1$, we deduce $2 \nmid x$, $8 \mid by^2$ and so $2 \mid y$. It is easily seen that $x \pm by \equiv 1 \pmod{2}$ and $x \pm by \equiv (-1)^{\frac{y}{2}}(x \mp ay) \pmod{4}$. Thus, applying the above and Lemma 2.5 we have

$$\begin{split} \lambda(a,b;n+1) &= \sum_{\substack{X \equiv Y \equiv 1 \pmod{4} \\ aX^2 + bY^2 = 8n + a + b}} XY \\ &= (x+by) \cdot (-1)^{\frac{y}{2}} (x-ay) + (x-by) \cdot (-1)^{\frac{y}{2}} (x+ay) \\ &= (-1)^{\frac{y}{2}} 2(x^2 - aby^2) = (-1)^{\frac{y}{2}} (4x^2 - 2p). \end{split}$$

This together with Lemma 2.9 yields (ii). The proof is now complete.

Corollary 3.3. Let $a, b \in \mathbb{N}$ with $2 \nmid ab$ and (a, b) = 1. Let p be an odd prime such that $p \neq ab, ab + 1$ and $p = x^2 + aby^2$ with $x, y \in \mathbb{Z}$. Then

$$\lambda\Big(a,b;\frac{(a+b)(p-1)}{8}+1\Big) = \lambda\Big(1,ab;\frac{(ab+1)(p-1)}{8}+1\Big).$$

Proof. By Theorem 3.1 we have

$$(-1)^{\frac{1+ab}{2}(x+1)}(4x^2-2p) = \lambda\Big(1,ab;\frac{(ab+1)(p-1)}{8}+1\Big).$$

This together with Theorem 3.2(i) gives the result.

Corollary 3.4. Suppose $a \in \mathbb{N}$ and $2 \nmid a$. Let p be an odd prime such that $p = x^2 + 16ay^2$ with $x, y \in \mathbb{Z}$. Then

$$(-1)^{y}(4x^{2}-2p) = \lambda\left(a,4;\frac{(a+4)p-a+4}{8}\right).$$

Proof. Taking b = 4 and replacing y with 2y in Theorem 3.2(ii) we deduce the result.

Let p be an odd prime. From Theorem 3.2(ii) we deduce:

 $\begin{array}{lll} (3.1) & (-1)^{\frac{y}{2}}(4x^2-2p)=\lambda(1,2;(3p+5)/8) & \text{for} \quad p=x^2+2y^2\equiv 1 \pmod{8}, \\ (3.2) & (-1)^{\frac{y}{2}}(4x^2-2p)=\lambda(1,6;(7p+1)/8) & \text{for} \quad p=x^2+6y^2\equiv 1 \pmod{24}, \\ (3.3) & (-1)^{\frac{y}{2}}(4x^2-2p)=\lambda(1,10;(11p-3)/8) & \text{for} \quad p=x^2+10y^2\equiv 1,9 \pmod{40}, \\ (3.4) & (-1)^{\frac{y}{2}}(4x^2-2p)=\lambda(1,12;(13p-5)/8) & \text{for} \quad p=x^2+12y^2\equiv 1 \pmod{24}. \end{array}$

Theorem 3.3. Let $a, b \in \mathbb{N}$, $2 \nmid a$, $2 \mid b$ and $8 \nmid b$. Let p be a prime such that $p \equiv a \pmod{8}$, $p \neq a$, $p \nmid ab+1$ and $p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$. Let n = ((ab+1)p - a - b)/8. Then

$$(-1)^{\frac{a-1}{2}+\frac{y}{2}}(4ax^2-2p) = (-1)^{\frac{a-1}{2}+\frac{y}{2}}(2p-4by^2) = \lambda(a,b;n+1)$$
$$= \sum_{k_1+2k_2+\dots+nk_n=n} (-3)^{k_1+\dots+k_n} \frac{(a\sigma(\frac{1}{a})+b\sigma(\frac{1}{b}))^{k_1}\cdots(a\sigma(\frac{n}{a})+b\sigma(\frac{n}{b}))^{k_n}}{1^{k_1}\cdot k_1!\cdots n^{k_n}\cdot k_n!}$$

Proof. Clearly we have $2 \nmid x$ and so $8 \mid by^2$. Since $8 \nmid b$ we must have $2 \mid y$. As $p \equiv a \pmod{8}$ we have $(ab+1)p \equiv (1+ab)a \equiv a+b \pmod{8}$. By Lemma 2.3, all the integral solutions $\{X,Y\}$ with $2 \nmid XY$ to the equation $8n + a + b = (ab+1)p = aX^2 + bY^2$ are given by $\{x \pm by, ax \mp y\}, \{x \pm by, -(ax \mp y)\}, \{-(x \pm by), ax \mp y\}, \{-(x \pm by), -(ax \mp y)\}$. Since x is odd, we may choose the sign of x so that $x \equiv 1 \pmod{4}$. Then $x \pm by \equiv (-1)^{\frac{a-1}{2} + \frac{y}{2}}(ax \mp y) \equiv 1 \pmod{4}$. Therefore, applying Lemma 2.5 we have

$$\begin{split} \lambda(a,b;n+1) &= \sum_{\substack{X \equiv Y \equiv 1 \pmod{4} \\ aX^2 + bY^2 = 8n+a+b}} XY \\ &= (x+by) \cdot (-1)^{\frac{a-1}{2} + \frac{y}{2}} (ax-y) + (x-by) \cdot (-1)^{\frac{a-1}{2} + \frac{y}{2}} (ax+y) \\ &= (-1)^{\frac{a-1}{2} + \frac{y}{2}} 2(ax^2 - by^2) = (-1)^{\frac{a-1}{2} + \frac{y}{2}} (4ax^2 - 2p) \\ &= (-1)^{\frac{a-1}{2} + \frac{y}{2}} (2p - 4by^2). \end{split}$$

This together with Lemma 2.9 proves the theorem.

As examples, taking a = 3, 5 and b = 2 in Theorem 3.3 we have:

$$\begin{array}{lll} (3.5) & (-1)^{\frac{y}{2}}(8y^2 - 2p) = \lambda(2,3;(7p+3)/8) & \text{for} & p = 3x^2 + 2y^2 \equiv 11 \pmod{24}, \\ (3.6) & (-1)^{\frac{y}{2}}(2p-8y^2) = \lambda(2,5;(11p+1)/8) & \text{for} & p = 5x^2 + 2y^2 \equiv 13,37 \pmod{40}. \end{array}$$

Corollary 3.5. Let $a, b \in \mathbb{N}$ with $2 \nmid a, 2 \mid b, 8 \nmid b$ and (a, b) = 1. Let $p \equiv 1 \pmod{8}$ be a prime such that $p \neq ab, ab + 1$ and $p = x^2 + aby^2$ with $x, y \in \mathbb{Z}$. Then

$$\lambda\Big(a,b;\frac{(a+b)(p-1)}{8}+1\Big) = \lambda\Big(1,ab;\frac{(ab+1)(p-1)}{8}+1\Big).$$

Proof. By Theorem 3.3 we have

$$(-1)^{\frac{y}{2}}(4x^2 - 2p) = \lambda \Big(1, ab; \frac{(ab+1)(p-1)}{8} + 1\Big).$$

This together with Theorem 3.2(ii) gives the result.

4. Constructing xy for primes $p = ax^2 + by^2$

Theorem 4.1. Let $a, b \in \mathbb{N}$, $8 \nmid a, 8 \nmid b$ and $n \in \{0, 1, 2, ...\}$. Let p be an odd prime such that $p = 8n + a + b = ax^2 + by^2$ with $x, y \in \mathbb{Z}$ and $x \equiv y \pmod{4}$. Then

$$xy = \lambda(a, b; n+1)$$
 and $2ax^2 - p = \pm \sqrt{p^2 - 4ab\lambda(a, b; n+1)^2}.$

Proof. It is clear that (a, b) = 1. Let $x, y \in \mathbb{Z}$ be such that $p = 8n + a + b = ax^2 + by^2$. When $2 \mid x$, we have $2 \nmid y$, $a \equiv 8n + a = ax^2 + by^2 - b \equiv ax^2 \equiv 0, 4a \pmod{8}$ and so $8 \mid a$. When $2 \mid y$, we have $2 \nmid x$, $b \equiv 8n + b = ax^2 + by^2 - a \equiv by^2 \equiv 0, 4b \pmod{8}$ and so $8 \mid b$. As $8 \nmid a$ and $8 \nmid b$, we see that $2 \nmid xy$. Suppose $x \equiv y \equiv 1 \pmod{4}$. Then x and y are unique by Lemma 2.1. Now applying Lemma 2.5 we obtain $xy = \lambda(a, b; n + 1)$.

Set $\lambda = \lambda(a, b; n+1)$. Then $x^2(p-ax^2) = bx^2y^2 = b\lambda^2$ and so $ax^4 - px^2 + b\lambda^2 = 0$. Thus, $x^2 = (p \pm \sqrt{p^2 - 4ab\lambda^2})/(2a)$. This completes the proof.

For example, if p = 8n + 3 is a prime and so $p = x^2 + 2y^2$ with $x \equiv y \pmod{4}$, then $xy = \lambda(1,2;n+1)$ and $2x^2 - p = \pm \sqrt{p^2 - 8\lambda(1,2;n+1)^2}$.

Theorem 4.2. Let $a, b \in \mathbb{N}$ with (a, b) = 1, ab > 1 and $ab \equiv 1 \pmod{4}$. Let p be an odd prime and $2p = 8n + a + b = ax^2 + by^2$ with $n \in \{0, 1, 2, ...\}$, $x, y \in \mathbb{Z}$ and $4 \mid x - y$. Then

$$xy = \lambda(a, b; n+1)$$
 and $ax^2 = p \pm \sqrt{p^2 - ab\lambda(a, b; n+1)^2}$

Proof. Let $x, y \in \mathbb{Z}$ be such that $2p = 8n + a + b = ax^2 + by^2$. Then clearly $2 \nmid xy$. Suppose $x \equiv y \equiv 1 \pmod{4}$. Then x and y are unique by Lemma 2.6. Now applying Lemma 2.5 we obtain $xy = \lambda$, where $\lambda = \lambda(a, b; n + 1)$. Thus, $x^2(2p - ax^2) = bx^2y^2 = b\lambda^2$ and so $ax^4 - 2px^2 + b\lambda^2 = 0$. Hence, $x^2 = (p \pm \sqrt{p^2 - ab\lambda^2})/a$. This completes the proof.

For example, if $p = 4n + 3 \equiv 3,7 \pmod{20}$ is a prime and so $2p = x^2 + 5y^2$ with $x \equiv y \pmod{4}$, then $xy = \lambda(1,5;n+1)$ and $x^2 - p = \pm \sqrt{p^2 - 5\lambda(1,5;n+1)^2}$.

Theorem 4.3. Let $a, b \in \mathbb{N}$, $2 \nmid ab$, $ab \neq 3$, $a + b \equiv 4 \pmod{8}$. Let p be an odd prime such that $p \nmid ab$ and $4p = ax^2 + by^2$ with $x, y \in \mathbb{Z}$ and $x \equiv y \equiv 1 \pmod{4}$. Then

$$xy = \lambda$$
 and $ax^2 = 2p \pm \sqrt{4p^2 - ab\lambda^2},$

where $\lambda = \lambda(a, b; \frac{1}{2}(p - \frac{a+b}{4}) + 1).$

Proof. Clearly (a,b) = 1 and $ab \equiv 3 \pmod{4}$. From Lemma 2.7 we know that x and y are unique. Set $n = \frac{1}{2}(p - \frac{a+b}{4})$. Then 8n + a + b = 4p. By Lemma 2.5 we have $xy = \lambda$ and so $x^2y^2 = \lambda^2$. Thus $x^2(4p - ax^2) = b\lambda^2$ and so $ax^4 - 4px^2 + b\lambda^2 = 0$. Hence $x^2 = \frac{4p \pm \sqrt{16p^2 - 4ab\lambda^2}}{2a} = \frac{2p \pm \sqrt{4p^2 - ab\lambda^2}}{a}$. This completes the proof.

For example, if $p \neq 11$ is an odd prime and $4p = x^2 + 11y^2$ with $x \equiv y \equiv 1 \pmod{4}$, then $xy = \lambda$ and $x^2 = 2p \pm \sqrt{4p^2 - 11\lambda^2}$, where $\lambda = \lambda(1, 11; (p-1)/2)$.

5. Evaluation of $\lambda(1,3;n), \lambda(1,7;2n+1)$ and $\lambda(3,5;2n+1)$

For $n \in \mathbb{N}$, in [6, Vol.2] Klein and Fricke showed that

(5.1)
$$\lambda(1,1;n+1) = \sum_{\substack{x,y \in \mathbb{Z}, x \equiv 1 \pmod{4} \\ x^2 + y^2 = 4n+1}} (x^2 - y^2).$$

See also [8]. In the section we evaluate $\lambda(1,3;n), \lambda(1,7;2n+1)$ and $\lambda(3,5;2n+1)$. Lemma 5.1. Let $a, b, n \in \mathbb{N}$ with $2 \nmid ab$. Then

$$\sum_{\substack{x,y\in\mathbb{Z},x+ay\equiv1\pmod{4}\\x^2+aby^2=2n+1}} (x+ay)(x-by) = \frac{1}{2}\sum_{\substack{x,y\in\mathbb{Z}\\x^2+aby^2=2n+1}} (x^2-aby^2).$$

Proof. If $x, y \in \mathbb{Z}$ and $x^2 + aby^2 = 2n+1$, then clearly x + ay is odd. Since (x+ay)(x-by) = (-x + a(-y))(-x - b(-y)), we see that

$$\sum_{\substack{x,y \in \mathbb{Z}, x+ay \equiv 1 \pmod{4} \\ x^2 + aby^2 = 2n+1 \\ z^2 + aby^2 = 2n+1 \\ x^2 + aby^2 = 2n+1 \\ z^2 + aby^2 = 2n$$

This proves the lemma.

Theorem 5.1. Let $n \in \mathbb{N}$. Then

$$\lambda(1,3;n+1) = \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 3y^2 = 2n+1}} (x^2 - 3y^2),$$
$$\lambda(1,7;2n+1) = \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 7y^2 = 2n+1}} (x^2 - 7y^2).$$

Proof. From Lemma 2.5 we have

$$\lambda(1,3;n+1) = \sum_{\substack{X,Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 3Y^2 = 8n+4}} XY$$

As $H(-12) = \{[1, 0, 3]\}$, by Lemma 2.2 we have

$$R([1,0,3],8n+4) = \frac{1}{2}R([1,0,3],4)R([1,0,3],2n+1) = 3R([1,0,3],2n+1).$$

Thus, if R([1,0,3], 2n+1) = 0, then R([1,0,3], 8n+4) = 0 and so $\lambda(1,3; n+1) = 0$. Hence the result is true in this case. Now assume that $2n + 1 = x^2 + 3y^2$ with $x, y \in \mathbb{Z}$. Then

 $8n + 4 = 4(x^2 + 3y^2) = (x + 3y)^2 + 3(x - y)^2$. As R([1, 0, 3], 8n + 4) = 3R([1, 0, 3], 2n + 1) we see that all the integral solutions to the equation $8n + 4 = X^2 + 3Y^2$ are given by $\{2x, 2y\}, \{x+3y, x-y\}, \{x+3y, -(x-y)\}$, where $\{x, y\}$ runs over all integral solutions to the equation $2n + 1 = x^2 + 3y^2$. Hence, using Lemmas 2.5, 5.1 and the fact $x + 3y \equiv x - y \pmod{4}$ we deduce

$$\begin{split} \lambda(1,3;n+1) &= \sum_{\substack{X,Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 3Y^2 = 8n + 4 \\}} XY = \sum_{\substack{x,y \in \mathbb{Z}, x + 3y \equiv 1 \pmod{4} \\ x^2 + 3y^2 = 2n + 1 \\} (x+3y)(x-y) \\ &= \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 3y^2 = 2n + 1 \\}} (x^2 - 3y^2). \end{split}$$

Now we consider the formula for $\lambda(1,7;2n+1)$. By Lemma 2.5 we have

$$\lambda(1,7;2n+1) = \sum_{\substack{X,Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 7Y^2 = 16n+8}} XY$$

As $H(-28) = \{[1, 0, 7]\}$, by Lemma 2.2 we have

$$R([1,0,7],16n+8) = \frac{1}{2}R([1,0,7],8)R([1,0,7],2n+1) = 2R([1,0,7],2n+1).$$

Thus, if R([1,0,7], 2n + 1) = 0, then R([1,0,7], 8(2n + 1)) = 0 and so $\lambda(1,7; 2n + 1) = 0$. Hence the result is true in this case. Now assume that $2n + 1 = x^2 + 7y^2$ with $x, y \in \mathbb{Z}$. Then $16n + 8 = 8(x^2 + 7y^2) = (x + 7y)^2 + 7(x - y)^2$. As R([1,0,7], 16n + 8) = 2R([1,0,7], 2n + 1) we see that all the integral solutions to the equation $16n + 8 = X^2 + 7Y^2$ are given by $\{x + 7y, x - y\}, \{x + 7y, -(x - y)\}$, where $\{x, y\}$ runs over all integral solutions to the equation $2n + 1 = x^2 + 7y^2$. Hence, using Lemmas 2.5, 5.1 and the fact $x + 7y \equiv x - y \pmod{4}$ we deduce

$$\lambda(1,7;2n+1) = \sum_{\substack{X,Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 7Y^2 = 16n+8}} XY = \sum_{\substack{x,y \in \mathbb{Z}, x+7y \equiv 1 \pmod{4} \\ x^2 + 7y^2 = 2n+1}} (x+7y)(x-y)$$
$$= \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 7y^2 = 2n+1}} (x^2 - 7y^2).$$

This completes the proof.

Theorem 5.2. For $n \in \mathbb{N}$ we have

$$\lambda(1, 15; 4n+1) = \lambda(3, 5; 2n+1) = \frac{1}{2} \sum_{\substack{x, y \in \mathbb{Z} \\ x^2 + 15y^2 = 2n+1}} (x^2 - 15y^2).$$

Proof. It is clear that

R([3,0,5],8) = 4, R([1,0,15],8) = 0, R([1,0,15],16) = 6 and R([3,0,5],16) = 0. As $H(-60) = \{[1,0,15], [3,0,5]\}$, by Lemma 2.2 and the above we have

2R([3,0,5], 8(2n+1))

$$= R([3,0,5],8)R([1,0,15],2n+1) + R([1,0,15],8)R([3,0,5],2n+1)$$

= 4R([1,0,15],2n+1)

and

$$2R([1,0,15], 16(2n+1)) = R([1,0,15], 16)R([1,0,15], 2n+1) + R([3,0,5], 16)R([3,0,5], 2n+1) = 6R([1,0,15], 2n+1).$$

From Lemma 2.5 we have

$$\lambda(1, 15; 4n + 1) = \sum_{\substack{X, Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 15Y^2 = 16(2n+1)}} XY, \quad \lambda(3, 5; 2n + 1) = \sum_{\substack{X, Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ 3X^2 + 5Y^2 = 8(2n+1)}} XY.$$

Thus, if R([1,0,15], 2n+1) = 0, then R([1,0,15], 16(2n+1)) = R([3,0,5], 8(2n+1)) = 0and so $\lambda(1,15; 4n+1) = \lambda(3,5; 2n+1) = 0$. Hence the result is true in this case.

Now assume that $2n + 1 = x^2 + 15y^2$ with $x, y \in \mathbb{Z}$. Then $16(2n + 1) = (4x)^2 + 15(4y)^2 = (x + 15y)^2 + 15(x - y)^2$ and $8(2n + 1) = 3(x + 5y)^2 + 5(x - 3y)^2$. Since R([3, 0, 5], 8(2n + 1)) = 2R([1, 0, 15], 2n + 1) and R([1, 0, 15], 16(2n + 1)) = 3R([1, 0, 15], 2n + 1), we see that all the integral solutions to the equation $3X^2 + 5Y^2 = 8(2n + 1)$ are given by $\{x + 5y, \pm(x - 3y)\}$, and all the integral solutions to the equation $X^2 + 15Y^2 = 16(2n + 1)$ are given by $\{4x, 4y\}$ and $\{x + 15y, \pm(x - y)\}$, where $\{x, y\}$ runs over all integral solutions to the equation $2n + 1 = x^2 + 15y^2$. As $x + 5y \equiv x - 3y \equiv \pm 1 \pmod{4}$ and $x + 15y \equiv x - y \equiv \pm 1 \pmod{4}$, from the above and Lemma 5.1 we deduce

$$\lambda(1, 15; 4n + 1) = \sum_{\substack{X, Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ X^2 + 15Y^2 = 16(2n+1)}} XY = \sum_{\substack{x, y \in \mathbb{Z}, x+15y \equiv 1 \pmod{4} \\ x^2 + 15y^2 = 2n+1}} (mod \ 4)} (x + 15y)(x - y)$$
$$= \frac{1}{2} \sum_{\substack{x, y \in \mathbb{Z} \\ x^2 + 15y^2 = 2n+1}} (x^2 - 15y^2)$$

and

$$\lambda(3,5;2n+1) = \sum_{\substack{X,Y \in \mathbb{Z}, X \equiv Y \equiv 1 \pmod{4} \\ 3X^2 + 5Y^2 = 8(2n+1)}} XY = \sum_{\substack{x,y \in \mathbb{Z}, x+5y \equiv 1 \pmod{4} \\ x^2 + 15y^2 = 2n+1}} (x+5y)(x-3y)$$
$$= \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 15y^2 = 2n+1}} (x^2 - 15y^2).$$

This proves the theorem.

Theorem 5.3. Let p > 5 be a prime. Then

$$\begin{split} \lambda(3,5;p) &= \begin{cases} 0 & if \ p \not\equiv 1,19 \ (\text{mod } 30), \\ 4x^2 - 2p & if \ p \equiv 1,19 \ (\text{mod } 30) \ and \ so \ p = x^2 + 15y^2(x,y \in \mathbb{Z}), \\ \lambda(3,5;2p) &= \begin{cases} 0 & if \ p \not\equiv 17,23 \ (\text{mod } 30), \\ 2p - 12x^2 & if \ p \equiv 17,23 \ (\text{mod } 30) \ and \ so \ p = 3x^2 + 5y^2(x,y \in \mathbb{Z}), \\ \lambda(3,5;3p) &= \begin{cases} 0 & if \ p \not\equiv 17,23 \ (\text{mod } 30), \\ 36x^2 - 6p & if \ p \equiv 17,23 \ (\text{mod } 30) \ and \ so \ p = 3x^2 + 5y^2(x,y \in \mathbb{Z}), \\ \lambda(3,5;5p) &= \begin{cases} 0 & if \ p \not\equiv 17,23 \ (\text{mod } 30), \\ 10p - 60x^2 & if \ p \equiv 17,23 \ (\text{mod } 30) \ and \ so \ p = 3x^2 + 5y^2(x,y \in \mathbb{Z}), \end{cases} \end{split}$$

Proof. If $p \equiv 1, 19 \pmod{30}$, then $p = x^2 + 15y^2$ for some positive integers x and y (see [14, Table 9.1]). By Lemma 2.1, x and y are unique. From Theorem 5.2 we have

$$\lambda(3,5;p) = \frac{1}{2} \sum_{\substack{x,y \in \mathbb{Z} \\ x^2 + 15y^2 = p}} (x^2 - 15y^2) = 2(x^2 - 15y^2) = 4x^2 - 2p.$$

If $p \not\equiv 1, 19 \pmod{30}$, then p is not represented by $x^2 + 15y^2$. Thus, by Theorem 5.2 we have $\lambda(3, 5; p) = 0$.

If $p \equiv 17, 23 \pmod{30}$, then $p = 3x^2 + 5y^2$ with $x, y \in \mathbb{Z}$ (see [14, Table 9.1]). Taking a = 3 and b = 5 in Theorem 3.1 we obtain $\lambda(3, 5; 2p) = 2p - 12x^2$. If $p \not\equiv 17, 23 \pmod{30}$, as R([3,0,5],16) = R([3,0,5],p) = 0, using Lemma 2.2 we see that 2R([3,0,5],16p) = R([3,0,5],16)R([1,0,15],p) + R([1,0,15],16)R([3,0,5],p) = 0. Thus, appealing to Lemma 2.5 we have $\lambda(3,5;2p) = 0$.

Let $b \in \{3, 5\}$. By Theorem 5.2 we have

$$\lambda(3,5;bp) = \frac{1}{2} \sum_{\substack{X,Y \in \mathbb{Z} \\ X^2 + 15Y^2 = bp}} (X^2 - 15Y^2).$$

As $H(-60) = \{[1, 0, 15], [3, 0, 5]\}, R([1, 0, 15], b) = 0$ and R([3, 0, 5], b) = 2, using Lemma 2.2 we see that

$$R([1,0,15],bp) = \frac{1}{2}(R([1,0,15],b)R([1,0,15],p) + R([3,0,5],b)R([3,0,5],p))$$

= R([3,0,5],p).

If $p \not\equiv 17, 23 \pmod{30}$, then R([1, 0, 15], bp) = R([3, 0, 5], p) = 0 and so $\lambda(3, 5; bp) = 0$. If $p \equiv 17, 23 \pmod{30}$, then there are unique positive integers x and y such that $p = 3x^2 + 5y^2$. As R([1, 0, 15], bp) = R([3, 0, 5], p) = 4, we see that all the integral solutions to $3p = X^2 + 15Y^2$ are given by $\{\pm 3x, \pm y\}$, and all the integral solutions to $5p = X^2 + 15Y^2$ are given by $\{\pm 5y, \pm x\}$. Thus,

$$\lambda(3,5;3p) = \frac{1}{2} \sum_{\substack{X,Y \in \mathbb{Z} \\ X^2 + 15Y^2 = 3p}} (X^2 - 15Y^2) = 2((3x)^2 - 15y^2) = 36x^2 - 6p$$

and

$$\lambda(3,5;5p) = \frac{1}{2} \sum_{\substack{X,Y \in \mathbb{Z} \\ X^2 + 15Y^2 = 5p}} (X^2 - 15Y^2) = 2((5y)^2 - 15x^2) = 10p - 60x^2$$

This completes the proof.

References

- A. Alaca, S. Alaca, M. F. Lemire, K. S. Williams, Jacobi's identity and representations of integers by certain quaternary quadratic forms, Int. J. Mod. Math. 2(2007) 143-176.
- [2] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge Univ. Press, UK, 1999, p.500
- [3] B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
- [4] D.A. Cox, Primes of the Form $x^2 + ny^2$: Fermat, Class Field Theory, and Complex Multiplication, Wiley, New York, Chichester, 1989.
- [5] E. Hecke, Mathematische Werke, Vandenhocck and Ruprecht, 1959.
- [6] F. Klein, R. Fricke, Vorlesungen uber die Theorie der elliptischen Modulfunktionen, (Vols. 1, 2), Teubner, Leipzig, 1892.
- [7] J. Liouville, Sur la forme $x^2 + y^2 + z^2 + 16t^2$, J. Math. Pures Appl. 7(1862) 165-168.
- [8] L.J. Mordell, On Mr Ramanujan's empirical expansions of modular functions, Proc. Cambridge Philos. Soc. 19(1917) 117-124.
- [9] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
- [10] S.S. Rangachari, Ramanujan and Dirichlet series with Euler products, Proc. Indian. Acad. Sci. (Math. Sci.) 91(1982) 1-15.
- [11] J. Stienstra, F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann. 271(1985) 269-304.
- [12] Z.H. Sun, On the properties of Newton-Euler pairs, J. Number Theory 114(2005) 88-123.
- [13] Z.H. Sun, On the number of incongruent residues of $x^4 + ax^2 + bx$ modulo p, J. Number Theory 119(2006) 210-241.
- [14] Z.H. Sun, K.S. Williams, On the number of representations of n by $ax^2 + bxy + cy^2$, Acta Arith. 122(2006) 101-171.