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Abstract. Recently, using modular forms F. Beukers posed a unified method that
can deal with a large number of supercongruences involving binomial coefficients and
Apéry-like numbers. In this paper, we use Beukers’ method to prove some conjectures
of the first author concerning the congruences for
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modulo p3, where p is an odd prime representable by some suitable binary quadratic
form and m is an integer not divisible by p.
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1. Introduction

In 1998, Ono[13] established congruences for
∑p−1

k=0

(
2k
k

)3 1
mk modulo p in the cases

m = 1,−8, 16,−64, 256,−512, 4096 for any prime p ̸= 2, 7. Following these, for such
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values of m, in [22] the first author’s brother Z.W. Sun conjectured congruences for∑p−1
k=0

(
2k
k

)3 1
mk modulo p2, which have been proved by the first author in [16] and

Kibelbek et al in [9]. Going beyond that, in [19], the first author also conjecturally

formulated congruences for
∑p−1

k=0

(
2k
k

)3 1
mk modulo p3. Before instantiating these con-

gruences, hereafter, for positive integers a, b and n, if n = ax2+ by2 for some integers
x and y, we simply write that n = ax2 + by2, and recall the well known results (see
[6,21]) that for an odd prime p,

p = x2 + 4y2 for p ≡ 1 (mod 4),

p = x2 + 3y2 for p ≡ 1 (mod 3),

p = x2 + 2y2 for p ≡ 1, 3 (mod 8),

p = x2 + 7y2 for p ≡ 1, 2, 4 (mod 7),

where the integers x and y are uniquely determined up to sign. Following these, an
example of the first author’s conjectures can be stated as that for any prime p ̸= 2, 7,

p−1∑
k=0

(
2k

k

)3

≡



4x2 − 2p− p2

4x2 (mod p3)

if p ≡ 1, 2, 4 (mod 7) and so p = x2 + 7y2,

−11p2
(
[3p/7]
[p/7]

)−2
(mod p3) if p ≡ 3 (mod 7),

−11
16
p2
(
[3p/7]
[p/7]

)−2
(mod p3) if p ≡ 5 (mod 7),

−11
4
p2
(
[3p/7]
[p/7]

)−2
(mod p3) if p ≡ 6 (mod 7),

(1.1)

where [a] is the greatest integer not exceeding a.
Based on the work of Long and Ramakrishna[8], the first author[20] illustrated

that for any odd prime p,
p−1
2∑

k=0

(
2k
k

)3
64k

≡

4x2 − 2p− p2

4x2 (mod p3) if p = x2 + 4y2 ≡ 1 (mod 4),

−p2
( p−1

2
p−3
4

)−2

(mod p3) if p ≡ 3 (mod 4)
(1.2)

and

(−1)
p−1
4

p−1
2∑

k=0

(
2k
k

)3
(−512)k

≡ 4x2 − 2p− p2

4x2
(mod p3) for p = 4n+ 1 = x2 + 4y2. (1.3)

What’s more, in [19] and [20], the first author posed many conjectural congruences
for

p−1∑
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2k
k

)2(3k
k
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mk

,
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(
2k
k
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mk
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modulo p3 for prime p > 3 and integer m coprime to p. See also [15-18] and [24]
for relevant congruences modulo p2. For example, the first author[19] experimentally
found that

p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

≡


4x2 − 2p− p2

4x2 (mod p3) if p = x2 + 2y2 ≡ 1, 3 (mod 8),
p2

3

(
[p/4]
[p/8]

)−2
(mod p3) if p ≡ 5 (mod 8),

−3
2
p2
(
[p/4]
[p/8]

)−2
(mod p3) if p ≡ 7 (mod 8),

(1.4)

(−3

p

) p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡

{
4x2 − 2p− p2

4x2 (mod p3) if p = x2 + 4y2 ≡ 1 (mod 4),
5
12
p2
(
(p−3)/2
(p−3)/4

)−2
(mod p3) if p ≡ 3 (mod 4),

(1.5)

where
(
a
p

)
is the Jacobi symbol. It is worth remarking that Liu[7] formulated the

supercongruences for the sums in (1.4)-(1.5) modulo p3 in terms of p-adic Gamma
functions. In [10] , using p-adic Gamma functions and Jacobi sums Mao proved
(1.4) in the cases p ≡ 1, 5, 7 (mod 8). The congruences (1.4) and (1.5) modulo p2

were conjectured by Rodriguez-Villegas[14] and proved by Mortenson[12] and Z.W.
Sun[23].

Recently, in order to conceptually interpret all these conjectures, using modular
forms Beukers[2] found a unified way to deal with supercongruences modulo p2 or p3

for sums involving binomial coefficients and Apéry-like numbers, where p is an odd
prime representable by some suitable binary quadratic form. In this paper, using
Beukers’ method we prove a number of congruences conjectured by the first author.
In particular, we rigorously verify a number of CM values of modular functions that
were stated without proofs in Beukers’ work [2].

Thanks to Beukers for his summary [2, Appendix C] of products of three bino-
mial coefficients, Apéry-like numbers and their associated Hauptmoduls, as well as
findings of their related CM values, we notice that a number of conjectures of the
first author can also be charted similarly. In what follows, we state all the supercon-
gruences involving products of three binomial coefficients that we have been able to
attain based on Beukers’ work.

The following congruences that we shall prove in Sections 3 and 4 were conjectured
by the first author in [19] and [20].

Theorem 1.1 Let p be an odd prime, p ≡ 1, 2, 4 (mod 7) and so p = x2 + 7y2.

3



Then

(p−1)/2∑
k=0

(
2k

k

)3

≡ (−1)
p−1
2

(p−1)/2∑
k=0

(
2k
k

)3
4096k

≡ 4x2 − 2p− p2

4x2
(mod p3), (1.6)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
81k

≡
p−1∑
k=0

(
2k
k

)2(4k
2k

)
(−3969)k

≡ 4x2 − 2p− p2

4x2
(mod p3). (1.7)

Theorem 1.2 Let p be a prime of the form 3k + 1 and so p = x2 + 3y2. Then

(p−1)/2∑
k=0

(
2k
k

)3
16k

≡ (−1)
p−1
2

(p−1)/2∑
k=0

(
2k
k

)3
256k

≡ 4x2 − 2p− p2

4x2
(mod p3), (1.8)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
(−144)k

≡ 4x2 − 2p− p2

4x2
(mod p3). (1.9)

Theorem 1.3 Let p be a prime of the form 4k + 1 and so p = x2 + 4y2. Then

(p−1)/2∑
k=0

(
2k
k

)3
(−8)k

≡ 4x2 − 2p− p2

4x2
(mod p3), (1.10)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
648k

≡ 4x2 − 2p− p2

4x2
(mod p3). (1.11)

Theorem 1.4 Let p be a prime such that p ≡ 1, 3 (mod 8) and so p = x2 + 2y2.
Then

(p−1)/2∑
k=0

(
2k
k

)3
(−64)k

≡ (−1)
p−1
2

(
4x2 − 2p− p2

4x2

)
(mod p3), (1.12)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
256k

≡ 4x2 − 2p− p2

4x2
(mod p3), (1.13)

p−1∑
k=0

(
2k
k

)2(4k
2k

)
284k

≡ 4x2 − 2p− p2

4x2
(mod p3). (1.14)
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Theorem 1.5 Let p be a prime of the form 4k + 1. Then

p−1∑
k=0

(
2k
k

)2(4k
2k

)
(−12288)k

≡

{
4x2 − 2p− p2

4x2 (mod p3) if p ≡ 1 (mod 12) and so p = x2 + 9y2,

−2x2 + 2p+ p2

2x2 (mod p3) if p ≡ 5 (mod 12) and so 2p = x2 + 9y2

and

p−1∑
k=0

(
2k
k

)2(4k
2k

)
(−6635520)k

≡

{
4x2 − 2p− p2

4x2 (mod p3) if p ≡ 1, 9 (mod 20) and so p = x2 + 25y2,

−2x2 + 2p+ p2

2x2 (mod p3) if p ≡ 13, 17 (mod 20) and so 2p = x2 + 25y2.

Theorem 1.6 Let m ∈ {5, 13, 37} and D(m) = −1024,−82944,−141122 accord-
ing as m = 5, 13, 37. Suppose that p is an odd prime such that (−m

p
) = 1. Then

p−1∑
k=0

(
2k
k

)2(4k
2k

)
D(m)k

≡


4x2 − 2p− p2

4x2 (mod p3)

if (−1
p
) = (m

p
) = 1 and so p = x2 +my2,

−2x2 + 2p+ p2

2x2 (mod p3)

if (−1
p
) = (m

p
) = −1 and so 2p = x2 +my2.

Theorem 1.7 Let m ∈ {3, 5, 11, 29} and F (m) = 482, 124, 15842, 3964 according
as m = 3, 5, 11, 29. Suppose that p is an odd prime such that (−2m

p
) = 1. Then

p−1∑
k=0

(
2k
k

)2(4k
2k

)
F (m)k

≡


4x2 − 2p− p2

4x2 (mod p3)

if (−(−1)
m−1

2 2
p

) = ( (−1)
m−1

2 m
p

) = 1 and so p = x2 + 2my2,

−8x2 + 2p+ p2

8x2 (mod p3)

if (−(−1)
m−1

2 2
p

) = ( (−1)
m−1

2 m
p

) = −1 and so p = 2x2 +my2.

Here the representability of p and 2p by x2 + my2, x2 + 2my2 or 2x2 + my2 is
guaranteed by [21, Table 9.1].
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It is noteworthy that the case of p ≡ 1 (mod 8) of (1.12)-(1.13) have been treated
by Mao[10], and congruences in (1.9) and (1.11) in the weaker form under modulo p2

were proved by Wang and Z.W. Sun[25], and the congruence for
∑p−1

k=0

(
2k
k

)2(4k
2k

)
/81k

modulo p2 and the congruences modulo p2 for the sums in (1.14) and Theorems
1.5-1.7 were first conjecturally formulated by Z.W. Sun[22,24]. In addition, the case
m = 5 in Theorem 1.6 has been treated by Beukers in [2, Corollary 1.19], while his
result was stated in different form, and he did not give a proof of the corresponding
rational CM value.

Combining Theorem 1.27 in Beukers’ work [2] and the work [18] of the first author,
in Section 5 we also confirm a number of conjectures of the first author given in [19]
and [20] that can be stated as follows.

Theorem 1.8 Let p be a prime of the form 4k + 1 and so p = x2 + 4y2. Then(−3

p

) p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡
(33
p

) p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
663k

≡ 4x2 − 2p− p2

4x2
(mod p3).

Theorem 1.9 Let p be a prime of the form 3k + 1 and so p = x2 + 3y2. Then

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
54000k

≡
(5
p

)(
4x2 − 2p− p2

4x2

)
(mod p3).

Theorem 1.10 Let p be a prime such that p ≡ 1, 3 (mod 8) and so p = x2+2y2.
Then

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
203k

≡
(−5

p

)(
4x2 − 2p− p2

4x2

)
(mod p3).

Theorem 1.11 Let p be an odd prime, p ≡ 1, 2, 4 (mod 7) and so p = x2 + 7y2.
Then(−15

p

) p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−15)3k

≡
(−255

p

) p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
2553k

≡ 4x2 − 2p− p2

4x2
(mod p3).

Theorem 1.12 Let p be a prime of the form 3k+1 and so 4p = x2+27y2. Then

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−12288000)k

≡
(10
p

)(
x2 − 2p− p2

x2

)
(mod p3).
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Theorem 1.13 Let m ∈ {11, 19, 43, 67, 163} and p be a prime such that ( p
m
) = 1

and so 4p = x2 +my2, and let

m1 =



−32 if m = 11,

−96 if m = 19,

−960 if m = 43,

−5280 if m = 67,

−640320 if m = 163

and m0 =



−2 if m = 11,

−6 if m = 19,

−15 if m = 43,

−330 if m = 67,

−10005 if m = 163.

Then
p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
m3k

1

≡
(m0

p

)(
x2 − 2p− p2

x2

)
(mod p3).

It is noteworthy to remark that the congruences for the sums modulo p2 in The-
orem 1.13 were conjectured earlier by Z.W. Sun[24].

2. Preliminaries

Let R be the set of real numbers and H = {a+ bi | a, b ∈ R, b > 0}. Let

SL2(Z) =
{(

a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
,

and for any positive integer N ,

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)

}
.

For τ ∈ H the Dedekind eta function η(τ) is defined by

η(τ) = e2πiτ/24
∞∏
n=1

(
1− e2πiτn

)
.

It is well known (see [6, Corollary 12.19]) that

η(τ + 1) = e2πi/24η(τ) and η
(
− 1

τ

)
=

√
−iτ η(τ).

7



For τ ∈ H let

∆(τ) = η(τ)24 = q
∞∏
n=1

(1− qn)24 with q = e2πiτ .

Then

∆
(
− 1

τ

)
= η

(
− 1

τ

)24

= (
√
−iτ)24η(τ)24 = τ 12∆(τ). (2.1)

Moreover, it is well known (see [3]) that for τ ∈ H,

∆
(aτ + b

cτ + d

)
= (cτ + d)12∆(τ) for

(
a b
c d

)
∈ SL2(Z). (2.2)

For τ ∈ H let

g2(τ) = 60
∑

m,n∈Z,(m,n)̸=(0,0)

1

(m+ nτ)4
.

The modular function j(τ) is defined by

j(τ) = 1728
g2(τ)

3

(2π)12η(τ)24
.

It is well known (see [3] and [6, (12.4) and (12.6)]) that

j(τ + 1) = j(τ), j
(
− 1

τ

)
= j(τ),

j
(aτ + b

cτ + d

)
= j(τ) for

(
a b
c d

)
∈ SL2(Z). (2.3)

For c, d ∈ Z let (c, d) be the greatest common divisor of c and d. For given
imaginary quadratic irrational number α let ᾱ be the conjugate of α. For an odd
prime p let Zp be the ring of p-adic integers. Let X0(N)+ be the modular curve
associated to the Fricke group Γ0(N)+, the Fuchsian group generated by Γ0(N)

and its involution

(
0 1

−N 0

)
. In particular, recall that for a Fuchsian group Γ

commensurable with SL2(Z) of genus zero, a Hauptmodul for Γ is a modular function
for Γ with a unique pole.

In [2], Beukers established the following great theorem.

Beukers’ theorem ([2, Theorems 1.15-1.16]) Let F (t) =
∑∞

n=0 ant
n. Sup-

pose that
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(1) for τ ∈ H, t(τ) is a Hauptmodul for the modular group Γ0(N)+.
(2) F (t(τ)) is a modular form of weight 2 with respect to Γ0(N)+. In particular,

F (t(τ)) satisfies that F (t(−1/(Nτ))) = −Nτ 2F (t(τ)).
(3) F (t(τ)) has a unique zero (modulo the action of Γ0(N)+), which is located at

the pole of t(τ). Assume that it has order 1/r for some positive integer r.
(4) F (t(τ)) can be written as an η-product or r ≥ 4.
Let α be an imaginary quadratic number with positive imaginary part. Let p be a

prime not dividing N which splits in the quadratic field Q(α).
(i) Suppose that there exist integers c and d such that

(c, d) = 1, N | c, cαᾱ, c(α+ ᾱ) ∈ Z,
p = (cα + d)(cᾱ + d) and cα + d /∈ pZp. (2.4)

If t(α) ∈ Zp, then
p−1∑
n=0

ant(α)
n ≡ (cα+ d)2 (mod p3).

(ii) Suppose that there exist integers c and d such that

(c, dN) = 1, Ncαᾱ ∈ Z, c(α + ᾱ) ∈ Z,
p = N(cα+ d)(cᾱ + d) and cα + d /∈ pZp. (2.5)

If t(α) ∈ Zp, then
p−1∑
n=0

ant(α)
n ≡ −N(cα+ d)2 (mod p3).

In order to prove our main results, we need the following basic lemma.

Lemma 2.1 Let p be an odd prime, and let d > 1 be an integer not divisible by
p. Suppose that c is a positive integer, cp = x2+ dy2(x, y ∈ Z) and x+ y

√
−d ̸∈ pZp.

Then

x+ y
√
−d ≡ 2x− cp

2x
− c2p2

8x3
− c3p3

16x5
(mod p4),

(x+ y
√
−d)2 ≡ 4x2 − 2cp− c2p2

4x2
− c3p3

8x4
(mod p4).
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Proof. Suppose A = x + y
√
−d. Since (A − x)2 = −dy2 = x2 − cp, we have

A(A−2x) = −cp and so A ≡ 2x (mod p). Set A = 2x+ kp
2x
. Then (2x+ kp

2x
)kp
2x

= −cp

and so k + k2p
4x2 = −c. Hence

A = 2x+
kp

2x
= 2x−

(c+ k2p
4x2 )p

2x
= 2x− cp

2x
− k2p2

8x3

= 2x− cp

2x
− p2

8x3

(
− c− k2p

4x2

)2

≡ 2x− cp

2x
− p2

8x3

(
c2 +

ck2p

2x2

)
≡ 2x− cp

2x
− c2p2

8x3
− c3p3

16x5
(mod p4).

Therefore,

A2 ≡
(
2x− cp

2x
− c2p2

8x3
− c3p3

16x5

)2

≡
(
2x− cp

2x

)2

− 2
(
2x− cp

2x

)(c2p2
8x3

+
c3p3

16x5

)
≡ 4x2 − 2cp+

c2p2

4x2
− c2p2

2x2
+

c3p3

8x4
− c3p3

4x4

= 4x2 − 2cp− c2p2

4x2
− c3p3

8x4
(mod p4).

This completes the proof.

3. Proofs of congruences involving
(
2k
k

)3
Lemma 3.1 For τ ∈ H let t(τ) be defined by

t(τ) =
q∏∞

n=1(1 + q2n−1)24
with q = e2πiτ .

Then

t(τ) =
∆(τ)∆(4τ)

∆(2τ)2
= t

(
− 1

4τ

)
, (16t(τ)− 1)3 + j(2τ)t(τ)2 = 0

and t(τ) is a Hauptmodul for Γ0(4)
+ with a unique pole at the cusp [1

2
].

Proof. For τ ∈ H and q = e2πiτ we have

∞∏
n=1

1

1 + q2n−1
=

∞∏
n=1

1− q2n−1

1− q4n−2
=

∞∏
n=1

1− qn

1− q2n
· 1− q4n

1− q2n
.
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Thus,

t(τ) = q
∞∏
n=1

(1− qn)24(1− q4n)24

(1− q2n)48
=

∆(τ)∆(4τ)

∆(2τ)2
.

Using (2.1) we see that

t
(
− 1

4τ

)
=

∆(− 1
4τ
)∆(− 1

τ
)

∆(− 1
2τ
)2

=
(4τ)12∆(4τ) · τ 12∆(τ)

(2τ)24∆(2τ)2
= t(τ).

Appealing to (2.2),

t

(
aτ + b

cτ + d

)
=

∆
(
aτ+b
cτ+d

)
∆
(

a(4τ)+4b
(c/4)(4τ)+d

)
∆
( a(2τ)+2b
(c/2)(2τ)+d

)2 =
∆(τ)∆(4τ)

∆(2τ)2
= t(τ) for

(
a b
c d

)
∈ Γ0(4).

Notice that t(τ) has no zeros or poles in H by its infinite product representation, and
t(τ) = q + O(q2) has a simple zero at the cusp [i∞] by its definition. Since X0(4)

+

has only cusps [i∞] and [1
2
], and t(τ) is a modular function on X0(4)

+ with no zeros
or poles in H, using the Residue Theorem for compact Riemann surfaces one can see
that this forces t(τ) to have a simple pole at the cusp [1

2
], which is the unique pole

of t(τ) in X0(4)
+. Hence, t(τ) is a Hauptmodul for Γ0(4)

+.
From [6, Theorem 12.17],

j(τ) =
(f(τ)24 − 16

f(τ)8

)3

for f(τ) = e−
2πi
48

η((τ + 1)/2)

η(τ)
. (3.1)

Observe that

f(2τ)24 = −
η(τ + 1

2
)24

η(2τ)24
= −

∞∏
n=1

e2πi(τ+
1
2
)(1− e2πi(τ+

1
2
)n)24

e2πi·2τ (1− e2πi·2τn)24

=
1

e2πiτ

∞∏
n=1

(1− (−1)ne2πiτn)24

(1− e2πiτ ·2n)24
=

1

e2πiτ

∞∏
n=1

(
1 + e2πiτ(2n−1)

)24

=
1

t(τ)
.

We derive that

j(2τ) =
(f(2τ)24 − 16)3

f(2τ)24
=

( 1
t(τ)

− 16)3

1
t(τ)

=
(1− 16t(τ))3

t(τ)2

and so (16t(τ)− 1)3 + j(2τ)t(τ)2 = 0.
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Lemma 3.2 Suppose that b is a positive real number. For a ∈ Z we have

(−1)at(a+
√
−b

2
) > 0. For a ∈ R we have t(a+

√
−b) = t(−a+

√
−b).

Proof. For a ∈ Z we have e2πi·
a+

√
−b

2 = (−1)ae−
√
bπ and so

(−1)at
(a+√

−b

2

)
=

e−
√
bπ∏∞

n=1(1 + (−1)ae−
√
bπ(2n−1))24

> 0.

For a ∈ R we see that e2πi(a+
√
−b) = e2πia−2π

√
b = e−2πia−2π

√
b = e2πi(−a+

√
−b) and so

t(a+
√
−b) =

e2πi(a+
√
−b)∏∞

n=1(1 + e2πi(a+
√
−b)(2n−1))24

=
e2πi(−a+

√
−b)∏∞

n=1(1 + e2πi(−a+
√
−b)(2n−1))24

= t(−a+
√
−b).

Lemma 3.3 For τ ∈ H let t(τ) be given in Lemma 3.1. Then

t
(3 +√

−7

8

)
= 1, t

(√−7

2

)
=

1

4096
, t

(3 +√
−3

4

)
=

1

16
,

t
(√−3

2

)
=

1

256
, t

(1 + i

2

)
= −1

8
, t

(1 +√
−2

2

)
= − 1

64
.

Proof. From [6, (12.20)] we have j(3+
√
−7

2
) = −153. Since j(τ + 1) = j(τ) and

j(τ) = j(− 1
τ
), we see that

j
(3 +√

−7

4

)
= j

(−1 +
√
−7

4

)
= j

(
− 4

−1 +
√
−7

)
= j

(1 +√
−7

2

)
= j

(3 +√
−7

2

)
= −153.

Hence, appealing to Lemma 3.1, t(3+
√
−7

8
) is a root of (16x − 1)3 − 153x2 = (x −

1)(4096x2−47x+1) = 0 and so t
(
3+

√
−7

8

)
∈
{
1, 47+45

√
−7

8192
, 47−45

√
−7

8192

}
. By Lemmas 3.1

and 3.2,

t
(3 +√

−7

8

)
= t

(−3 +
√
−7

8

)
= t

(
− 1

4 · −3+
√
−7

8

)
= t

(3 +√
−7

8

)
.

Hence, t
(
3+

√
−7

8

)
is real and therefore t(3+

√
−7

8
) = 1.

12



From [6, (12.20)], j(
√
−7) = 2553. Hence t(

√
−7
2

) is a root of (16x−1)3+2553x2 =
0 by Lemma 3.1. Observe that (16x− 1)3 + 2553x2 = (4096x− 1)(x2 + 4048x + 1).

We have t
(√

−7
2

)
∈
{

1
4096

,−2024+
√
20242 − 1,−2024−

√
20242 − 1

}
. By Lemma 3.2,

t(
√
−7
2

) > 0. Thus, t
(√

−7
2

)
= 1

4096
.

Since j(τ + 1) = j(τ), from [6, p.261] we have j
(
3+

√
−3

2

)
= j

(
1+

√
−3

2

)
= 0 and so

t
(
3+

√
−3

4

)
= 1

16
by Lemma 3.1.

From [6, pp.261,291] we have j(
√
−3) = 54000. Thus, applying Lemma 3.1 we see

that t(
√
−3
2

) is a root of (16x−1)3+54000x2 = (256x−1)(16x2+208x+1) = 0 and so

t
(√

−3
2

)
∈
{

1
256

, −26+15
√
3

4
, −26−15

√
3

4

}
. By Lemma 3.2, t(

√
−3
2

) > 0. Thus t
(√

−3
2

)
= 1

256
.

By [6, (12.20)], j(i) = 123 and so j(1 + i) = 123 since j(τ + 1) = j(τ). From
Lemma 3.1, t(1+i

2
) is a root of (16x − 1)3 + 123x2 = (8x + 1)2(64x − 1) = 0. Thus,

t(1+i
2
) = −1

8
or 1

64
. From Lemma 3.2, t(1+i

2
) < 0. Thus, t(1+i

2
) = −1

8
.

By [6, (12.20)], j(
√
−2) = 203. Thus, j(1 +

√
−2) = j(

√
−2) = 203. Hence

t(1+
√
−2

2
) is a root of (16x−1)3+203x2 = 0 by Lemma 3.1. Since (16x−1)3+203x2 =

(64x+1)(64x2+112x−1), we see that t(1+
√
−2

2
) ∈ {− 1

64
, −7+5

√
2

8
, −7−5

√
2

8
}. By Lemma

3.2, t(1+
√
−2

2
) < 0 and so t(1+

√
−2

2
) ∈ {− 1

64
, −7−5

√
2

8
}. Note that e2πi(1+

√
−2)/2 =

−e−
√
2π. By Bernoulli’s inequality (1+a1)(1+a2) · · · (1+an) > 1+a1+a2+ · · ·+an

for a1, a2, . . . , an ∈ (−1, 0), we have

∞∏
n=1

(
1− e−

√
2π(2n−1)

)
≥ 1−

∞∑
n=1

e−
√
2π(2n−1) = 1− e−

√
2π

1− e−2
√
2π

>
1

e
√

2π
24

.

Therefore,

t
(1 +√

−2

2

)
= − 1

e
√
2π
∏∞

n=1

(
1− e−

√
2π(2n−1)

)24 > −1

and so t(1+
√
−2

2
) = − 1

64
. This completes the proof.

Remark 3.1 Lemma 3.3 was stated by Beukers in [2, p.29] without proof.

Lemma 3.4 Let t(τ) be given in Lemma 3.1. For τ ∈ H we have

∞∑
n=0

(
2n

n

)3

t(τ)n =
η(2τ)20

η(τ)8η(4τ)8

is a weight 2 modular form for Γ0(4)
+ with a unique zero at the cusp [1

2
] of order 1.
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Proof. By Lemma 3.1, t(τ) =
(
η(τ)η(4τ)
η(2τ)2

)24
. Thus, the equality in Lemma 3.4

was already proved by Cooper in [5, Theorem 4.1(d)]. From [11], for any

(
a b
c d

)
∈

SL2(Z),

η

(
aτ + b

cτ + d

)
=

( a

c0

)
ζ
ab+cd(1−a2)−ca+3c0(a−1)+r 3

2
(a2−1)

24 (cτ + d)
1
2η(τ), (3.2)

where ζn = e2πi/n and c0 is given by c = 2rc0 with 2 - c0. Set h(τ) = η(2τ)20

η(τ)8η(4τ)8
. Using

(3.2) we see that

h
(aτ + b

cτ + d

)
=

η( a(2τ)+2b
(c/2)(2τ)+d

)20

η(aτ+b
cτ+d

)8η( a(4τ)+4b
(c/4)(4τ)+d

)8

=
ζ
20(a(2b)+(c/2)d(1−a2)− 1

2
ca+3c0(a−1)+(r−1) 3

2
(a2−1))

24 ((c/2)(2τ) + d)10η(2τ)20

ζ
8(ab+cd(1−a2)−ca+3c0(a−1)+r 3

2
(a2−1))

24 (cτ + d)4η(τ)8

× 1

ζ
8(a(4b)+(c/4)d(1−a2)− 1

4
ca+3c0(a−1)+(r−2) 3

2
(a2−1))

24 ((c/4)(4τ) + d)4η(4τ)8

= (cτ + d)2
η(2τ)20

η(τ)8η(4τ)8
= (cτ + d)2h(τ) for any

(
a b
c d

)
∈ Γ0(4).

Since η(− 1
τ
) =

√
−iτ η(τ) we see that h(− 1

4τ
) = η(−1/(2τ))20

η(−1/τ)8η(−1/(4τ))8
= −4τ 2h(τ).

Therefore, h(τ) is a weight 2 modular form for Γ0(4)
+. Moreover, by its infinite

product representation, it is clear that h(τ) has no zeros or poles in H, and h(τ) =
1+O(q) is of order 0 at the cusp [i∞], where q = e2πiτ . So since X0(4)

+ has only two
cusps [i∞] and [1

2
], and h(τ) is a weight 2 modular form for Γ0(4)

+ with no zeros or
poles apart from the cusp [1

2
], then by the Riemann-Roch theorem this forces h(τ)

to have a zero of order 1 at the cusp [1
2
]. The proof is now complete.

Let t(τ) be given in Lemma 3.1. From Lemmas 3.1 and 3.4 one can see that both

t(τ) and
∑∞

n=0

(
2n
n

)3
t(τ)n satisfy the assumptions in Beukers’ theorem.

Proof of (1.6). Since p = x2 + 7y2 = (x+ y
√
−7)(x− y

√
−7) for x, y ∈ Z, one

may choose the sign of y so that x + y
√
−7 /∈ pZp. Set an =

(
2n
n

)3
, c = 8y, d =

x− 3y, α = 3+
√
−7

8
and N = 4. Then clearly (c, d) = 1, N | c, cαᾱ, c(α + ᾱ) ∈ Z,

p = (cα + d)(cᾱ + d) and cα + d /∈ pZp. By Lemma 3.3, t(3+
√
−7

8
) = 1. Hence,

14



applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n

n

)3

=

p−1∑
n=0

(
2n

n

)3

t
(3 +√

−7

8

)n

≡
(
8y · 3 +

√
−7

8
+ x− 3y

)2

= (x+ y
√
−7)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

For p = x2 + 7y2 ≡ 1 (mod 4) we have 2 | y. Set an =
(
2n
n

)3
, c = 2y, d = x, α =

√
−7
2

and N = 4. Then (c, d) = 1, N | c, cαᾱ, c(α + ᾱ) ∈ Z, p = (cα + d)(cᾱ + d)

and cα + d /∈ pZp. Since t
(√

−7
2

)
= 1

4096
by Lemma 3.3, using Beukers’ theorem(i)

and Lemma 2.1 we see that
p−1∑
n=0

(
2n
n

)3
4096n

=

p−1∑
n=0

(
2n

n

)3

t
(√−7

2

)n

≡
(
2y ·

√
−7

2
+ x

)2

≡ 4x2 − 2p− p2

4x2
(mod p3).

For p = x2 + 7y2 ≡ 3 (mod 4) we have 2 | x and 2 - y. Set an =
(
2n
n

)3
, c =

y, d = x
2
, α =

√
−7
2

and N = 4. Then (c, dN) = 1, Ncαᾱ ∈ Z, c(α + ᾱ) ∈ Z, p =

N(cα + d)(cᾱ + d) and cα + d /∈ pZp. Since t
(√

−7
2

)
= 1

4096
by Lemma 3.3, using

Beukers’ theorem(ii) and Lemma 2.1 we see that

p−1∑
n=0

(
2n
n

)3
4096n

=

p−1∑
n=0

(
2n

n

)3

t
(√−7

2

)n

≡ −4
(
y ·

√
−7

2
+

x

2

)2

= −(x+ y
√
−7)2 ≡ −

(
4x2 − 2p− p2

4x2

)
(mod p3).

Note that p |
(
2k
k

)
and so p3 |

(
2k
k

)3
for k = p+1

2
, . . . , p−1. Summarizing the above

proves (1.6).

Proof of (1.8). Since p = x2 + 3y2 = (x + y
√
−3)(x − y

√
−3) for x, y ∈ Z,

one may choose the sign of y so that x + y
√
−3 /∈ pZp. Set an =

(
2n
n

)3
, c =

4y, d = x − 3y, α = 3+
√
−3

4
and N = 4. Then clearly (2.4) holds. By Lemma 3.3,

t(3+
√
−3

4
) = 1

16
. Hence, applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)3
16n

=

p−1∑
n=0

(
2n

n

)3

t
(3 +√

−3

4

)n

≡
(
4y · 3 +

√
−3

4
+ x− 3y

)2

= (x+ y
√
−3)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).
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For p = x2 + 3y2 ≡ 1 (mod 4) we have 2 | y. Set an =
(
2n
n

)3
, c = 2y, d = x, α =

√
−3
2

and N = 4. Then (2.4) holds. Since t
(√

−3
2

)
= 1

256
by Lemma 3.3, using Beukers’

theorem(i) and Lemma 2.1 we see that

p−1∑
n=0

(
2n
n

)3
256n

=

p−1∑
n=0

(
2n

n

)3

t
(√−3

2

)n

≡
(
2y ·

√
−3

2
+ x

)2

≡ 4x2 − 2p− p2

4x2
(mod p3).

For p = x2+3y2 ≡ 3 (mod 4) we have 2 | x and 2 - y. Set an =
(
2n
n

)3
, c = y, d =

x
2
, α =

√
−3
2

and N = 4. Then (2.5) holds. Since t
(√

−3
2

)
= 1

256
by Lemma 3.3, using

Beukers’ theorem(ii) and Lemma 2.1 we see that

p−1∑
n=0

(
2n
n

)3
256n

=

p−1∑
n=0

(
2n

n

)3

t
(√−3

2

)n

≡ −4
(
y ·

√
−3

2
+

x

2

)2

= −(x+ y
√
−3)2 ≡ −

(
4x2 − 2p− p2

4x2

)
(mod p3).

Note that p |
(
2k
k

)
and so p3 |

(
2k
k

)3
for k = p+1

2
, . . . , p − 1. From the above we

deduce (1.8).

Proof of (1.10). Since p = (x + 2yi)(x − 2yi), we may choose the sign of x so

that x + 2yi ̸∈ pZp. Set an =
(
2n
n

)3
, c = 4y, d = x− 2y, α = 1+i

2
and N = 4. Then

(2.4) holds. By Lemma 3.3, t(1+i
2
) = −1

8
. Hence, applying Beukers’ theorem(i) and

Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)3
(−8)n

=

p−1∑
n=0

(
2n

n

)3

t
(1 + i

2

)n

≡
(
4y · 1 + i

2
+ x− 2y

)2

= (x+ y
√
−4)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

Since p |
(
2k
k

)
and so p3 |

(
2k
k

)3
for p

2
< k ≤ p− 1, the result follows.

Proof of (1.12). Since p = x2 +2y2 = (x+ y
√
−2)(x− y

√
−2) for x, y ∈ Z, one

may choose the sign of y so that x+ y
√
−2 /∈ pZp.

For p = x2 + 2y2 ≡ 1 (mod 8) we have 2 | y. Set an =
(
2n
n

)3
, c = 2y, d =

x − y, α = 1+
√
−2

2
and N = 4. Then (2.4) holds. Since t

(
1+

√
−2

2

)
= − 1

64
by Lemma
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3.3, using Beukers’ theorem(i) and Lemma 2.1 we see that

p−1∑
n=0

(
2n
n

)3
(−64)n

=

p−1∑
n=0

(
2n

n

)3

t
(1 +√

−2

2

)n

≡
(
2y · 1 +

√
−2

2
+ x− y

)2

= (x+ y
√
−2)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

For p = x2 + 2y2 ≡ 3 (mod 8) we have 2 - xy. Set an =
(
2n
n

)3
, c = y, d =

x−y
2
, α = 1+

√
−2

2
and N = 4. Then (2.5) holds. Since t

(
1+

√
−2

2

)
= − 1

64
by Lemma

3.3, using Beukers’ theorem(ii) and Lemma 2.1 we see that

p−1∑
n=0

(
2n
n

)3
(−64)n

=

p−1∑
n=0

(
2n

n

)3

t
(1 +√

−2

2

)n

≡ −4
(
y · 1 +

√
−2

2
+

x− y

2

)2

= −(x+ y
√
−2)2 ≡ −

(
4x2 − 2p− p2

4x2

)
(mod p3).

Note that p |
(
2k
k

)
and so p3 |

(
2k
k

)3
for k = p+1

2
, . . . , p− 1. From the above (1.12)

is proved.

4. Proofs of congruences involving
(
2k
k

)2(4k
2k

)
For given rational number n set

σ(n) =

{∑
d|n d if n ∈ {1, 2, 3, . . .},

0 otherwise.

For τ ∈ H define

h2(τ) =
∆(2τ)

∆(τ)
, u(τ) =

h2(τ)

(1 + 64h2(τ))2
and u1(τ) =

1

u(τ)
. (4.1)

Then

h2(τ) =
e2πi·2τ

e2πiτ

∞∏
n=1

(1− e2πi·2τn

1− e2πiτn

)24

=
q∏∞

n=1(1− q2n−1)24
for q = e2πiτ . (4.2)

By (2.1),

h2

(
− 1

2τ

)
=

∆(− 1
τ
)

∆(− 1
2τ
)
=

τ 12∆(τ)

(2τ)12∆(2τ)
=

1

4096h2(τ)
. (4.3)
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Lemma 4.1 For τ ∈ H we have

u(τ) = u
(
− 1

2τ

)
and u1(τ)

2 − 207u1(τ) + 3456− (j(τ) + j(2τ)) = 0.

Proof. By (4.3),

u
(
− 1

2τ

)
=

1
4096h2(τ)

(1 + 64
4096h2(τ)

)2
=

h2(τ)

(1 + 64h2(τ))2
= u(τ).

From [6, Theorem 12.17],

j(τ) =
(4096h2(τ) + 16)3

4096h2(τ)
= h2

(τ
2

)( 1

h2(
τ
2
)
+ 16

)3

. (4.4)

Thus,

j(τ) + j(2τ) =
(256h2(τ) + 1)3

h2(τ)
+ h2(τ)

( 1

h2(τ)
+ 16

)3

= 224h2(τ)
2 +

1

h2(τ)2
+ 49

(
212h2(τ) +

1

h2(τ)

)
+ 1536

=
(
212h2(τ) +

1

h2(τ)

)2

+ 49
(
212h2(τ) +

1

h2(τ)

)
− 6656

= (u1(τ)− 128)2 + 49(u1(τ)− 128)− 6656

= u1(τ)
2 − 207u1(τ) + 3456.

This proves the lemma.

Lemma 4.2 For τ ∈ H let u(τ) be given in (4.1) and E2(τ) denote the normalized
weight 2 Eisenstein series

E2(τ) = 1− 24
∞∑
n=1

nqn

1− qn
= 1− 24

∞∑
n=1

σ(n)qn.

Then u(τ) =
( η(τ)2η(2τ)2

8E2(2τ)−4E2(τ)

)4
is a Hauptmodul for Γ0(2)

+ with a unique pole at 1+i
2
,

and for τ ∈ H such that u(τ) is near 0,

∞∑
n=0

(
2n

n

)2(
4n

2n

)
u(τ)n = 2E2(2τ)− E2(τ) = 1 + 24

∞∑
n=1

(
σ(n)− 2σ

(n
2

))
qn

18



is a weight 2 modular form with respect to Γ0(2)
+ with a unique zero of order 1

4
at

1+i
2
.

Proof. Both identities were proved by Cooper in [4, Theorem 4.30]. For

(
a b
c d

)
∈

Γ0(2), using (2.2) we see that

h2

(aτ + b

cτ + d

)
=

∆
(a(2τ)+2b

c
2
(2τ)+d

)
∆
(
aτ+b
cτ+d

) =
(cτ + d)12∆(2τ)

(cτ + d)12∆(τ)
= h2(τ)

and so

u
(aτ + b

cτ + d

)
=

h2(
aτ+b
cτ+d

)

(1 + 64h2(
aτ+b
cτ+d

))2
=

h2(τ)

(1 + 64h2(τ))2
= u(τ).

By Lemma 4.1, u(τ) = u(− 1
2τ
). Therefore, u(τ) is invariant under Γ0(2)

+.
Clearly, u(τ) = q+O(q2) and thus has a unique zero at the cusp [i∞] of order 1,

where q = e2πiτ . So by the Residue Theorem for compact Riemann surfaces, u(τ)
must be a Hauptmodul for Γ0(2)

+. In addition, by the Riemann–Roch theorem, one
can show that 2E2(τ)−E2(τ) has a zero of order 1

2
at the elliptic point 1+i

2
of Γ0(2),

which is of period 2, and so, with respect to Γ0(2)
+, it has a zero of order 1

4
at 1+i

2
,

which is an elliptic point of period 4 of Γ0(2)
+. The proof is now complete.

Lemma 4.3 For a ∈ Z and b > 0 we have (−1)au(a+
√
−b

2
) > 0.

Proof. Since e2πi·
a+

√
−b

2 = (−1)ae−
√
bπ, we see that

(−1)ah2

(a+√
−b

2

)
=

e−
√
bπ∏∞

n=1(1− (−1)ae−
√
bπ(2n−1))24

> 0

and so (−1)au(a+
√
−b

2
) > 0.

Lemma 4.4 We have

u
(√−2

2

)
=

1

256
, u

(1 +√
−3

2

)
= − 1

144
, u

(1 + i

4

)
=

1

648
,

u
(1 +√

−7

4

)
=

1

81
, u

(1 +√
−7

2

)
= − 1

3969
.

Proof. Note that j(
√
−2
2

) = j(
√
−2) = 203 by [6, (12.20)]. We have u1(

√
−2
2

)2 −
207u1(

√
−2
2

)+ 3456− 203 − 203 = 0 by Lemma 4.1. Hence u1(
√
−2
2

) ∈ {256,−49} and

so u(
√
−2
2

) ∈ { 1
256

,− 1
49
}. Applying Lemma 4.3 gives u(

√
−2
2

) = 1
256

.
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By [6, p.261], j(1+
√
−3

2
) = 0 and j(

√
−3) = 54000. Thus u1(

1+
√
−3

2
)2−207u1(

1+
√
−3

2
)+

3456−54000 = 0 by Lemma 4.1. Hence u1(
1+

√
−3

2
) ∈ {351,−144} and so u(1+

√
−3

2
) ∈

{ 1
351

,− 1
144

}. In view of Lemma 4.3, u
(
1+

√
−3

2

)
= − 1

144
.

From (2.3) and [6, (12.20)], j(1+i
2
) = j(i−1) = j(i) = 123 and j(1+i

4
) = j(2i−2) =

j(2i) = 663. In view of Lemma 4.1, u1(
1+i
4
)2 − 207u1(

1+i
4
) + 3456− (663 + 123) = 0,

which yields u1(
1+i
4
) ∈ {648,−441} and so u(1+i

4
) ∈ { 1

648
,− 1

441
}. By Lemma 4.1,

u(1+i
4
) = u(− 1

(1+i)/2
) = u(−1 + i). Since e2πi(−1+i) = e−2π we have h2(−1 + i) =∏∞

n=1
e−2π

(1−e−2π(2n−1))24
> 0 and so u(1+i

4
) = u(−1 + i) = h2(−1+i)

(1+64h2(−1+i))2
> 0. Thus,

u(1+i
4
) = 1

648
.

By [6, (12.20)], j
(
3+

√
−7

2

)
= −153. Since j(τ + 1) = j(τ) and j(− 1

τ
) = j(τ), we

see that for τ0 =
1+

√
−7

4
, j(τ0) = j(2τ0 − 1) = j(2τ0) = j(2τ0 + 1) = −153. Applying

Lemma 4.1 yields

(u1(τ0)− 81)(u1(τ0)− 126) = u1(τ0)
2 − 207u1(τ0) + 3456 + 2 · 153 = 0.

Hence u1(τ0) ∈ {81, 126}. By (4.4), 4096h2(τ0) is a root of (x + 16)3 = −153x.
Since (x + 16)3 + 153x = (x + 1)(x2 + 47x + 4096), we see that 4096h2(τ0) ∈
{−1, −47+45

√
−7

2
, −47−45

√
−7

2
}. On the other hand, 4096h2(τ0)+

1
h2(τ0)

= u1(τ0)− 128 ∈
{−2,−47}. Thus, 4096h2(τ0) ̸= −1 and so

u1(τ0) = 4096h2(τ0) +
1

h2(τ0)
+ 128

=
−47± 45

√
−7

2
+

2 · 4096
−47± 45

√
−7

+ 128 = 128− 47 = 81,

which yields u(τ0) =
1
81
.

Recall that τ0 = 1+
√
−7

4
. From [6, (12.20)], j(4τ0) = j(1 +

√
−7) = j(

√
−7) =

2553. By Lemma 4.1, u1(2τ0)
2 − 207u1(2τ0) + 3456 − (−153 + 2553) = 0, which

yields u1(2τ0) ∈ {−3969, 4176} and so u(2τ0) ∈ {− 1
3969

, 1
4176

}. Applying Lemma 4.3,
u(2τ0) < 0. Thus u(2τ0) = − 1

3969
. The proof is now complete.

Remark 4.1 Lemma 4.4 was stated by Beukers in [2, p.30] without proof.

By Lemma 4.2, both u(τ) and
∑∞

n=0

(
2n
n

)2(4n
2n

)
u(τ)n satisfy the assumptions in

Beukers’ theorem.

Proof of (1.7). Since p = x2 + 7y2 = (x + y
√
−7)(x − y

√
−7) for x, y ∈ Z,

one may choose the sign of y so that x + y
√
−7 /∈ pZp. Set an =

(
2n
n

)2(4n
2n

)
, c =

20



2y, d = x − y, α = 1+
√
−7

2
and N = 2. Then clearly (2.4) holds. By Lemma 4.4,

u(1+
√
−7

2
) = − 1

3969
. Hence, applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
(−3969)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 +√

−7

2

)n

≡
(
2y · 1 +

√
−7

2
+ x− y

)2

= (x+ y
√
−7)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

On the other hand, setting an =
(
2n
n

)2(4n
2n

)
, c = 4y, d = x−y, α = 1+

√
−7

4
and N = 2

one finds that (2.4) holds. By Lemma 4.4, u(1+
√
−7

4
) = 1

81
. Hence, applying Beukers’

theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
81n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 +√

−7

4

)n

≡
(
4y · 1 +

√
−7

4
+ x− y

)2

= (x+ y
√
−7)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

Proof of (1.9). Since p = x2 + 3y2 = (x + y
√
−3)(x − y

√
−3) for x, y ∈ Z,

one may choose the sign of y so that x + y
√
−3 /∈ pZp. Set an =

(
2n
n

)2(4n
2n

)
, c =

2y, d = x − y, α = 1+
√
−3

2
and N = 2. Then clearly (2.4) holds. By Lemma 4.4,

u(1+
√
−3

2
) = − 1

144
. Hence, applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
(−144)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 +√

−3

2

)n

≡
(
2y · 1 +

√
−3

2
+ x− y

)2

= (x+ y
√
−3)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

Proof of (1.11). Since p = x2 + 4y2 = (x + 2yi)(x − 2yi) for x, y ∈ Z, one
may choose the sign of y so that x + 2yi /∈ pZp. Set an =

(
2n
n

)2(4n
2n

)
, c = 8y, d =

x − 2y, α = 1+i
4

and N = 2. One can check that (2.4) holds. By Lemma 4.4,
u(1+i

4
) = 1

648
. Hence, applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
648n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 + i

4

)n

≡
(
8y · 1 + i

4
+ x− 2y

)2

= (x+ y
√
−4)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).
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Proof of (1.13). Since p = x2 +2y2 = (x+ y
√
−2)(x− y

√
−2) for x, y ∈ Z, one

may choose the sign of y so that x+ y
√
−2 /∈ pZp. Set an =

(
2n
n

)2(4n
2n

)
, c = 2y, d =

x, α =
√
−2
2

and N = 2. Then clearly (2.4) holds. By Lemma 4.4, u(
√
−2
2

) = 1
256

.
Hence, applying Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
256n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(√−2

2

)n

≡
(
2y ·

√
−2

2
+ x

)2

≡ 4x2 − 2p− p2

4x2
(mod p3).

Lemma 4.5 We have

u
(√−6

2

)
=

1

482
, u

(√−10

2

)
=

1

124
, u

(3√−2

2

)
=

1

284
,

u
(√−22

2

)
=

1

15842
, u

(√−58

2

)
=

1

3964
,

u
(1 + 3i

2

)
= − 1

12288
, u

(1 + 5i

2

)
= − 1

6635520
, u

(1 +√
−5

2

)
= − 1

1024
,

u
(1 +√

−13

2

)
= − 1

82944
, u

(1 +√
−37

2

)
= − 1

141122
.

Proof. From [1, pp.200-201], for n = 6, 10, 18, 22, 58 we have

h2

(√−n

2

)
=

η(
√
−n)24

η(
√
−n
2

)24
=



1
64(1+

√
2)4

= 1
64(17+12

√
2)

if n = 6,
1

64( 1+
√

5
2

)12
= 1

64(161+72
√
5)

if n = 10,

1
64(

√
2+

√
3)8

= 1
64(4801+1960

√
6)

if n = 18,
1

64(1+
√
2)12

= 1
64(19601+13860

√
2)

if n = 22,
1

64( 5+
√

29
2

)12
= 1

64(192119201+35675640
√
29)

if n = 58.

(4.5)

Substituting these values into the formula u
(√

−n
2

)
=

h2(
√

−n
2

)

(1+64h2(
√

−n
2

))2
yields the results

for u
(√

−n
2

)
in the cases n = 6, 10, 18, 22, 58.
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From [1, pp.189-191], for n = 5, 9, 13, 25, 37 we have

h2

(1 +√
−n

2

)
=

η(1 +
√
−n)24

η(1+
√
−n

2
)24

=
η(
√
−n)24

η(1+
√
−n

2
)24

=



− 1

64( 1+
√

5
2

)6
if n = 5,

− 1

64( 1+
√

3√
2

)8
if n = 9,

− 1

64( 3+
√

13
2

)6
if n = 13,

− 1

64( 1+
√

5
2

)24
if n = 25,

− 1
64(6+

√
37)6

if n = 37.

(4.6)

Substituting these values into the formula u
(
1+

√
−n

2

)
=

h2(
1+

√
−n

2
)

(1+64h2(
1+

√
−n

2
))2

yields the

results for u
(
1+

√
−n

2

)
in the cases n = 5, 9, 13, 25, 37. The proof is now complete.

Remark 4.2 Lemma 4.5 was stated by Beukers in [2, p.30] without proof. By
(4.4),

j(τ) =
(1 + 256h2(τ))

3

h2(τ)
and j(2τ) = h2(τ)

(
16 +

1

h2(τ)

)3

.

This together with (4.5) and (4.6) yields the values for j(
√
−n
2

) and j(
√
−n) in the

cases n = 6, 10, 18, 22, 58, and j(1+
√
−n

2
) and j(

√
−n) in the cases n = 5, 9, 13, 25, 37.

Let u(τ) be given in (4.1). By Lemma 4.2, both u(τ) and
∑∞

n=0

(
2n
n

)2(4n
2n

)
u(τ)n

satisfy the assumptions in Beukers’ theorem.

Proof of (1.14). Since p = x2 + 2y2 = (x + y
√
−2)(x − y

√
−2) for x, y ∈ Z,

one may choose the sign of y so that x + y
√
−2 /∈ pZp. For p ≡ 1 (mod 3) we have

3 | y. Set an =
(
2n
n

)2(4n
2n

)
, c = 2y

3
, d = x, α = 3

√
−2
2

and N = 2. One can find that

(2.4) holds. By Lemma 4.5, u(3
√
−2
2

) = 1
284

. Hence, applying Beukers’ theorem(i)
and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
284n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(3√−2

2

)n

≡
(2y
3

· 3
√
−2

2
+ x

)2

≡ 4x2 − 2p− p2

4x2
(mod p3).

Now assume p ≡ 2 (mod 3). Then 3 | x. Setting an =
(
2n
n

)2(4n
2n

)
, c = x

3
, d =

−y, α = 3
√
−2
2

and N = 2, we find that (2.5) holds. Since u
(
3
√
−2
2

)
= 1

284
by Lemma

23



4.5, using Beukers’ theorem(ii) and Lemma 2.1 we deduce that

p−1∑
n=0

(
2n
n

)2(4n
2n

)
284n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(3√−2

2

)n

≡ −2
(x
3
· 3

√
−2

2
− y

)2

= (x+
√
−2y)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

Proof of Theorems 1.5-1.6. Let m ∈ {5, 9, 13, 25, 37} and D(m) = −1024,
−12288,−82944,−6635520, −141122 according as m = 5, 9, 13, 25, 37. For p = x2 +
my2 we have p = (x+ y

√
−m)(x− y

√
−m) for x, y ∈ Z, one may choose the sign of

y so that x+ y
√
−m /∈ pZp. Set an =

(
2n
n

)2(4n
2n

)
, c = 2y, d = x− y, α = 1+

√
−m

2
and

N = 2. Then clearly (2.4) holds. By Lemma 4.5, u(1+
√
−m

2
) = 1

D(m)
. Hence, applying

Beukers’ theorem(i) and Lemma 2.1 we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
D(m)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 +√

−m

2

)n

≡
(
2y · 1 +

√
−m

2
+ x− y

)2

= (x+
√
−my)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

For 2p = x2 + my2 we have 2 - xy. One may choose the sign of y so that

x+ y
√
−m /∈ pZp. Setting an =

(
2n
n

)2(4n
2n

)
, c = y, d = x−y

2
, α = 1+

√
−m

2
and N = 2,

one finds that (2.5) holds. Since u
(
1+

√
−m

2

)
= 1

D(m)
by Lemma 4.5, using Beukers’

theorem(ii) and Lemma 2.1 we deduce that

p−1∑
n=0

(
2n
n

)2(4n
2n

)
D(m)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(1 +√

−m

2

)n

≡ −2
(
y · 1 +

√
−m

2
+

x− y

2

)2

= −1

2
(x+

√
−my)2 ≡ −1

2

(
4x2 − 4p− p2

x2

)
= −2x2 + 2p+

p2

2x2
(mod p3).

Proof of Theorem 1.7. For p = x2 + 2my2 we have p = (x + y
√
−2m)(x −

y
√
−2m) for x, y ∈ Z, one may choose the sign of y so that x+ y

√
−2m /∈ pZp. Set

an =
(
2n
n

)2(4n
2n

)
, c = 2y, d = x, α =

√
−2m
2

and N = 2. Then clearly (2.4) holds. By

Lemma 4.5, u(
√
−2m
2

) = 1
F (m)

. Hence, applying Beukers’ theorem(i) and Lemma 2.1

24



we obtain

p−1∑
n=0

(
2n
n

)2(4n
2n

)
F (m)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(√−2m

2

)n

≡
(
2y ·

√
−2m

2
+ x

)2

= (x+
√
−2my)2 ≡ 4x2 − 2p− p2

4x2
(mod p3).

For p = 2x2 +my2 we have 2 - y and 2p = (2x)2 + 2my2 = (2x+ y
√
−2m)(2x−

y
√
−2m). One may choose the sign of y so that 2x + y

√
−2m /∈ pZp. Setting

an =
(
2n
n

)2(4n
2n

)
, c = y, d = x, α =

√
−2m
2

and N = 2, we find that (2.5) holds.

Since u
(√

−2m
2

)
= 1

F (m)
by Lemma 4.5, using Beukers’ theorem(ii) and Lemma 2.1

we deduce that

p−1∑
n=0

(
2n
n

)2(4n
2n

)
F (m)n

=

p−1∑
n=0

(
2n

n

)2(
4n

2n

)
u
(√−2m

2

)n

≡ −2
(
y ·

√
−2m

2
+ x

)2

= −1

2
(2x+

√
−2my)2 ≡ −1

2

(
4(2x)2 − 4p− 4p2

4(2x)2

)
= −8x2 + 2p+

p2

8x2
(mod p3).

5. Proofs of congruences involving
(
2k
k

)(
3k
k

)(
6k
3k

)
For given positive integer k let (a)k = a(a + 1) · · · (a + k − 1). Then (a)k =

(−1)k
(−a

k

)
k!. From [18] we know that(

1
2

)
k

(
1
6

)
k

(
5
6

)
k

(1)3k
= (−1)k

(
−1

2

k

)(
−1

6

k

)(
−5

6

k

)
=

(
2k
k

)
4k

·
(
3k
k

)(
6k
3k

)
432k

=

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

.

Proof of Theorem 1.8. Suppose that p = 4n + 1 = x2 + 4y2 so that x +
y
√
−4 ̸∈ pZp. Taking D = 4 in [2, Theorem 1.27] and dK = −4 in [6, (12.20)] gives∑p−1
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
12−3k ≡ ±(x+ y

√
−4)2 (mod p3). Applying Lemma 2.1 we get

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡ ±
(
4x2 − 2p− p2

4x2

)
(mod p3).
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Since Mortenson[12] proved that
∑p−1

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
12−3k ≡

(−3
p

)
4x2 (mod p2), we

must have
p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
123k

≡
(−3

p

)(
4x2 − 2p− p2

4x2

)
(mod p3).

On the other hand, taking D = 16 in [2, Theorem 1.27] and dK = −16 in [6,
(12.20)] gives

∑p−1
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
66−3k ≡ ±(x + y

√
−4)2 (mod p3). Applying Lemma

2.1 we get
p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
663k

≡ ±
(
4x2 − 2p− p2

4x2

)
(mod p3).

By [18, Theorem 4.3],
∑p−1

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
66−3k ≡

(
33
p

)
4x2 (mod p). Hence,

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
663k

≡
(33
p

)(
4x2 − 2p− p2

4x2

)
(mod p3).

Proof of Theorem 1.9. Suppose that p = 3n+ 1 = x2 + 3y2(x, y ∈ Z) and we
choose the sign of y so that x+y

√
−3 ̸∈ pZp. Taking D = 12 in [2, Theorem 1.27] and

dK = −12 in [6, (12.20)] gives
∑p−1

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
54000−k ≡ ±(x+ y

√
−3)2 (mod p3).

Applying Lemma 2.1 we get

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
54000k

≡ ±
(
4x2 − 2p− p2

4x2

)
(mod p3).

By [18, Theorem 4.5],
∑p−1

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
54000−k ≡

(
5
p

)
4x2 (mod p). Hence,

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
54000k

≡
(5
p

)(
4x2 − 2p− p2

4x2

)
(mod p3).

Proof of Theorem 1.13 in the case m = 11. Suppose that ( p
11
) = 1 and

so 4p = x2 + 11y2(x, y ∈ Z). We choose the sign of y so that x + y
√
−11 ̸∈

pZp. Taking D = 11 in [2, Theorem 1.27] and dK = −11 in [6, (12.20)] gives∑p−1
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−32)−3k ≡ ±(x+y

√
−11

2
)2 (mod p3). Applying Lemma 2.1 (with

c = 4) we get

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−32)3k

≡ ±1

4

(
4x2 − 2 · 4p− 42p2

4x2

)
= ±

(
x2 − 2p− p2

x2

)
(mod p3).
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By [18, Theorem 4.8],
∑p−1

k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−32)−3k ≡

(−2
p

)
x2 (mod p). Hence,

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
(−32)3k

≡
(−2

p

)(
x2 − 2p− p2

x2

)
(mod p3).

In a similar way, using [2, Theorem 1.27], [6, (12.20)] and [18, Theorems 4.4,
4.6, 4.7 and 4.9] one can prove Theorems 1.10-1.12 and Theorem 1.13 in the cases
m = 19, 43, 67, 163.
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[3] H. Cohen and F. Strömberg, Modular Forms: A Classical Approach, Grad. Stud.
Math., Vol 179, AMS, 2017.

[4] S. Cooper, Ramanujan’s Theta Functions, Springer, 2017.
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