New reciprocity laws for octic residues and nonresidues

ZHI-Hong Sun
School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, PR China
E-mail: zhihongsun@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let \mathbb{Z} be the set of integers, and let p be a prime of the form $8 k+1$. Suppose $q \in \mathbb{Z}, 2 \nmid q, p \nmid q, p=c^{2}+d^{2}=x^{2}+2 q y^{2}, c, d, x, y \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. In this paper we establish congruences for $(-q)^{(p-1) / 8}(\bmod p)$ and present new reciprocity laws.

MSC: Primary 11A15, Secondary 11A07, 11B39, 11E25
Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol; Lucas sequence

1. Introduction.

Let \mathbb{Z} be the set of integers, $i=\sqrt{-1}$ and $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$. For any positive odd number m and $a \in \mathbb{Z}$ let $\left(\frac{a}{m}\right)$ be the (quadratic) Jacobi symbol. For convenience we also define $\left(\frac{a}{1}\right)=1$ and $\left(\frac{a}{-m}\right)=\left(\frac{a}{m}\right)$. Then for any two odd numbers m and n with $m>0$ or $n>0$ we have the following general quadratic reciprocity law: $\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{m}\right)$.

For $a, b, c, d \in \mathbb{Z}$ with $2 \nmid c$ and $2 \mid d$, one can define the quartic Jacobi symbol $\left(\frac{a+b i}{c+d i}\right)_{4}$ as in $[\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 4]$. From [IR] we know that $\left(\frac{a-b i}{c-d i}\right)_{4}=\left(\frac{a+b i}{c+d i}\right)_{4}^{-1}$. In Section 2 we list main properties of the quartic Jacobi symbol. See also [IR], [BEW] and [S4]. For the history of quartic reciprocity laws, see [Lem].

Let p be a prime of the form $4 k+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Suppose that $p=c^{2}+d^{2}=$ $x^{2}+q y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$, where (m, n) is the greatest common divisor of m and n. In [S5], using the quartic reciprocity law the author deduced some congruences for $q^{[p / 8]}(\bmod p)$ in terms of c, d, x and y, where $[a]$ is the greatest integer not exceeding a.

Let p be a prime of the form $8 k+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Then q is an octic residue $(\bmod p)$ if and only if $q^{(p-1) / 8} \equiv 1(\bmod p)$. In the classical octic reciprocity laws (see [Lem] and [BEW]), we always assume that $p=c^{2}+d^{2}=a^{2}+2 b^{2}(a, b, c, d \in \mathbb{Z})$. Inspired by [S5], in this paper we continue to discuss congruences for $(-q)^{(p-1) / 8}(\bmod p)$ and present new reciprocity laws, but we assume that $p=c^{2}+d^{2}=x^{2}+2 q y^{2}$. Here are some typical results:

[^0]\star Let p and q be primes such that $p \equiv 1(\bmod 8), q \equiv 7(\bmod 8), p=c^{2}+d^{2}=x^{2}+2 q y^{2}$, $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $(-q)^{\frac{p-1}{8}} \equiv\left(\frac{d}{c}\right)^{m}(\bmod p)$ if and only if $\left(\frac{c-d i}{c+d i}\right)^{\frac{q+1}{8}} \equiv i^{m}(\bmod q)$.
\star Let $p \equiv 1(\bmod 8)$ be a prime, $p=c^{2}+d^{2}=x^{2}+2\left(a^{2}+b^{2}\right) y^{2}, a, b, c, d, x, y \in \mathbb{Z}$, $a \neq 0,4 \mid a,(a, b)=1, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $\left(-a^{2}-b^{2}\right)^{\frac{p-1}{8}} \equiv(-1)^{\frac{d}{4}+\frac{y}{2}}\left(\frac{c}{d}\right)^{m}(\bmod p)$ if and only if $\left(\frac{(a c+b d) / x}{b+a i}\right)_{4}=i^{m}$.
\star Let p be a prime of the form $8 k+1$ and $a \in \mathbb{Z}$ with $2 \nmid a$. Suppose that $p=c^{2}+d^{2}=$ $x^{2}+\left(a^{2}+1\right) y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}\left(2 \nmid d_{0}\right)$ and $4 \mid y$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $\left(a+\sqrt{a^{2}+1}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p)$.

When a is even, a congruence for $\left(a+\sqrt{a^{2}+1}\right)^{(p-1) / 4}(\bmod p)$ was given by the author in [S6, Corollary 4.1]. When $a \geq 3$ is a positive integer and $a^{2}+1$ is squarefree, $a+\sqrt{a^{2}+1}$ is just the fundamental unit $\varepsilon_{a^{2}+1}$ of the quadratic field $\mathbb{Q}\left(\sqrt{a^{2}+1}\right)$. For early results and conjectures on $\varepsilon_{d}^{(p-1) / 4}(\bmod p)$, see [L2],[LW1],[LW2],[HK], [Lem] and [S2].

Throughout this paper, if $n \in \mathbb{Z}, 2^{\alpha} \mid n$ and $2^{\alpha+1} \nmid n$, then we write that $2^{\alpha} \| n$.

2. Basic lemmas.

Lemma 2.1 ([S4, Proposition 2.1]). Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. Then

$$
\begin{aligned}
& \left(\frac{i}{a+b i}\right)_{4}=i^{\frac{a^{2}+b^{2}-1}{4}}=(-1)^{\frac{a^{2}-1}{8}} i^{\left(1-(-1)^{\frac{b}{2}}\right) / 2} \\
& \text { and } \quad\left(\frac{1+i}{a+b i}\right)_{4}= \begin{cases}i^{\left((-1)^{\frac{a-1}{2}}(a-b)-1\right) / 4} & \text { if } 4 \mid b \\
i^{\frac{(-1)^{\frac{a-1}{2}} 4}{4}(b-a)-1}-1 & \text { if } 2 \| b\end{cases}
\end{aligned}
$$

Lemma 2.2 ([S4, Proposition 2.2]). Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. Then

$$
\left(\frac{-1}{a+b i}\right)_{4}=(-1)^{\frac{b}{2}} \quad \text { and } \quad\left(\frac{2}{a+b i}\right)_{4}=i^{(-1)^{\frac{a-1}{2} \frac{b}{2}}=i^{\frac{a b}{2}} ~}
$$

Lemma 2.3 ([S4, Proposition 2.3]). Let $a, b, c, d \in \mathbb{Z}$ with $2 \nmid a c, 2 \mid b$ and $2 \mid d$. If $a+b i$ and $c+d i$ are relatively prime elements of $\mathbb{Z}[i]$, we have the following general law of quartic reciprocity:

$$
\left(\frac{a+b i}{c+d i}\right)_{4}=(-1)^{\frac{b}{2} \cdot \frac{c-1}{2}+\frac{d}{2} \cdot \frac{a+b-1}{2}}\left(\frac{c+d i}{a+b i}\right)_{4} .
$$

In particular, if $4 \mid b$, then $\left(\frac{a+b i}{c+d i}\right)_{4}=(-1)^{\frac{a-1}{2} \cdot \frac{d}{2}}\left(\frac{c+d i}{a+b i}\right)_{4}$.
Lemma $2.4\left([\mathbf{E}]\right.$, $\left[\mathbf{S 1}\right.$, Lemma 2.1]). Let $a, b, m \in \mathbb{Z}$ with $2 \nmid m$ and $\left(m, a^{2}+b^{2}\right)=1$. Then $\left(\frac{a+b i}{m}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{m}\right)$.
Lemma 2.5 ([S3, Lemma 4.3]). Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. For any integer x with $\left(x, a^{2}+b^{2}\right)=1$ we have $\left(\frac{x^{2}}{a+b i}\right)_{4}=\left(\frac{x}{a^{2}+b^{2}}\right)$.

Lemma 2.6 ([S5, Lemma 2.9]). Suppose $c, d, m, x \in \mathbb{Z}, 2 \nmid m, x^{2} \equiv c^{2}+d^{2}(\bmod m)$ and $(m, x(x+d))=1$. Then $\left(\frac{c+d i}{m}\right)_{4}=\left(\frac{x(x+d)}{m}\right)$.
Lemma 2.7. Let p be a prime of the form $8 k+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Suppose that $p=c^{2}+d^{2}=x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. If $\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{s+\frac{p-1}{8}} i^{n}$, then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{s}\left(\frac{d}{c}\right)^{n-1}(\bmod p) & \text { if } 8 \mid d-4 \\ (-1)^{s+\frac{d}{8}\left(\frac{d}{c}\right)^{n}(\bmod p)} & \text { if } 8 \mid d\end{cases}
$$

Proof. As $c \equiv 1(\bmod 4)$ and $4 \mid d$ we see that $c+d i$ is primary in $\mathbb{Z}[i]$. Since $i \equiv$ $d / c(\bmod c+d i)$ we have $\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{s+\frac{p-1}{8}} i^{n} \equiv(-1)^{s+\frac{p-1}{8}}\left(\frac{d}{c}\right)^{n}(\bmod c+d i)$. As $\left(\frac{x}{y}\right)^{2} \equiv-2 q(\bmod p)$ and the norm of $c+d i$ is p, from the above we deduce that $(-2 q)^{\frac{p-1}{8}} \equiv\left(\frac{x}{y}\right)^{\frac{p-1}{4}} \equiv(-1)^{s+\frac{p-1}{8}}\left(\frac{d}{c}\right)^{n}(\bmod p)$. By [L1] or [HW, (1.4) and (1.5)],

$$
(-2)^{\frac{p-1}{8}} \equiv\left(\frac{c}{d}\right)^{-\frac{d}{4}} \equiv \begin{cases}\left(\frac{c}{d}\right)^{-d_{0}} \equiv\left(\frac{c}{d}\right)^{-1}=\frac{d}{c}(\bmod p) & \text { if } 8 \mid d-4 \tag{2.1}\\ (-1)^{\frac{d}{8}}(\bmod p) & \text { if } 8 \mid d\end{cases}
$$

Thus the result follows.
3. Congruences for $(-q)^{(p-1) / 8}(\bmod p)$ with $p=c^{2}+d^{2}=x^{2}+2 q y^{2}$.

Theorem 3.1. Let p be a prime of the form $8 n+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Suppose that $p=c^{2}+d^{2}=x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, d_{0} \equiv 1(\bmod 4)$ and $(c, x+d)=1$. Assume that $\left(\frac{c /(x+d)+i}{q}\right)_{4}=i^{k}$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{q-1}{8}+\frac{d}{4}+\frac{y}{2}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } q \equiv 1(\bmod 8) \\ (-1)^{\frac{q-3}{8}+\frac{x-1}{2}\left(\frac{d}{c}\right)^{k+1}(\bmod p)} & \text { if } q \equiv 3(\bmod 8) \\ (-1)^{\frac{q-5}{8}+\frac{d}{4}+\frac{x-1}{2}+\frac{y}{2}}\left(\frac{d}{c}\right)^{k-1}(\bmod p) & \text { if } q \equiv 5(\bmod 8) \\ (-1)^{\frac{q+1}{8}\left(\frac{d}{c}\right)^{k}(\bmod p)} & \text { if } q \equiv 7(\bmod 8)\end{cases}
$$

Proof. We choose the sign of y so that $y=2^{t} y_{0}$ and $y_{0} \equiv 1(\bmod 4)$. Since $p=$ $c^{2}+d^{2}=x^{2}+2 q y^{2} \equiv 1(\bmod 8)$ we see that $2 \nmid x, 2|y, 4| d,(x, q y)=1$ and $p \nmid x$. Thus $\left(x, c^{2}+(x+d)^{2}\right)=(x, p)=1$. As $2 q y^{2}=c^{2}+(d+x)(d-x)=c^{2}+(x+d)^{2}-2 x(x+d)$ we see that $(q y, x+d) \mid c^{2},(q y, x+d)=1$ and $\left(q y^{2},\left(c^{2}+(x+d)^{2}\right) / 2\right)=1$. It is easily seen that $c+(x+d) i=i^{\frac{1 \mp 1}{2}}(1+i)\left(\frac{x+d \pm c}{2}+\frac{ \pm(x+d)-c}{2} i\right)$ and so $\left(\frac{x+d \pm c}{2}\right)^{2}+\left(\frac{ \pm(x+d)-c}{2}\right)^{2}=\frac{c^{2}+(x+d)^{2}}{2}$. Set $\varepsilon=(-1)^{\frac{x-1}{2}}$. As $4 \mid d$ and $4 \mid c-1$ we have $x+d \equiv \varepsilon(\bmod 4)$ and $4 \mid(\varepsilon(x+d)-c)$. From Lemmas 2.1-2.5, [S5, Lemma 2.10(ii)] and the above we see that

$$
\begin{aligned}
i^{k} & =\left(\frac{c+(x+d) i}{q}\right)_{4}=\left(\frac{i}{q}\right)_{4}^{\frac{1-\varepsilon}{2}}\left(\frac{1+i}{q}\right)_{4}\left(\frac{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}{q}\right)_{4} \\
& =(-1)^{\frac{q-\left(\frac{-1}{q}\right)}{4} \cdot \frac{x-1}{2}} i^{\frac{\left(-\frac{-1}{q}\right) q-1}{4}}(-1)^{\frac{q-1}{2} \cdot \frac{\varepsilon(x+d)-c}{4}}\left(\frac{q}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\frac{q}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4}=\left(\frac{q y^{2}}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4}\left(\frac{y^{2}}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4} \\
& =\left(\frac{\left(c^{2}+(x+d)^{2}\right) / 2-x(x+d)}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4}\left(\frac{y}{\left(\frac{x+d+\varepsilon c}{2}\right)^{2}+\left(\frac{\varepsilon(x+d)-c}{2}\right)^{2}}\right) \\
& =\left(\frac{-x(x+d)}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4}\left(\frac{y}{\left(c^{2}+(x+d)^{2}\right) / 2}\right) \\
& =(-1)^{\frac{\varepsilon(x+d)-c}{4}}\left(\frac{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}{x(x+d)}\right)_{4}(-1)^{\frac{c^{2}-(x+d)^{2}}{8} t+\frac{d}{4} t}\left(\frac{y^{-1}}{c+d i}\right)_{4} .
\end{aligned}
$$

Clearly, $(-1)^{\frac{c^{2}-(x+d)^{2}}{8}}=(-1)^{\frac{c^{2}-x^{2}-2 d x}{8}}=(-1)^{\frac{c-\varepsilon x}{4} \cdot \frac{c+\varepsilon x}{2}-\frac{d}{4} \varepsilon}=(-1)^{\frac{c-\varepsilon x}{4}-\frac{d}{4} \varepsilon}=(-1)^{\frac{\varepsilon(x+d)-c}{4}}$.
Also,

$$
\begin{aligned}
& \left(\frac{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2}}{x(x+d)}\right)_{4}=\left(\frac{d+\varepsilon c+(\varepsilon d-c) i}{x}\right)_{4}\left(\frac{\varepsilon c-c i}{x+d}\right)_{4} \\
& =\left(\frac{(\varepsilon-i)(c+d i)}{x}\right)_{4}\left(\frac{\varepsilon-i}{x+d}\right)_{4}=\left(\frac{\varepsilon-i}{x(x+d)}\right)_{4}\left(\frac{c+d i}{x}\right)_{4} \\
& =\left(\frac{i^{\frac{5+\varepsilon}{2}}(1+i)}{x(x+d)}\right)_{4}\left(\frac{c+d i}{x}\right)_{4}=\left(\frac{i}{x(x+d)}\right)_{4}^{\frac{5+\varepsilon}{2}}\left(\frac{1+i}{x(x+d)}\right)_{4}\left(\frac{x}{c+d i}\right)_{4} \\
& =(-1)^{\frac{x(x+d)-1}{4} \cdot \frac{5+\varepsilon}{2}} i^{\frac{x(x+d)-1}{4}}\left(\frac{x}{c+d i}\right)_{4}=(-1)^{\frac{d}{4} \cdot \frac{x+1}{2}+\frac{x^{2}-1}{8}} i^{\frac{d x}{4}}\left(\frac{x}{c+d i}\right)_{4} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\frac{q}{\frac{x+d+\varepsilon c}{2}+\frac{\varepsilon(x+d)-c}{2} i}\right)_{4} & =(-1)^{\frac{\varepsilon(x+d)-c}{4}(1+t)+\frac{d}{4} t} \cdot(-1)^{\frac{d}{4} \cdot \frac{x+1}{2}+\frac{x^{2}-1}{8}} i^{\frac{d x}{4}}\left(\frac{x / y}{c+d i}\right)_{4} \\
& =(-1)^{\frac{\varepsilon x-c}{4}(1+t)+\frac{d}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8}} i^{\frac{d x}{4}}\left(\frac{x / y}{c+d i}\right)_{4}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
i^{k}= & (-1)^{\frac{q-\left(\frac{-1}{q}\right)}{4} \cdot \frac{x-1}{2}+\frac{q-1}{2}\left(\frac{\varepsilon x-c}{4}+\frac{d}{4}\right)} i^{\frac{\left(\frac{-1}{q}\right) q-1}{4}} \\
& \times(-1)^{\frac{\varepsilon x-c}{4}}(1+t)+\frac{d}{4} \cdot \frac{x-1}{2}+\frac{x^{2}-1}{8} i^{\frac{d x}{4}}\left(\frac{x / y}{c+d i}\right)_{4}
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
& i^{\frac{d x}{4}}=i^{\frac{d}{4}(x-1)+\frac{d}{4}}=(-1)^{\frac{d}{4} \cdot \frac{x-1}{2}} i^{\frac{d}{4}},(-1)^{\frac{x^{2}-1}{8}}=(-1)^{\frac{p-1-2 q y^{2}}{8}}=(-1)^{\frac{p-1}{8}+\frac{y}{2}}, \\
& (-1)^{\frac{\varepsilon x-c}{4}}=(-1)^{\frac{\varepsilon x-c}{4} \cdot \frac{\varepsilon x+c}{2}}=(-1)^{\frac{x^{2}-c^{2}}{8}}=(-1)^{\frac{d^{2}-8 q\left(\frac{y}{2}\right)^{2}}{8}}=(-1)^{\frac{y}{2}}
\end{aligned}
$$

and so $(-1)^{\frac{\varepsilon x-c}{4}(1+t)}=(-1)^{\frac{y}{2}(1+t)}=1$. Thus,

$$
\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{\frac{q-\left(\frac{-1}{q}\right)}{4} \cdot \frac{x-1}{2}+\frac{q-1}{2}\left(\frac{y}{2}+\frac{d}{4}\right)+\frac{p-1}{8}+\frac{y}{2}} i^{k-\frac{d}{4}-\frac{q\left(\frac{-1}{q}\right)-1}{4}} .
$$

Now applying Lemma 2.7 we deduce the result.

Theorem 3.2. Let p be a prime of the form $8 n+1, q \in \mathbb{Z}, 2 \nmid q$ and $p \nmid q$. Suppose that $p=c^{2}+d^{2}=x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, d_{0} \equiv 1(\bmod 4)$, $\left(d_{0}, x+c\right)=1$ and $\left(\frac{-d /(x+c)+i}{q}\right)_{4}=i^{k}$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{x+1}{2} \cdot \frac{q-1}{4}+\frac{d}{4}+\frac{y}{2}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } q \equiv 1(\bmod 4) \\ (-1)^{\frac{x+1}{2} \cdot \frac{q+1}{4}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } q \equiv 3(\bmod 4)\end{cases}
$$

Proof. Suppose $2^{m} \|(x+c)$ and $y=2^{t} y_{0}$ with $y_{0} \equiv 1(\bmod 4)$. Since $p=c^{2}+d^{2}=$ $x^{2}+2 q y^{2} \equiv 1(\bmod 8)$ we see that $2 \nmid x, 2|y, 4| d,(x, q y)=1$ and $p \nmid x$. Thus $\left(x, d^{2}+(x+c)^{2}\right)=(x, p)=1$. As $2 q y^{2}=d^{2}+(c+x)(c-x)=d^{2}+(x+c)^{2}-2 x(x+c)$ we see that $\left(q y_{0}, x+c\right) \mid d_{0}^{2},\left(q y_{0}, x+c\right)=1$ and $\left(q y_{0}^{2},(x+c)^{2}+d^{2}\right)=1$. We prove the theorem by considering the three cases $m<r, m=r$ and $m>r$. We only give details for the first case. The other two cases can be proved similarly by using Lemmas 2.1-2.7. For the details, see the author's preprint "Congruences for $q^{[p / 8]}(\bmod p)$ II" at arXiv:1401.0493.

Now suppose $m<r$. Using Lemmas 2.1-2.5 and the fact $\left(\frac{a}{q}\right)_{4}=1$ for $a \in \mathbb{Z}$ with $(a, q)=1$ we see that

$$
\begin{aligned}
\left(\frac{d-(x+c) i}{q}\right)_{4} & =\left(\frac{-2^{m}}{q}\right)_{4}\left(\frac{i}{q}\right)_{4}\left(\frac{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}{q}\right)_{4}=(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}}\left(\frac{q}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}\left(\frac{q y^{2}}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4}\left(\frac{y^{2}}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4}} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}\left(\frac{\left((x+c)^{2}+d^{2}\right) / 2-x(x+c)}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4}\left(\frac{y}{\frac{(x+c)^{2}+d^{2}}{2^{2 m}}}\right)} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}\left(\frac{-2^{m} x(x+c) / 2^{m}}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4}\left(\frac{y}{\frac{(x+c)^{2}+d^{2}}{2^{2 m}}}\right) .} .
\end{aligned}
$$

By $\left[S 5\right.$, p.15], $\left(\frac{y}{\left((x+c)^{2}+d^{2}\right) / 2^{2 m}}\right)=(-1)^{\frac{d}{2^{m+1}} t+\frac{d}{4} t}\left(\frac{y^{-1}}{c+d i}\right)_{4}$. We also have $\left(\frac{2^{m}}{\frac{x+c}{2 m}+\frac{d}{2^{m i}} i}\right)_{4}=$ $\left(\frac{2}{\frac{x+c}{2 m}+\frac{d}{2 m} i}\right)_{4}^{m}=i^{\frac{x+c}{2 m} \cdot \frac{d m}{2 m+1}}$ and

$$
\begin{aligned}
\left(\frac{-x(x+c) / 2^{m}}{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}\right)_{4} & =(-1)^{\frac{-x(x+c) / 2^{m}-1}{2^{2}} \cdot \frac{d}{2^{m+1}}}\left(\frac{\frac{x+c}{2^{m}}+\frac{d}{2^{m}} i}{-x(x+c) / 2^{m}}\right)_{4} \\
& =(-1)^{\frac{x(x+c) / 2^{m}+1}{2}} \cdot \frac{d}{2^{m+1}}\left(\frac{x+c+d i}{x}\right)_{4}\left(\frac{d i / 2^{m}}{(x+c) / 2^{m}}\right)_{4} \\
& =(-1)^{\frac{x(x+c) / 2^{m}+1}{2} \cdot \frac{d}{2^{m+1}}}\left(\frac{c+d i}{x}\right)_{4}\left(\frac{i}{(x+c) / 2^{m}}\right)_{4} \\
& =(-1)^{\frac{x(x+c) / 2^{m}+1}{2}} \cdot \frac{d}{2^{m+1}}\left(\frac{x}{c+d i}\right)_{4}(-1)^{\frac{1}{8}\left(\left(\frac{x+c}{2^{m}}\right)^{2}-1\right)}
\end{aligned}
$$

Thus,

$$
\begin{align*}
& i^{k}=\left(\frac{d-(x+c) i}{q}\right)_{4}=(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}} i^{\frac{x+c}{2^{m}} \cdot \frac{d m}{2^{m+1}}} \\
& \times(-1)^{\frac{x(x+c) / 2^{m}+1}{2}} \cdot \frac{d}{2^{m+1}}+\frac{\left(\frac{x+c}{2 m}\right)^{2}-1}{8} \tag{3.1}\\
& 5
\end{align*}(-1)^{\frac{d}{2^{m+1}} t+\frac{d}{4} t}\left(\frac{x / y}{c+d i}\right)_{4} .
$$

As $2 q y^{2}=d^{2}-(x+c)^{2}+2 c(x+c)$ we have

$$
\begin{equation*}
q \frac{y^{2}}{2^{m}}=2^{2 r-m-1} d_{0}^{2}-2^{m-1}\left(\frac{x+c}{2^{m}}\right)^{2}+c \cdot \frac{x+c}{2^{m}} \tag{3.2}
\end{equation*}
$$

Suppose $m=1$. Then $x \equiv 1(\bmod 4)$. From (3.2) we see that $2^{2 t-1} q \equiv 2^{2 r-2}-1+$ $c \cdot \frac{x+c}{2}(\bmod 8)$ and so $\frac{x+c}{2} \equiv c\left(2^{2 t-1} q-2^{2 r-2}+1\right)(\bmod 8)$. If $8 \nmid d$, then $r=2$ and $\frac{x+c}{2} \equiv c\left(2^{2 t-1} q-3\right)(\bmod 8)$. Thus,

$$
\begin{aligned}
& (-1)^{\frac{\left(\frac{x+c}{2}\right)^{2}-1}{8}}=(-1)^{\frac{c^{2}-1}{8}+\frac{\left(2^{2 t-1} q-3\right)^{2}-1}{8}}=(-1)^{\frac{c^{2}-1}{8}+\frac{\left(2^{2 t-2} q-2\right)\left(2^{2 t-2} q-1\right)}{2}} \\
& \\
& =(-1)^{\frac{c^{2}-1}{8}+1+\frac{q+1}{2} \cdot \frac{y}{2}}=(-1)^{\frac{p-1}{8}+1+\frac{q+1}{2} \cdot \frac{y}{2}} \\
& (-1)^{\frac{(x+c) / 2+1}{2}} i^{\frac{x+c}{2}}=(-1)^{2^{2 t-2} q-1} i^{2^{t t-1} q-3}=-(-1)^{2^{2 t-2}} \cdot(-1)^{2^{2 t-2}} i=-i .
\end{aligned}
$$

Hence, from (3.1) we deduce that

$$
\begin{aligned}
i^{k} & =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2}} i^{\frac{x+c}{2}}(-1)^{\frac{(x+c) / 2+1}{2}} \cdot(-1)^{\frac{\left(\frac{x+c}{2}\right)^{2}-1}{8}}\left(\frac{x / y}{c+d i}\right)_{4} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2}}(-i)(-1)^{\frac{p-1}{8}+1+\frac{q+1}{2} \cdot \frac{y}{2}}\left(\frac{x / y}{c+d i}\right)_{4}
\end{aligned}
$$

That is, $\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2}+\frac{p-1}{8}+\frac{q+1}{2} \cdot \frac{y}{2}} i^{k-1}$. Now applying Lemma 2.7 we obtain the result.

If $8 \mid d$, from (3.2) we see that $2^{2 t-1} q \equiv q y^{2} / 2 \equiv-1+c \cdot \frac{x+c}{2}(\bmod 8)$ and so $\frac{x+c}{2} \equiv$ $c\left(2^{2 t-1} q+1\right)(\bmod 8)$. Thus,

$$
\begin{aligned}
(-1)^{\frac{\left(\frac{x+c}{2}\right)^{2}-1}{8}} & =(-1)^{\frac{c^{2}-1}{8}+\frac{\left(2^{2 t-1} q+1\right)^{2}-1}{8}}=(-1)^{\frac{c^{2}+d^{2}-1}{8}+\frac{2^{2 t-2} q\left(2^{2 t-2} q+1\right)}{2}} \\
& =(-1)^{\frac{p-1}{8}+\frac{q+1}{2} \cdot \frac{y}{2}} .
\end{aligned}
$$

From (3.1) and the above we derive that

$$
i^{k}=(-1)^{\frac{q^{2}-1}{8}} i^{\frac{x+c}{2} \cdot \frac{d}{4}}(-1)^{\frac{\left(\frac{x+c}{2}\right)^{2}-1}{8}}\left(\frac{x / y}{c+d i}\right)_{4}=(-1)^{\frac{q^{2}-1}{8}+\frac{d}{8}+\frac{p-1}{8}+\frac{q+1}{2} \cdot \frac{y}{2}}\left(\frac{x / y}{c+d i}\right)_{4} .
$$

Now applying Lemma 2.7 we obtain

$$
(-q)^{\frac{p-1}{8}} \equiv(-1)^{\frac{q^{2}-1}{8}+\frac{q+1}{2} \cdot \frac{y}{2}}\left(\frac{d}{c}\right)^{k}= \begin{cases}(-1)^{\frac{q-1}{4}+\frac{d}{4}+\frac{y}{2}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } 4 \mid q-1 \\ (-1)^{\frac{q+1}{4}}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } 4 \mid q-3\end{cases}
$$

This yields the result.

Now assume $r>m \geq 2$. Then $x \equiv 3(\bmod 4), 2 r-m-1 \geq 2(m+1)-m-1=$ $m+1 \geq 3$ and so $q \frac{y^{2}}{2^{m}} \equiv-2^{m-1}+c \cdot \frac{x+c}{2^{m}}(\bmod 8)$ by (3.2). Hence $2^{m} \| y^{2}, m=2 t$ and so $q \equiv-2^{m-1}+c \cdot \frac{x+c}{2^{m}}(\bmod 8)$. That is, $\frac{x+c}{2^{m}} \equiv c\left(2^{m-1}+q\right)(\bmod 8)$. Thus,

$$
\begin{aligned}
& (-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}}(-1)^{\frac{x(x+c) / 2^{m}+1}{2} \cdot \frac{d}{2^{m+1}}+\frac{\left(\frac{x+c}{2 m}\right)^{2}-1}{8}} \cdot(-1)^{\frac{d}{2^{m+1}} t+\frac{d}{4} t} i^{-\frac{x+c}{2^{m} m} \cdot \frac{d m}{2^{m+1}}} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot \frac{d}{2^{m+1}}}(-1)^{\frac{-\left(2^{m-1}+q\right)+1}{2} \cdot 2^{r-m-1} d_{0}+\frac{c^{2}\left(2^{m-1}+q\right)^{2}-1}{8}}(-1)^{\frac{d}{2^{m+1}} t+\frac{d}{4} t}(-1)^{\frac{d t}{2^{m+1}}} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot 2^{r-m-1} d_{0}} \cdot(-1)^{\left(2^{m-2}+\frac{q-1}{2}\right) 2^{r-m-1}+\frac{c^{2}-1}{8}+\frac{\left(2^{m-1}+q\right)^{2}-1}{8}} \cdot(-1)^{\frac{d}{4} t} \\
& =(-1)^{\frac{q^{2}-1}{8}+\frac{q-1}{2} \cdot 2^{r-m-1}} \cdot(-1)^{\left(2^{m-2}+\frac{q-1}{2}\right) 2^{r-m-1}+\frac{p-1}{8}+\frac{q^{2}-1}{8}+2^{m-3}\left(2^{m-2}+q\right)} \\
& =(-1)^{2^{r-3}+\frac{p-1}{8}+2^{m-3}\left(2^{m-2}+q\right)}= \begin{cases}(-1)^{\frac{d}{8}+\frac{p-1}{8}+\frac{q+1}{2}} & \text { if } m=2, \\
(-1)^{\frac{p-1}{8}} & \text { if } m>2 .\end{cases}
\end{aligned}
$$

Hence, from (3.1) and the above we get

$$
\left(\frac{x / y}{c+d i}\right)_{4}= \begin{cases}(-1)^{\frac{d}{8}+\frac{p-1}{8}+\frac{q+1}{2}} i^{k} & \text { if } r>m=2, \\ (-1)^{\frac{p-1}{8}} i^{k} & \text { if } r>m>2\end{cases}
$$

Now applying Lemma 2.7 and the fact $m=2 t$ we obtain

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{q+1}{2}}\left(\frac{d}{c}\right)^{k}=(-1)^{\frac{q+1}{2}\left(\frac{d}{4}+\frac{y}{2}\right)}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } r>m=2, \\ (-1)^{\frac{d}{8}}\left(\frac{d}{c}\right)^{k}=(-1)^{\frac{q+1}{2}\left(\frac{d}{4}+\frac{y}{2}\right)}\left(\frac{d}{c}\right)^{k}(\bmod p) & \text { if } r>m>2 .\end{cases}
$$

This yields the result in the case $m<r$. Thus the theorem is proved.
Theorem 3.3. Let p and q be primes such that $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 4)$. Suppose $p=c^{2}+d^{2}=x^{2}+2 q y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, d_{0} \equiv 1(\bmod 4)$ and $\left(\frac{c-d i}{x}\right)^{\frac{q+1}{4}} \equiv i^{m}(\bmod q)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $(-q)^{\frac{p-1}{8}} \equiv$ $(-1)^{\frac{x-1}{2} \cdot \frac{q+1}{4}}\left(\frac{d}{c}\right)^{m}(\bmod p)$.

Proof. Clearly $q \nmid x$ and x is odd. We first assume $(c, x+d)=1$. By the proof of Theorem 3.1, $\left(q,(x+d)\left(c^{2}+(x+d)^{2}\right)\right)=1$. It is easily seen that $\frac{c /(x+d)-i}{c /(x+d)+i}=\frac{c-(x+d) i}{c+(x+d) i} \equiv \frac{c-d i}{i x}(\bmod q)$. Thus, from [S5, proof of Theorem 4.1] we have

$$
\left(\frac{c /(x+d)+i}{q}\right)_{4}=i^{m-\frac{q+1}{4}}= \begin{cases}(-1)^{\frac{q+5}{8}} i^{m+1} & \text { if } q \equiv 3(\bmod 8) \\ (-1)^{\frac{q+1}{8}} i^{m} & \text { if } q \equiv 7(\bmod 8)\end{cases}
$$

Now, applying Theorem 3.1 we derive the result.
Now we assume $\left(d_{0}, x+c\right)=1$. By the proof of Theorem 3.2, $(q, x+c)=\left(q, d^{2}+\right.$ $\left.(x+c)^{2}\right)=1$. It is easily seen that $\frac{d+(x+c) i}{d-(x+c) i} \equiv \frac{c-d i}{-x}(\bmod q)$. From [S5, p.18] we get $\left(\frac{-d /(x+c)+i}{q}\right)_{4}=i^{m-\frac{q+1}{2}}=(-1)^{\frac{q+1}{4}} i^{m}$. Thus, applying Theorem 3.2 we deduce the result. The proof is now complete.

Corollary 3.1. Let p and q be primes such that $p \equiv 1(\bmod 8)$ and $q \equiv 3(\bmod 8)$. Suppose $p=c^{2}+d^{2}=x^{2}+2 q y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, q \mid c d$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\frac{x-1}{2}}(\bmod p) & \text { if } x \equiv \pm c(\bmod q), \\ \mp(-1)^{\frac{q-3}{8}+\frac{x-1}{2} \frac{d}{c}(\bmod p)} & \text { if } x \equiv \pm d(\bmod q) .\end{cases}
$$

Proof. If $x \equiv \pm c(\bmod q)$, then $q \mid d$ and so $\left(\frac{c-d i}{x}\right)^{\frac{q+1}{4}} \equiv(\pm 1)^{\frac{q+1}{4}}= \pm 1(\bmod q)$. If $x \equiv \pm d(\bmod q)$, then $q \mid c$ and so $\left(\frac{c-d i}{x}\right)^{\frac{q+1}{4}} \equiv(\mp i)^{\frac{q+1}{4}}=\mp(-1)^{\frac{q-3}{8}} i(\bmod q)$. Now applying Theorem 3.3 we deduce the result.

As an example, taking $q=3$ in Corollary 3.1 we see that if p is a prime of the form $24 k+1$ and so $p=c^{2}+d^{2}=x^{2}+6 y^{2}$, and if $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$, then

$$
(-3)^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\frac{x-1}{2}}(\bmod p) & \text { if } x \equiv \pm c(\bmod 3), \tag{3.3}\\ \mp(-1)^{\frac{x-1}{2} \frac{d}{c}(\bmod p)} & \text { if } x \equiv \pm d(\bmod 3)\end{cases}
$$

Theorem 3.4. Let p and q be primes such that $p \equiv 1(\bmod 8), q \equiv 7(\bmod 8), p=$ $c^{2}+d^{2}=x^{2}+2 q y^{2}, c, d, m, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $(-q)^{\frac{p-1}{8}} \equiv\left(\frac{d}{c}\right)^{m}(\bmod p)$ if and only if $\left(\frac{c-d i}{c+d i}\right)^{\frac{q+1}{8}} \equiv i^{m}(\bmod q)$.

Proof. Observe that $\left(\frac{c-d i}{c+d i}\right)^{\frac{q+1}{8}}=\frac{(c-d i)^{\frac{q+1}{4}}}{\left(c^{2}+d^{2}\right)^{\frac{q+1}{8}}}=\frac{(c-d i)^{\frac{q+1}{4}}}{\left(x^{2}+2 q y^{2}\right)^{\frac{q+1}{8}}} \equiv\left(\frac{c-d i}{x}\right)^{\frac{q+1}{4}}(\bmod q)$. The result follows from Theorem 3.3.

Corollary 3.2. Let $p \equiv 1(\bmod 8)$ and $q \equiv 7(\bmod 8)$ be primes such that $p=c^{2}+d^{2}=$ $x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid c d\left(c^{2}-d^{2}\right)$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{q+1}{8}}(\bmod p) & \text { if } q \mid c, \\ 1(\bmod p) & \text { if } q \mid d, \\ \pm(-1)^{\frac{q+9}{16}} \frac{d}{c}(\bmod p) & \text { if } 16 \mid(q-7) \text { and } c \equiv \pm d(\bmod q) \\ (-1)^{\frac{q+1}{16}}(\bmod p) & \text { if } 16 \mid(q-15) \text { and } c \equiv \pm d(\bmod q)\end{cases}
$$

Proof. If $q \mid c$, then $\frac{c-d i}{c+d i} \equiv-1(\bmod q)$. If $q \mid d$, then $\frac{c-d i}{c+d i} \equiv 1(\bmod q)$. If $c \equiv \pm d(\bmod q)$, then $\frac{c-d i}{c+d i} \equiv \mp i(\bmod q)$. Thus the result follows from Theorem 3.4.

Theorem 3.5. Let p and q be distinct primes, $p \equiv 1(\bmod 8), q \equiv 1(\bmod 4), p=c^{2}+d^{2}=$ $x^{2}+2 q y^{2}, q=a^{2}+b^{2}, a, b, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Suppose $\left(\frac{a c+b d}{a x}\right)^{\frac{q-1}{4}} \equiv\left(\frac{b}{a}\right)^{m}(\bmod q)$. Then $(-q)^{\frac{p-1}{8}} \equiv(-1)^{\frac{x-1}{2} \cdot \frac{q-1}{4}+\frac{d}{4}+\frac{y}{2}}\left(\frac{d}{c}\right)^{m}(\bmod p)$.

Proof. Clearly $q \nmid x$. We first assume $(c, x+d)=1$. By the proof of Theorem 3.1, $\left(q,(x+d)\left(c^{2}+(x+d)^{2}\right)\right)=1$. It is easily seen that $\frac{a c+b(x+d)}{a c-b(x+d)} \equiv \frac{a c+b d}{a x} \cdot \frac{b}{a}(\bmod q)$. Thus, from [S5, p.20] we get $\left(\frac{c /(x+d)+i}{q}\right)_{4}=i^{m+\frac{q-1}{4}}$. Now the result follows from Theorem 3.1 immediately.

Suppose $\left(d_{0}, x+c\right)=1$. By the proof of Theorem 3.2, $\left(q,(x+c)\left(d^{2}+(x+c)^{2}\right)\right)=1$. It is easily seen that $\frac{a d-b(x+c)}{a d+b(x+c)} \equiv \frac{a c+b d}{-a x}(\bmod q)$. From [S5, p.21] we know that $\left(\frac{-d /(x+c)+i}{q}\right)_{4}=$ $i^{m-\frac{q-1}{2}}$. Now applying Theorem 3.2 we deduce the result. The proof is now complete.
Corollary 3.3. Let $p \equiv 1(\bmod 8)$ and $q \equiv 5(\bmod 8)$ be primes such that $p=c^{2}+$ $d^{2}=x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid$ cd. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\frac{d}{4}+\frac{x-1}{2}+\frac{y}{2}}(\bmod p) & \text { if } x \equiv \pm c(\bmod q) \\ \pm(-1)^{\frac{q-5}{8}+\frac{d}{4}+\frac{x-1}{2}+\frac{y}{2}} \frac{d}{c}(\bmod p) & \text { if } x \equiv \pm d(\bmod q)\end{cases}
$$

Proof. Suppose $q=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$. If $x \equiv \pm c(\bmod q)$, then $q \mid d$ and so $\left(\frac{a c+b d}{a x}\right)^{\frac{q-1}{4}} \equiv\left(\frac{c}{x}\right)^{\frac{q-1}{4}} \equiv(\pm 1)^{\frac{q-1}{4}}= \pm 1(\bmod q)$. If $x \equiv \pm d(\bmod q)$, then $q \mid c$ and so $\left(\frac{a c+b d}{a x}\right)^{\frac{q-1}{4}} \equiv\left(\frac{b d}{a x}\right)^{\frac{q-1}{4}} \equiv\left(\pm \frac{b}{a}\right)^{\frac{q-1}{4}} \equiv \pm(-1)^{\frac{q-5}{8}} \frac{b}{a}(\bmod q)$. Now combining the above with Theorem 3.5 we deduce the result.

Theorem 3.6. Let p and q be distinct primes such that $p \equiv 1(\bmod 8), q \equiv 1(\bmod 8)$, $p=c^{2}+d^{2}=x^{2}+2 q y^{2}, q=a^{2}+b^{2}, a, b, c, d, m, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv(-1)^{\frac{d}{4}+\frac{y}{2}}\left(\frac{d}{c}\right)^{m}(\bmod p) \Longleftrightarrow\left(\frac{a c+b d}{a c-b d}\right)^{\frac{q-1}{8}} \equiv\left(\frac{b}{a}\right)^{m}(\bmod q)
$$

Proof. Observe that $b^{2} \equiv-a^{2}(\bmod q), p \equiv x^{2}(\bmod q)$ and so

$$
\left(\frac{a c+b d}{a c-b d}\right)^{\frac{q-1}{8}}=\frac{(a c+b d)^{\frac{q-1}{4}}}{\left(a^{2} c^{2}-b^{2} d^{2}\right)^{\frac{q-1}{8}}} \equiv \frac{(a c+b d)^{\frac{q-1}{4}}}{\left(a^{2} p\right)^{\frac{q-1}{8}}} \equiv\left(\frac{a c+b d}{a x}\right)^{\frac{q-1}{4}}(\bmod q) .
$$

The result follows from Theorem 3.5.
Corollary 3.4. Let p and q be distinct primes of the form $8 k+1$ such that $p=c^{2}+d^{2}=$ $x^{2}+2 q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid c d\left(c^{2}-d^{2}\right)$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-q)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{q-1}{8}+\frac{d}{4}+\frac{y}{2}}(\bmod p) & \text { if } q \mid c, \\ (-1)^{\frac{d}{4}+\frac{y}{2}}(\bmod p) & \text { if } q \mid d, \\ (-1)^{\frac{q-1}{16}+\frac{d}{4}+\frac{y}{2}}(\bmod p) & \text { if } 16 \mid(q-1) \text { and } c \equiv \pm d(\bmod q) \\ \pm(-1)^{\frac{q-9}{16}+\frac{d}{4}+\frac{y}{2}} \frac{d}{c}(\bmod p) & \text { if } 16 \mid(q-9) \text { and } c \equiv \pm d(\bmod q)\end{cases}
$$

Proof. Suppose that $q=a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$. Then the result follows from Theorem 3.6 and the congruence for $\left(\frac{a c+b d}{a c-b d}\right)^{\frac{q-1}{8}}(\bmod q)$ in [S5, p.23].

Theorem 3.7. Let $p \equiv 1(\bmod 8)$ be a prime, $p=c^{2}+d^{2}=x^{2}+2\left(a^{2}+b^{2}\right) y^{2}$, $a, b, c, d, m, x, y \in \mathbb{Z}, a \neq 0,2 \mid a,(a, b)=1, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
\begin{aligned}
& \left(-a^{2}-b^{2}\right)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{d}{4}+\frac{y}{2}}\left(\frac{c}{d}\right)^{m}(\bmod p) & \text { if } 4 \mid a \\
(-1)^{\frac{b-1}{2}+\frac{d}{4}+\frac{y}{2}+\frac{x-1}{2}\left(\frac{c}{d}\right)^{m-1}(\bmod p)} & \text { if } 4 \mid a-2\end{cases} \\
& \Longleftrightarrow\left(\frac{(a c+b d) / x}{b+a i}\right)_{4}=i^{m} .
\end{aligned}
$$

Proof. Suppose $q=a^{2}+b^{2}$ and $\left(\frac{(a c+b d) / x}{b+a i}\right)_{4}=i^{m}$. Then clearly $q \equiv 1(\bmod 4)$ and $p \nmid q$. We first assume $(c, x+d)=1$. By the proof of Theorem 3.1, $(q, x+d)=$ $\left(q, c^{2}+(x+d)^{2}\right)=1$. Since $\frac{c-(x+d) i}{c+(x+d) i} \equiv \frac{c-d i}{i x}(\bmod q)$, from [S5, p.24] we know that $\left(\frac{c /(x+d)+i}{q}\right)_{4}=(-1)^{\frac{b+1}{2} \cdot \frac{a}{2}+\left[\frac{q}{8}\right]} i^{-m}$. This together with Theorem 3.1 yields the result in this case.

Now we assume $\left(d_{0}, x+c\right)=1$. By the proof of Theorem 3.2, $(q, x+c)=\left(q,(x+c)^{2}+\right.$ $\left.d^{2}\right)=1$. Since $\frac{d+(x+c) i}{d-(x+c) i} \equiv \frac{c-d i}{-x}(\bmod q)$, from [S5, p.24] we know that

$$
\left(\frac{-d /(x+c)+i}{q}\right)_{4}= \begin{cases}(-1)^{\frac{b+1}{2}} i^{1-m} & \text { if } 4 \mid a-2 \\ i^{-m} & \text { if } 4 \mid a\end{cases}
$$

Now applying Theorem 3.2 we deduce the result in this case. So the theorem is proved.
Corollary 3.5. Let $p \equiv 1,9(\bmod 40)$ be a prime and so $p=c^{2}+d^{2}=x^{2}+10 y^{2}$ with $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
(-5)^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\frac{d}{4}+\frac{x-1}{2}+\frac{y}{2}}(\bmod p) & \text { if } x \equiv \pm c(\bmod 5) \\ \pm(-1)^{\frac{d}{4}+\frac{x-1}{2}+\frac{y}{2}} \frac{d}{c}(\bmod p) & \text { if } x \equiv \pm d(\bmod 5)\end{cases}
$$

Proof. Clearly $5 \mid c d$. When $x \equiv \pm c(\bmod 5)$ we have $5 \mid d$ and so $\left(\frac{(2 c+d) / x}{1+2 i}\right)_{4}=$ $\left(\frac{ \pm 2}{1+2 i}\right)_{4}= \pm i$. When $x \equiv \pm d(\bmod 5)$ we have $5 \mid c$ and so $\left(\frac{(2 c+d) / x}{1+2 i}\right)_{4}=\left(\frac{ \pm 1}{1+2 i}\right)_{4}= \pm 1$. Now taking $a=2$ and $b=1$ in Theorem 3.7 we derive the result.

We remark that Corollary 3.5 partially solves [S4, Conjecture 9.8].
4. Congruences for $U_{\frac{p-1}{4}}(2 a,-1)$ and $V_{\frac{p-1}{4}}(2 a,-1)(\bmod p)$.

For two numbers P and Q the Lucas sequences $\left\{U_{n}(P, Q)\right\}$ and $\left\{V_{n}(P, Q)\right\}$ are defined by

$$
\begin{aligned}
& U_{0}(P, Q)=0, U_{1}(P, Q)=1, U_{n+1}(P, Q)=P U_{n}(P, Q)-Q U_{n-1}(P, Q)(n \geq 1), \\
& V_{0}(P, Q)=2, \quad V_{1}(P, Q)=P, V_{n+1}(P, Q)=P V_{n}(P, Q)-Q V_{n-1}(P, Q)(n \geq 1) .
\end{aligned}
$$

Set $D=P^{2}-4 Q$. It is well known that

$$
\begin{align*}
& U_{n}(P, Q)=\frac{1}{\sqrt{D}}\left\{\left(\frac{P+\sqrt{D}}{2}\right)^{n}-\left(\frac{P-\sqrt{D}}{2}\right)^{n}\right\} \quad(D \neq 0), \tag{4.1}\\
& V_{n}(P, Q)=\left(\frac{P+\sqrt{D}}{2}\right)^{n}+\left(\frac{P-\sqrt{D}}{2}\right)^{n} . \tag{4.2}
\end{align*}
$$

Theorem 4.1. Let p be a prime of the form $8 k+1$ and $a \in \mathbb{Z}$ with $2 \nmid a$. Suppose that $p=c^{2}+d^{2}=x^{2}+\left(a^{2}+1\right) y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
\begin{aligned}
& U_{\frac{p-1}{4}}(2 a,-1) \equiv \begin{cases}(-1)^{\frac{a-1}{2}+\frac{d}{4}+\frac{x-1}{2} \frac{y}{x}(\bmod p)} & \text { if } 4 \mid y-2, \\
0(\bmod p) & \text { if } 4 \mid y\end{cases} \\
& \text { and } \quad V_{\frac{p-1}{4}}(2 a,-1) \equiv \begin{cases}0(\bmod p) & \text { if } 4 \mid y-2, \\
2(-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y .\end{cases}
\end{aligned}
$$

Proof. Set $a_{1}=\left(1-(-1)^{\frac{a-1}{2}} a\right) / 2$ and $b_{1}=\left(1+(-1)^{\frac{a-1}{2}} a\right) / 2$. Then $2 \mid a_{1}, 2 \nmid b_{1}$ and $a^{2}+1=2\left(a_{1}^{2}+b_{1}^{2}\right)$. It is clear that $\left(\frac{\left.\left(a_{1} c+b_{1} d\right) /((-1))^{\frac{x-1}{2}} x\right)}{b_{1}+a_{1} i}\right)_{4}=(-1)^{\frac{x-1}{2} \cdot \frac{a_{1}}{2}}\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}$. We first assume $a \equiv 1(\bmod 4)$. Replacing d, x with $-d,(-1)^{\frac{x-1}{2}} x$ in [S4, Theorem 8.3(i)] we obtain

$$
\begin{aligned}
& U_{\frac{p-1}{4}}(2 a,-1) \\
& \equiv\left\{\begin{array}{c}
\mp(-1)^{\frac{x-1}{2} \cdot \frac{a-1}{4}}\left(-a_{1}^{2}-b_{1}^{2}\right)^{\frac{p-1}{8}}\left(-\frac{c}{d}\right)^{\left(1-(-1)^{\frac{a-1}{4}}\right) / 2}(-1)^{\frac{x-1}{2}} \frac{y}{x}(\bmod p) \\
\text { if } 4 \mid y-2 \text { and }\left(\frac{\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm 1}{}\right. \\
\mp(-1)^{\frac{x-1}{2} \cdot \frac{a-1}{4}}\left(-a_{1}^{2}-b_{1}^{2}\right)^{\frac{p-1}{8}\left(-\frac{c}{d}\right)^{1+\left(1-(-1)^{\frac{a-1}{4}}\right) / 2}(-1)^{\frac{x-1}{2}} \frac{y}{x}(\bmod p)} \\
\text { if } 4 \mid y-2 \text { and }\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm i, \\
0(\bmod p) \text { if } 4 \mid y
\end{array}\right.
\end{aligned}
$$

and

From Theorem 3.7 we know that

$$
\begin{aligned}
& \left(-a_{1}^{2}-b_{1}^{2}\right)^{\frac{p-1}{8}} \\
& \equiv \begin{cases} \pm(-1)^{\frac{d}{4}+\frac{y}{2}}(\bmod p) & \text { if } 4 \mid a_{1} \text { and }\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm 1 \\
\pm(-1)^{\frac{b_{1}-1}{2}+\frac{d}{4}+\frac{y}{2}+\frac{x-1}{2} \frac{d}{c}(\bmod p)} & \text { if } 4 \mid a_{1}-2 \text { and }\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm 1 \\
\pm(-1)^{\frac{d}{4}+\frac{y}{2}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid a_{1} \text { and }\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm i \\
\pm(-1)^{\frac{b_{1}-1}{2}}+\frac{d}{4}+\frac{y}{2}+\frac{x-1}{2}(\bmod p) & \text { if } 4 \mid a_{1}-2 \text { and }\left(\frac{\left(a_{1} c+b_{1} d\right) / x}{b_{1}+a_{1} i}\right)_{4}= \pm i\end{cases}
\end{aligned}
$$

Now putting the above together we deduce the result in the case $a \equiv 1(\bmod 4)$. The case $a \equiv 3(\bmod 4)$ can be proved similarly by using [S4, Theorem 8.3(ii)] and Theorem 3.7.

Corollary 4.1. Let p be a prime of the form $8 k+1$ and $a \in \mathbb{Z}$ with $2 \nmid a$. Suppose that $p=c^{2}+d^{2}=x^{2}+\left(a^{2}+1\right) y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
\left(a+\sqrt{a^{2}+1}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y \\ (-1)^{\frac{a-1}{2}+\frac{d}{4}+\frac{x-1}{2}} \frac{y}{x} \sqrt{a^{2}+1}(\bmod p) & \text { if } 4 \mid y-2\end{cases}
$$

Proof. By (4.1) and (4.2), $\left(a+\sqrt{a^{2}+1}\right)^{\frac{p-1}{4}}=\frac{1}{2} V_{\frac{p-1}{4}}(2 a,-1)+\sqrt{a^{2}+1} U_{\frac{p-1}{4}}(2 a,-1)$. Now applying Theorem 4.1 we deduce the result.

Corollary 4.2. Let p be a prime of the form $8 k+1$ and $a \in \mathbb{Z}$ with $2 \nmid a$. Suppose that $p=c^{2}+d^{2}=x^{2}+\left(a^{2}+1\right) y^{2}, c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $p \left\lvert\, U_{\frac{p-1}{8}}(2 a,-1)\right.$ if and only if $4 \mid y$ and $\frac{p-1}{8} \equiv \frac{d}{4}+\frac{y}{4}(\bmod 2)$.

Proof. By $[\mathrm{S} 4,(1.5)], p \left\lvert\, U_{\frac{p-1}{8}}(2 a,-1) \Longleftrightarrow V_{\frac{p-1}{4}}(2 a,-1) \equiv 2(-1)^{\frac{p-1}{8}}(\bmod p)\right.$. Now applying Theorem 4.1 we obtain the result.

Remark 4.1 Theorem 4.1 and Corollary 4.2 were conjectured by the author in [S4, Conjectures 9.17 and 9.19].

References

[BEW] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
[E] R.J. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 1069-1081.
[HK] F. Halter-Koch, On the quartic character of certain quadratic units and the representation of primes by binary quadratic forms, Rocky Mountain J. Math. 16 (1986), 95-102.
[HW] R.H. Hudson and K.S. Williams, Extensions of theorems of Cunningham-Aigner and Hasse-Evans, Pacific J. Math. 104 (1983), 111-132.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, New York, 1990.
[L1] E. Lehmer, On Euler's criterion, J. Austral. Math. Soc. 1 (1959/1961), 64-70.
[L2] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[Lem] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
[LW1] P.A. Leonard and K.S. Williams, The quadratic and quartic character of certain quadratic units. I, Pacific J. Math. 71 (1977), 101-106.
[LW2] P.A. Leonard and K.S. Williams, The quadratic and quartic character of certain quadratic units. II, Rocky Mountain J. Math. 9 (1979), 683-692.
[S1] Z.H. Sun, Supplements to the theory of quartic residues, Acta Arith. 97 (2001), 361-377.
[S2] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory 113 (2005), 10-52.
[S3] Z.H. Sun, On the quadratic character of quadratic units, J. Number Theory 128 (2008), 1295-1335.
[S4] Z.H. Sun, Quartic, octic residues and Lucas sequences, J. Number Theory 129 (2009), 499-550.
[S5] Z.H. Sun, Congruences for $q^{[p / 8]}(\bmod p)$, Acta Arith. 159 (2013), 1-25.
[S6] Z.H. Sun, On the quartic character of quadratic units, Acta Arith. 159 (2013), 89-100.

[^0]: The author is supported by the National Natural Science Foundation of China (grant no. 11371163).

