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Abstract. For squarefree d > 1, let M denote the ring class field for the order Z[
√
−3d] in

F = Q(
√
−3d). Hasse proved that 3 divides the class number of F if and only if there exists

a cubic extension E of Q such that E and F have the same discriminant. Define the real
cube roots v = (a + b

√
d)1/3 and v′ = (a− b

√
d)1/3, where a + b

√
d is the fundamental unit

in Q(
√
d). We prove that E can be taken as Q(v + v′) if and only if v ∈M . As byproducts

of the proof, we give explicit congruences for a and b which hold if and only if v ∈ M , and
we also show that the norm of the relative discriminant of F (v)/F lies in {1, 36} or {38, 318}
according as v ∈M or v /∈M . We then prove that v is always in the ring class field for the
order Z[

√
−27d] in F . Some of the results above are extended for subsets of Q(

√
d) properly

containing the fundamental units a + b
√
d.

1. Introduction

Write u = a+ b
√
d for the fundamental unit in Q(

√
d), where d > 1 is squarefree. Define

the real cube roots v = (a + b
√
d)1/3 and v′ = (a − b

√
d)1/3. Note that vv′ = ±1. Write

t = v + v′ and F = Q(
√
−3d). Let M denote the ring class field for the order Z[

√
−3d] in

F . For number field extensions K/k, write D(K/k) for the relative discriminant and D(K)
for the discriminant.

In [5], Hasse proved that 3 divides the class number of F if and only if there exists a cubic
extension E of Q such that D(E) = D(F ). When v ∈ M , we prove in Theorems 1.1 and
1.2 below that E can be taken to be Q(t). Theorems 1.1 and 1.2 address the cases 3 - d and
3 | d, respectively. They are proved in Sections 2 and 3.

Theorem 1.1. Suppose that 3 - d and v ∈ M . Then the fields E = Q(t) and F have the
same discriminant.

Theorem 1.2. Suppose that 3 | d and v ∈ M . Then the fields E = Q(t) and F have the
same discriminant.

Remarks (2A) and (3B) show that v ∈ M implies that 3 divides the class number of F .
However, the converse is false; the smallest counterexample when 3 - d is d = 142, while
the smallest counterexample when 3 | d is d = 786. See [7, 8, 9, 13] for examples of infinite
families of d for which 3 divides the class number of F .

When v /∈M , then in contrast with the theorems above, the discriminant of Q(t) does not
equal D(F ). In fact, when v /∈ M , Theorems 1.3 and 1.4 show that D(Q(t)) equals 9D(F )
or 81D(F ) according as 3 - d or 3 | d. The proofs are given in Sections 4 and 5.
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Theorem 1.3. Suppose that 3 - d and v /∈ M . Then the field E = Q(t) has discriminant
9D(F ).

Theorem 1.4. Suppose that 3 | d and v /∈ M . Then the field E = Q(t) has discriminant
81D(F ).

The four proofs will use the following notation: w = (−1 +
√
−3)/2, C = Q(

√
d), B =

Q(
√
−3,
√
d) = F (

√
d) = F (w), k = Q(t), K = Q(v) = k(

√
d), and L = F (v) = Q(w, v) =

K(w). Note that |L : B| = |K : C| = |k : Q| = |F (t) : F | = 3. We remark in passing that
by the Scholz reflection principle, 3 divides the class number of F whenever 3 divides the
class number of C [1, Theorem 5]. The Galois extension L/F is cyclic of degree 6; to see
this, observe that the automorphism given by

(1.1) v → v′w̄, w → w̄,
√
d→ −

√
d

is a generator of Gal(L/F ) of order 6. This automorphism along with complex conjugation
generate the non-abelian group Gal(L/Q).

As a byproduct of the proofs, Theorem 1.5 gives an evaluation of the norm of D(L/F ).
For a generalization, see Conjecture 7.7.

Theorem 1.5. When v ∈M , the norm of D(L/F ) equals 1 or 36 according as 3 - d or 3 | d;
and when v /∈M , the norm of D(L/F ) equals 38 or 318 according as 3 - d or 3 | d.

Proof. See Remarks (2A), (3D), (4F), and (5G), respectively. �

The inclusion v ∈ M is connected to cubic residuacity of u = a + b
√
d (mod p), where p

is any prime of the form p = x2 + 3dy2. This is shown in Theorem 1.6 below.

When d = 2, we have

(
d

p

)
= 1. When d is odd, one of d, p is 1 (mod 4), so that(

d

p

)
=
(p
d

)
= 1. Thus d is a square (mod p), so that u = a + b

√
d can be viewed as

a rational integer up (mod p). For example, if d ≡ c2 (mod p) for some integer c, then
up = a± bc (mod p). The choice of sign does not affect whether or not up is a cubic residue
(mod p), since a2 − b2d = ±1 is a cube.

Theorem 1.6. v ∈M if and only if up is a cubic residue mod the primes p = x2 + 3dy2.

Proof. Consider the principal prime ideal p = (x + y
√
−3d) in F of norm p. By Theorem

1.5, p is unramified in L. Let σ denote the Artin symbol

(
L/F

p

)
, and let P be a prime

ideal in L above p. Since σ(v) ≡ vp (mod P), we see that σ is trivial on L if and only if

vp−1 ≡ 1 (mod P). This last congruence is equivalent to u
(p−1)/3
p ≡ 1 (mod p). Thus up is

a cubic residue (mod p) if and only if σ is trivial on L. It remains to show that σ is trivial
on L if and only if L ⊂M .

By [3, Theorem 9.4], the primes p split completely in M . First suppose that L ⊂ M .
Then a fortiori the primes p split completely in L, or equivalently, by [3, Corollary 5.21], σ
is trivial on L. Conversely, suppose that the primes p split completely in L. Then L ⊂ M
by [3, Theorem 8.19]. �
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Let Mc denote the ring class field of F for the order Z[
√
−3dc2]. Thus M1 = M and M3

is the ring class field of F for the order Z[
√
−27d]. Mimicking the proof of Theorem 1.6, we

see that v ∈Mc if and only if up is a cubic residue mod the primes p = x2 + 3d(cy)2.

In Theorem 6.1, we give explicit criteria in terms of a and b for v = (a+ b
√
d)1/3 to lie in

M , where a+ b
√
d is the fundamental unit. Theorem 6.2 shows that every v lies in M3.

In Section 7, we introduce a large class Sd of integers r+ s
√
d with cubic norms, where Sd

properly contains the set of fundamental units a+ b
√
d. Under certain conditions, we extend

Theorem 6.1 for elements in Sd.
A substantial generalization of Theorem 6.1 is given in Section 8. The proof makes no

appeal to class field theory, but instead relies wholly on the methods developed in [11]. As a
corollary, we provide congruences for certain Lucas numbers modulo primes p = x2 + 3dy2.

2. Proof of Theorem 1.1

Assume throughout this section that v ∈ M . The proof of Theorem 1.1 utilizes the
following five lemmas.

Lemma 2.1. When 3 - d, L/F is unramified.

Proof. By hypothesis, L ⊂M . We may assume that d ≡ 1 (mod 8); otherwise, by [3, Thm.
7.24], M is the Hilbert class field of F so that L/F is unramified. Under this assumption,
the order Z[

√
−3d] has conductor 2, so it suffices to show that 2 is unramified in L. Consider

the tower Q ⊂ C ⊂ K ⊂ L. Clearly C/Q is unramified at 2. Also K/C = Q(v)/Q(
√
d) is

unramified at 2, since the polynomial x3−v3 has discriminant−27v6. Finally, any prime ideal
in K above 2 must be unramified in the extension L = K(w), since the minimal polynomial
x2 + x+ 1 of w over K has discriminant −3. �

Remark (2A). Let 3 - d. Since L/F is a cyclic unramified extension of degree 6 when 3 - d
by Lemma 2.1, the class number of F is divisible by 6, and D(L/F ) has (absolute) norm 1.
This is in contrast with the case 3 | d; see Remark (3D).

Lemma 2.2. When 3 - d, D(L/K) has norm 9.

Proof. We need only examine the ramification at 3, since the polynomial x2 + x + 1 has
discriminant −3. Note that 3 ramifies in F but there can be no further ramification at 3 in
L/F by Lemma 2.1. Thus in the factorization of (3) in L, every prime ideal occurs to the
second power.

The minimal polynomial of t = v + v′ over Q is x3 − 3εx− 2a, where ε is the norm of the
fundamental unit v3 = a + b

√
d. This polynomial has discriminant −108db2, in which the

exponent of the factor 3 is odd. By [10, Prop. 2.13], 3 divides D(k), so 3 must ramify in k
and in K.

The factorization of (3) in C is either q or pp′, where q has norm 9 and p, p′ each have
norm 3. Since 3 ramifies in K, we have in K either the prime ideal factorization (q) = Q2

1Q
where the prime factors have norm 9, or (pp′) = PP2

1P
′P′21 where the prime factors have

norm 3. In the first case, Q is the factor that ramifies in L, while in the second case, P and
P′ are the factors that ramify in L. Since the ramification is tame, D(L/K) equals Q or
PP′, and in either case D(L/K) has norm 9. �

Lemma 2.3. When q 6= 3 is a rational prime, (q) - D(K/k) in k.
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Proof. Suppose for the purpose of contradiction that (q) divides D(K/k). Since q divides
the discriminant of the k-basis {1, v} in K, q must divide

(2.1) t2 − 4 = v2 + v′2 − 2.

Replacing v in (2.1) by its conjugate wv in L, we see that in L, q divides

(2.2) w2v2 + wv′2 − 2.

Subtracting, we see that q divides

(2.3) (w2 − 1)v2 + (w − 1)v′2.

Replacing w by w2 in (2.3), we see that q divides

(2.4) (w − 1)v2 + (w2 − 1)v′2.

Multiplying (2.3) by w + 1 and then subtracting from (2.4), we see that q divides 3wv2,
which is impossible, since q 6= 3. This contradiction proves the lemma. �

Lemma 2.4. Suppose that 3 - d. The only rational primes that ramify in L are the ones that
divide D(F ). If a rational prime q divides D(C), then each prime ideal in the factorizations
of (q) in K and L occurs to the second power.

Proof. If the prime p divides D(F ), then p ramifies in F with ramification index 2. Then
since L/F is unramified by Lemma 2.1, each prime ideal in the factorization of (p) in L
occurs to the second power. If p does not divide D(F ), then clearly p does not ramify in L.

Next, suppose that q divides D(C) (so that q 6= 3). Then q ramifies in C with ramification
index 2. Recall that K/C is unramified at q, since the polynomial x3 − v3 has discriminant
−27v6. Thus each prime ideal factor in the factorization of (q) in K occurs to the second
power. �

Lemma 2.5. When 3 - d, D(K) = 9D(C)3.

Proof. By Lemma 2.1 and [10, Prop. 4.15], D(L) = D(F )6. Thus by Lemma 2.2,

(2.5) D(K)2 = D(L)/9 = D(F )6/9.

Since D(K) is positive [10, Prop. 2.15],

(2.6) D(K) = −D(F )3/3 = 9D(C)3.

�

We are now prepared for the proof of Theorem 1.1.

Proof. Consider the set S of rational primes p that divide the discriminant D(C). Note that
3 /∈ S. By Lemma 2.4, each prime ideal in the factorization of (p) in K (as well as in L)
occurs to the second power. Each prime ideal in the factorization of (p) in k must occur to
either the first or second power, and those occurring to the first power are exactly the ones
that ramify in K. Those that ramify tamely in K are the only ones that divide D(K/k) to
the first power [10, p. 260].

For p ∈ S, if every prime ideal factor of (p) in k were to occur to the first power, then (p)
would divide D(K/k), contradicting Lemma 2.3. Thus p ramifies in k, so there is a unique
prime ideal p in k that divides (p) to the first power. Note that p has norm p. If p = 2, then
pe exactly divides D(K/k) for some e ≥ 2 depending on d, while if p > 3, then p exactly
divides D(K/k).
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We proceed to say more about the value of e. To distinguish the prime ideal p in the case
p = 2, call it p2. The discriminant of the k-basis {1,

√
d} for K is 4d, so that D(K/k) divides

4d. First suppose that d ≡ 3 (mod 4). Since p2 divides (2) to the first power in k, p2 divides
(4d) to the second power. Thus e ≤ 2 in this case, so that e = 2. Next suppose that d ≡ 2
(mod 4). Then 8 divides 4d, so that e ∈ {2, 3} in this case.

So far we have shown that

(2.7) D(K/k) = pe2
∏

3<p∈S

p,

where p2 is to be interpreted as 1 when d ≡ 1 (mod 4). (No prime ideal above 3 occurs in
this product since 3 does not divide 4d.) Taking absolute norms on both sides of (2.7), we
have

(2.8) D(K)/D(k)2 =


d, d ≡ 1 (mod 4)

4d, d ≡ 3 (mod 4)

2e−1d, d ≡ 2 (mod 4).

By Lemma 2.5,

(2.9) D(K) =

{
9d3, d ≡ 1 (mod 4)

9 · 26d3, d ≡ 2, 3 (mod 4).

Thus

(2.10) D(k)2 =


9d2, d ≡ 1 (mod 4)

9 · 24d2, d ≡ 3 (mod 4)

9 · 27−ed2, d ≡ 2 (mod 4).

This shows that e must be odd, so e = 3. Finally, since D(k) is negative [10, Prop. 2.15],
we obtain the desired result

(2.11) D(k) =

{
−3d, d ≡ 1 (mod 4)

−12d, d ≡ 2, 3 (mod 4).

�

3. Proof of Theorem 1.2

Assume throughout this section that v ∈ M . Write d = 3m so that F = Q(
√
−m). Note

that the order Z[
√
−3d] = Z[3

√
−m] has conductor 3 or 6. The proof of Theorem 1.2 utilizes

the following two lemmas.

Lemma 3.1. When 3 | d, the extension F (t)/F is unramified.

Proof. Let J denote the ring class field for the order Z[
√
−m] in F . Note that this order has

conductor 1 or 2. The formula for class numbers of orders [3, Thm. 7.24] shows that the
extension M/J has degree 2 or 4. Note that t ∈M , since v ∈M .

Since t has degree 3 over Q and J(t) ⊂M , we have |J(t)/J | ≤ 2. Assume for the purpose
of contradiction that equality holds. The cubic minimal polynomial of t over Q is divisible
over J by the quadratic minimal polynomial of t over J . Therefore some conjugate of t lies
in J , so that J(t) = J . Thus the assumption is false, and t ∈ J .
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Consider the tower F ⊂ F (w) ⊂ F (v) = L. The extensions F (w)/F and L/F (w) =

Q(w)(v)/Q(w)(
√
d) cannot ramify at any rational prime other than 3. Thus the same is

true of the extension F (t)/F . Since F (t) ⊂ J and 3 does not divide the conductor of
Z[
√
−m], the extension F (t)/F must be unramified. �

Remark (3B). By Lemma 3.1, F (t)/F is a cyclic unramified cubic extension when 3 | d.
Thus F (t) lies in the Hilbert class field of F , so that 3 divides the class number of F .

Remark (3C). For d = 3m, consider the principal prime ideal p = (x + y
√
−m) in F of

norm p. By Lemma 3.1, the corresponding Artin symbol for the extension L/F fixes t, so it
maps v to either v or v′. In the first case, p ≡ 1 (mod 3) and vp−1 ≡ 1 (mod P), while in
the second case, since here vv′ = 1, we have p ≡ −1 (mod 3) and vp+1 ≡ 1 (mod P), where
P is a prime ideal of L above p.

Remark (3D). When 3 | d and v ∈ M , D(L/F ) has norm 729. To see this, first observe
that by Lemma 3.1, F (t)/Q is unramified at 3. Note that L = F (t)(

√
−3). It follows that

D(L/F (t)) = (3), since by [12, p. 685], D(L/F (t)) is the product of the prime ideals in the
factorization of (3) in F (t) which divide (3) to the first power. Taking the norm, we obtain
D(L)/D(F (t))2 = 36. By Lemma 3.1, D(F (t)) = D(F )3, so that D(L)/D(F )6 = 36. This
proves that D(L/F ) has norm 729.

Lemma 3.2. Suppose that 3 | d. The only rational primes that ramify in L are the ones that
divide D(C). For a rational prime p dividing D(C), each prime ideal in the factorizations of
(p) in K and L occurs to the second power. Consequently the extension K/C is unramified.

Proof. If p divides D(C), then p ramifies in C with ramification index 2. First assume that
p 6= 3. Then L/C is unramified at p, since K/C and L/K are unramified at p. Thus each
prime ideal in the factorizations of (p) in K and L occurs to the second power. Next consider
the case p = 3. We know that 3 ramifies in K and in L, because it ramifies in C. By Lemma
3.1, 3 does not ramify in F (t). Since F (t) is a subfield of L of index 2, it follows that each
prime ideal in the factorizations of (3) in K and L occurs to the second power. Thus when
p divides D(C), there can be no further ramification from C to L, so that L/C and K/C
are unramified. �

We are now prepared for the proof of Theorem 1.2.

Proof. Consider the set S of rational primes p that divide the discriminant D(C). Note that
3 ∈ S. By Lemma 3.2, each prime ideal in the factorization of (p) in K occurs to the second
power. Each prime ideal in the factorization of (p) in k must occur to either the first or
second power, and those occurring to the first power are exactly the ones that ramify in K.

Mimicking the proof of (2.7), we obtain

(3.1) D(K/k) = 3pe2
∏

3<p∈S

p.

The reason for the factor 3 is as follows. The proof of Theorem 1.1 applies here to show that
all primes in S other than 3 ramify in k. However, 3 does not ramify in k; this is due to
Lemma 3.1, since k ⊂ F (t). Consequently each prime ideal in the factorization of (3) in k
occurs to the first power, so each ramifies tamely in K. This explains the factor 3 in (3.1).
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Taking absolute norms on both sides of (3.1), we have

(3.2) D(K)/D(k)2 =


9d, d ≡ 1 (mod 4)

4 · 9d, d ≡ 3 (mod 4)

2e−19d, d ≡ 2 (mod 4).

By Lemma 3.2, D(K) = D(C)3 so that

(3.3) D(K) =

{
d3, d ≡ 1 (mod 4)

26d3, d ≡ 2, 3 (mod 4).

Thus

(3.4) D(k)2 =


m2, d ≡ 1 (mod 4)

24m2, d ≡ 3 (mod 4)

27−em2, d ≡ 2 (mod 4).

This shows that e must be odd, so e = 3. Finally, since D(k) is negative, we obtain the
desired result

(3.5) D(k) =

{
−m, d ≡ 1 (mod 4)

−4m, d ≡ 2, 3 (mod 4).

�

4. Proof of Theorem 1.3

Assume throughout this section that v /∈ M and 3 - d. The proof of Theorem 1.3 utilizes
the following five lemmas.

Lemma 4.1. Suppose that 3 - d. If D(C) is divisible by a prime q, then each prime ideal in
the factorizations of (q) in F (t), K, and L occurs to the second power. On the other hand,
if D(C) is not divisible by q and q 6= 3, then q is unramified in L.

Proof. First suppose that q - D(C) and q 6= 3. The extension C/Q is unramified at q. The
extension K/C is also unramified at q since it can be ramified only at 3, due to the fact that
x3 − v3 has discriminant −27v6. Moreover, L/K can be ramified only at 3, since L = K(w)
and x2 + x+ 1 has discriminant −3. Thus q is unramified in L.

Next suppose that q divides D(C). Then q ramifies in C and in F , but there can be
no further ramification in the extension L/C, since q 6= 3. Thus each prime ideal in the
factorizations of (q) in F (t), K, and L occurs to the second power. �

Lemma 4.2. When 3 - d, the extensions L/F (t) and B/F are unramified.

Proof. Any prime ideal in F (t) ramifying in L = F (t, w) = F (t,
√
d) would have to di-

vide both F (t)-basis discriminants 4d and −3, which is impossible. The extension B/F is
unramified for the same reason. �

Lemma 4.3. When 3 - d, the extension L/B ramifies only at 3.

Proof. In view of Lemmas 4.1 and 4.2, we need only show that the extension L/B is ramified.
Suppose for the purpose of contradiction that it isn’t. Then by Lemma 4.2, the extension
L/F would be unramified. Consequently L ⊂M , which contradicts v /∈M . �
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Lemma 4.4. When 3 - d, D(L/B) has norm 38 and D(K/C) has norm 36.

Proof. We have the prime ideal factorization (3) = (
√
−3)2 in Q(

√
−3). InB, either (

√
−3) =

q or (
√
−3) = pp′, where q has norm 9 and p, p′ have norm 3. By Lemma 4.3, these prime

ideals ramify wildly in the cubic cyclic extension L/B, with ramification index 3. Thus for
some integer s ≥ 3, D(L/B) = qs orD(L/B) = (pp′)s [10, Corollary 2, p. 260]. Consequently
D(L/B) has norm 9s. Equivalently,

(4.1) D(L) = 9sD(B)3.

We now know that the ramification index of 3 in the Galois extension L/Q is divisible by
3. In C, either (3) = q or (3) = pp′, where q has norm 9 and p, p′ have norm 3. As K/C
is a cubic extension, we have wild ramification in K of the form (3) = Q3 or (3) = (PP′)3,
where Q has norm 9 and P,P′ have norm 3. It follows that D(K/C) equals qr or (pp′)r for
some integer r ≥ 3. Thus D(K/C) has norm 9r. Moreover, since D(K/C) divides (27v6),
the norm of D(K/C) divides 272 = 93. Thus r = 3, so that D(K/C) has the desired norm
36. Equivalently,

(4.2) D(K) = 36D(C)3 = −33D(F )3.

By Lemma 4.2, D(B) = D(F )2. Thus, by (4.1),

(4.3) D(L) = 9sD(F )6.

Since L = K(
√
−3), D(L/K) equals the product of the prime ideals in the factorization

of (3) in K that occur to odd powers [12, p. 685]. Thus, in the notation above, D(L/K)
equals Q or PP′. Consequently, D(L/K) has norm 9, so that by (4.2),

(4.4) D(L) = 9D(K)2 = 38D(F )6.

Comparing equations (4.3) and (4.4), we see that s = 4. Therefore, by (4.1), D(L/B) has
the desired norm 38. �

Remark (4E). Since each prime ideal factor of D(L/B) occurs to the power s = 4, the
corresponding higher ramification groups Gi must be trivial for i ≥ 2, in view of [10, p. 265].
This is because s = 4 = (|G0| − 1) + (|G1| − 1), where G0 = G1 = Gal(L/B).

Lemma 4.5. When 3 - d, D(F (t)) = 34D(F )3.

Proof. By (4.4), D(L) = 38D(F )6. By Lemma 4.2, D(F (t))2 = D(L), so that D(F (t)) =
34D(F )3. �

Remark (4F). When 3 - d and v /∈ M , it follows from (4.4) that D(L/F ) has norm 38.
This is in contrast with the case 3 | d; see Remark (5G).

We are now prepared for the proof of Theorem 1.3.

Proof. Since F (t) = k(
√
−3d), the odd part of D(F (t)/k) is the product of the prime ideals

of odd norm in the factorization of (−3d) in k which occur to odd powers [12]. Let p be any
odd prime dividing 3d. By [10, Prop. 2.13], p|D(k), since the minimal polynomial of t over
Q has discriminant −108db2, which p divides to an odd power. Thus p ramifies in k, so that
exactly one prime ideal pp in the factorization of (p) in k occurs to an odd power, where pp
has norm p. Therefore the odd part of D(F (t)/k) equals

∏
pp, where p runs through the

odd prime factors of 3d.
8



We now consider the case where 2 | D(C), i.e., d ≡ 2, 3 (mod 4). By Lemma 4.1, each
prime ideal in the factorizations of (2) in F (t) and K occurs to the second power. Each
prime ideal in the factorization of (2) in k must occur to the first or second power, and those
occurring to the first power are exactly the ones that ramify in F (t) and in K. If every
prime ideal factor of (2) in k were to occur to the first power, then (2) would divide D(K/k),
contradicting Lemma 2.3. Thus exactly one prime ideal p2 in k divides (2) to the first power,
and p2 has norm 2. Then pe2 exactly divides D(F (t)/k) for some e ≥ 2 depending on d.

The discriminant of the k-basis {1,
√
−3d} for F (t) is −12d, so that D(F (t)/k) divides

12d. First suppose that d ≡ 3 (mod 4). Since p2 divides (2) to the first power in k, p2
divides (12d) to the second power. Thus e ≤ 2 in this case, so that e = 2. Next suppose
that d ≡ 2 (mod 4). Then 8 divides 12d, so that e ∈ {2, 3} in this case.

So far we have shown that

(4.5) D(F (t)/k) = pe2
∏
p

pp,

where p runs through the odd primes dividing 3d, and where p2 is to be interpreted as 1
when d ≡ 1 (mod 4). Taking norms on both sides of (4.5), we have

(4.6) D(F (t))/D(k)2 =


−3d, d ≡ 1 (mod 4)

−12d, d ≡ 3 (mod 4)

−3d · 2e−1, d ≡ 2 (mod 4).

By (4.6) and Lemma 4.5,

(4.7) D(k)2 =


36d2, d ≡ 1 (mod 4)

36 · 24d2, d ≡ 3 (mod 4)

36 · 27−ed2, d ≡ 2 (mod 4).

This shows that e must be odd, so e = 3. Finally, since D(k) is negative [10, Prop. 2.15],
we obtain the desired result D(k) = 9D(F ). �

5. Proof of Theorem 1.4

Assume throughout this section that v /∈ M and d = 3m. Then F = Q(
√
−m). Note

that the order Z[
√
−3d] = Z[3

√
−m] in F has conductor 3 or 6. The proof of Theorem 1.4

utilizes the following three lemmas.

Lemma 5.1. Let p be a prime dividing D(F ). Then each prime ideal in the factorizations
of (p) in F (t), K, and L occurs to the second power.

Proof. The prime p ramifies in C and in F with ramification index 2. Since L = K(w) and
x2 + x+ 1 has discriminant −3 and p 6= 3, the extension L/K is unramified at p. Similarly,
K/C is unramified at p, since x3− v3 has discriminant −27v6. Thus each prime ideal in the
factorization of (p) in L occurs to the second power, and the result follows. �

Lemma 5.2. The extension F (t)/F is ramified at 3.

Proof. Suppose for the purpose of contradiction that the lemma is false. Then by Lemma
5.1, the cubic cyclic extension F (t)/F is unramified. Consequently, F (t) is contained in the
Hilbert class field of F . Thus t is contained in the ring class field J for the order Z[

√
−m],
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so that the Artin symbol in Remark (3C) fixes t. As noted in Remark (3C), the Artin map
fixes v when p = x2 +my2 ≡ 1 (mod 3), which occurs for example when 3|y. It follows that
the primes p = X2 + 9mY 2 split completely in L. These are the primes that split completely
in M . By [3, Thm. 8.19], we have L ⊂M , so that v ∈M , as contradiction. �

Lemma 5.3. The norm of D(F (t)/F ) is equal to 38.

Proof. In F , either (3) = q or (3) = pp′, where q has norm 9 and p, p′ have norm 3. By
Lemma 5.2, these prime ideals ramify wildly in F (t) with ramification index 3. Thus

(5.1) D(F (t)/F ) = qs or D(F (t)/F ) = (pp′)s

for some integer s with 3 ≤ s ≤ 5 [10, pp. 260,262]. In either case, D(F (t)/F ) has norm 9s.
Since F (t)/F is a cubic cyclic extension, D(F (t)/F ) is equal to the square of an ideal in F
[10, Cor. 2, p. 266]. Thus by (5.1), s = 4, so D(F (t)/F ) has norm 38. �

We are now prepared for the proof of Theorem 1.4.

Proof. Let p be a prime dividing D(F ). By Lemma 5.1, each prime ideal in the factorization
of (p) in k must occur to the first or second power, and those that occur to the first power
are exactly the ones that ramify in F (t) and in K. If every prime ideal factor of (p) in k
were to occur to the first power, then (p) would divide D(K/k), contradicting Lemma 2.3.
Thus p ramifies in k, so that exactly one prime ideal pp in the factorization of (p) in k occurs
to an odd power, and pp has norm p. Since F (t) = k(

√
−m), the odd part of D(F (t)/k) is

the product of the prime ideals of odd norm in the factorization of (m) in k which occur to
odd powers [12]. Thus the odd part of D(F (t)/k) equals

∏
pp, where p runs through the

odd prime factors of m.
Consider now the case when p = 2. Since p2 ramifies wildly in F (t), pe2 exactly divides

D(F (t)/k) for some integer e ≥ 2. Arguing as in the paragraph above (2.7), we see that
e = 2 when d ≡ 3 (mod 4) and e ∈ {2, 3} when d ≡ 2 (mod 4). Thus

(5.2) D(F (t)/k) = pe2
∏
p

pp,

where p runs through the odd prime factors of m, and where p2 is to be interpreted as 1
when d ≡ 1 (mod 4).

Taking norms on both sides of (5.2), we have

(5.3) D(F (t))/D(k)2 =


−m, d ≡ 1 (mod 4)

−4m, d ≡ 3 (mod 4)

−2e−1m, d ≡ 2 (mod 4).

By Lemma 5.3,

(5.4) D(F (t)) = 38D(F )3 =

{
−m338, d ≡ 1 (mod 4)

−m32638, d ≡ 2, 3 (mod 4).

By (5.3) and (5.4),

(5.5) D(k)2 =


m238, d ≡ 1 (mod 4)

24m238, d ≡ 3 (mod 4)

27−em238, d ≡ 2 (mod 4).
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This shows that e must be odd, so e = 3. Finally, since D(k) is negative [10, Prop. 2.15],
we obtain the desired result D(k) = 81D(F ). �

Remark (5G). When 3 | d and v /∈M , D(L/F ) has norm 318. To see this, note that by the
proof of Lemma 5.3, the prime ideal factorization of (3) in F (t) is either Q3 or (PP′)3, where
Q has norm 9 and P,P′ have norm 3. Since these prime ideals occur to the odd power 3, and
since L = F (t)(

√
−3), it follows from [12] that D(L/F (t)) equals Q or PP′. In either case,

D(L/F (t)) has norm 9, so that D(L) = 9D(F (t))2. By Lemma 5.3, D(F (t)) = 38D(F )3.
Combining these last two equalities, we obtain the desired result D(L) = 318D(F )6.

6. Ring class fields

Recall that v is the real cube root of the fundamental unit u = a + b
√
d. The following

theorem gives explicit criteria in terms of a and b for v to lie in the ring class field M .

Theorem 6.1. We have v ∈M if and only if

(6.1) a ≡ 0 (mod 9) or

{
a ≡ ±2 (mod 9) when a2 − db2 = −1

a ≡ ±1 (mod 27) when a2 − db2 = +1.

Proof. By the proof of [6, Thm. 6], (6.1) holds if and only if F (t)/F is unramified. The
result now follows from Lemmas 2.1, 3.1, 4.5, and 5.3. �

Recall that M3 denotes the ring class field of F for the order Z[
√
−27d]. It follows from

[3, Thm. 7.24] that |M3 : M | = 3. Consider the example v = (5/2 +
√

21/2)1/3 for d = 21.
By Theorem 6.1, v does not lie in M , since a = 5/2 ≡ 16 6≡ ±1 (mod 27). On the other
hand, this v does lie in M3. In fact, Theorem 6.2 shows that v ∈ M3 for every v, i.e., every
up is a cubic residue mod the primes p = x2 + 27dy2. This fact had been conjectured by the
first author, and the proof is due to the third author. For an extension of Theorem 6.2, see
Conjecture 7.8.

Note that for each squarefree d > 1, the fundamental unit u can be written in the form
u = (m+ n

√
d)/2 with nonzero integers m,n such that m2 − dn2 = ±4.

Theorem 6.2. Every v lies in M3.

Proof. We will utilize the integral quadratic forms below when d ≡ 1 (mod 4):

(6.2) p = A2 + 3dB2 =⇒ p = x2 + xy +
3d+ 1

4
y2

and

(6.3) p = A2 + 27dB2 =⇒ p = x2 + xy +
27d+ 1

4
y2,

where x = A−B and y = 2B.
Case 1: m2 − dn2 = −4.
In this case we cannot have d ≡ 3 (mod 4). First assume that 9 | m and p = A2 + 3dB2. If
d ≡ 2 (mod 4), then v ∈ M by [11, Thm. 5.1] with k = 2. If d ≡ 1 (mod 4), then v ∈ M
by (6.2) and [11, Thm. 5.1] with k = 1.

Next assume that 9 - m and p = A2 +27dB2. If d ≡ 2 (mod 4), then v ∈M3 by [11, Thm.
5.1] with k = 6. If d ≡ 1 (mod 4), then v ∈ M3 by (6.3) and [11, Thm. 5.1] with k = 3.
This completes the proof in Case 1.
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Case 2: m2 − dn2 = 4.
First assume that 9 | m and p = A2 + 3dB2. If d ≡ 2, 3 (mod 4), then v ∈ M by [11, Thm.
5.3] with k = 2. If d ≡ 1 (mod 4), then v ∈M by (6.2) and [11, Thm. 5.3] with k = 1.

Next assume that 9 - m. Since (m−2)(m+2) = dn2, we may choose the sign of m so that
ord3(m− 2) ≥ ord3n, where ord3 denotes the 3-adic order. There is no loss of generality in
fixing this sign, since the conjugate v′ of v satisfies vv′ = ±1. We will consider separately
the cases d ≡ 2, 3 (mod 4), d ≡ 5 (mod 8), and d ≡ 1 (mod 8).

If d ≡ 2, 3 (mod 4), 9 - m−2
(m−2,n) and p = A2 + 27dB2, then v ∈ M3 by [11, Thm. 5.5] with

k = 2 · 3. If d ≡ 2, 3 (mod 4), 9 | m−2
(m−2,n) and p = A2 + 3dB2, then v ∈M by [11, Thm. 5.5]

with k = 2 · 1. (We can ignore the restriction p - n in [11, Thm. 5.5] because u ≡ 1 (mod p)
when p | n.)

If d ≡ 5 (mod 8), 9 - m−2
(m−2,n) and p = A2 + 27dB2, then v ∈ M3 by (6.3) and [11, Thm.

5.5] with k = 1 · 3. If d ≡ 5 (mod 8), 9 | m−2
(m−2,n) and p = A2 + 3dB2, then v ∈ M by (6.2)

and [11, Thm. 5.5] with k = 1 · 1.

From now on assume that d ≡ 1 (mod 8). Set r = ord2
4(m−2)
(m−2,n)2 . If r > 0, r ≡ 0, 1

(mod 3), 9 - m−2
(m−2,n) and p = A2 + 27dB2, then v ∈ M3 by [11, Thm. 5.5] with k = 2 · 3. If

r > 0, r ≡ 0, 1 (mod 3), 9 | m−2
(m−2,n) and p = A2 + 3dB2, then v ∈M by [11, Thm. 5.5] with

k = 2 · 1.
Finally consider the case where either r = 0 or r ≡ 2 (mod 3). If 9 - m−2

(m−2,n) and p =

A2 + 27dB2, then v ∈ M3 by (6.3) and [11, Thm. 5.5] with k = 1 · 3. If 9 | m−2
(m−2,n) and

p = A2 + 3dB2, then v ∈ M by (6.2) and [11, Thm. 5.5] with k = 1 · 1. This completes the
proof in Case 2. �

7. Generalizations for integers u ∈ Q(
√
d) with cubic norms

For each squarefree d > 1, let O(d) denote the ring of integers in Q(
√
d), and write f(d)

for the fundamental unit in O(d). Let Sd denote the set of u ∈ O(d) for which the norm of
u is a cube, u is not the cube of an element in O(d), and u is not divisible in O(d) by the
cube of a rational prime. (The notation u will no longer be restricted solely for fundamental
units.) Denote the norm of u by N(u) = n3, and let ν denote the real cube root u1/3.

Let S∗d denote the subset of u ∈ Sd such that p | d for each rational prime p dividing u.
For example, S∗d contains the fundamental unit f(d). More generally, whenever µ ∈ O(d) is
not divisible by a rational prime, S∗d contains

(7.1) µ3f(d)±1.

Examples of elements in S∗d not of the form (7.1) are

(7.2) 17 + 2
√

79, 13 +
√

142, 14 +
√

223, (11 +
√

229)/2, 28 + 3
√

235, 77 + 2
√

254,

whose norms are −27, 27,−27,−27,−113, 173, respectively.
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Let Pd denote the set of µ = a+b
√
d ∈ O(d) with norm N(µ) = n3 satisfying the following

conditions:

n ≡ 2, 5, 8 (mod 9) =⇒ a ≡ 0,±2,±7,±9,±11 (mod 27);

n ≡ 1 (mod 9) =⇒ a ≡ 0,±1,±9 (mod 27);

n ≡ 4 (mod 9) =⇒ a ≡ 0,±8,±9 (mod 27);

n ≡ 7 (mod 9) =⇒ a ≡ 0,±9,±10 (mod 27);

n ≡ 0 (mod 9) =⇒ a ≡ ±4,±5,±13 (mod 27);

n ≡ ±3 (mod 9) =⇒ a ≡ 0,±4,±5,±9,±13 (mod 27).

When u is a fundamental unit (so that n = ±1), it follows from Theorem 6.1 that v ∈M if
and only if u ∈ Pd. Theorem 7.3 shows that this equivalence holds for a more general set of
u under the condition that the class number h(d) is not a multiple of 3. We conjecture that
the condition on the class number can be dropped. The proof of Theorem 7.3 depends on
the following two lemmas.

Lemma 7.1. Let u ∈ Sd. Then the principal ideal (u) factors in O(d) as

(7.3) (u) = A3qQ,

where A and Q are ideals, and q is a squarefree integer with q = N(Q), where each rational
prime factor of q splits in O(d).

Proof. Let p be a prime ideal factor of (u) lying above a rational prime p, so that for some
e ≥ 1, pe||(u). We will use the term “p-part” of (u) to denote the contribution of the ideals
above p to the ideal factorization of (u). As u ∈ Sd, we can write n3 = N(u) = uu′, where
u′ is the conjugate of u in O(d).

Suppose first that p does not split in O(d). Then p2e exactly divides (uu′) = (n3), so that
3 | e. Thus the p-part of (u) is a cube, which can be absorbed in (7.3) by A3.

Now suppose that p splits and write (p) = pp′. Since pe||(u), taking norms yields pe | n3.
Moreover, if p′ - (u), then pe||n3, so that 3 | e and again the p-part of (u) is a cube that can
be absorbed by A3. It remains to consider the case when p′ | (u). In this case, pi divides
u for some i ∈ {1, 2} with e ≥ i. (We cannot have i > 2 by definition of Sd.) We may
assume that 3 - e, otherwise we revert back to the previous situations where the p-part is a
cube. We have pe−i||(u/pi). By taking norms, pe−i||(n3/p2i). Thus pe+i||n3, so that 3|(e+ i).
Therefore e = 2i + 3k for some k ∈ Z. Since −i ≤ e − 2i = 3k, we must have k ≥ 0. The
p-part of (u) is pipe−i = pipip3k. The cube p3k can be absorbed by A3. Taking the product
of the p-parts of (u) over all p, we could obtain (7.3), where Q is the product of the pi and
q = N(Q) is the product of the pi, but we need i = 1 for every p in order to ensure that q
is squarefree. Fortunately, we can rearrange each product p2p2 so that the exponents equal
1, using p2p2 = pp′p3. �

Let Rd be the set of β ∈ O(d) having the form β = nr + ns
√
d, where r + s

√
d has norm

n (so that N(u) = n3). For example, β = (31 + 155
√

5)/2 ∈ R5 with N(β) = −313. An
example of an element of Sd that is not in Rd is u = 1376+387

√
79, for which N(u) = −2153.

We provide a computer-generated proof via Mathematica for the following lemma.
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Lemma 7.2. Let β, γ ∈ Rd, µ ∈ O(d), with norms N(µ) and N(γ) both nonzero modulo 3.
Then

(7.4) β ∈ Pd ⇐⇒ βµ3 ∈ Pd
and

(7.5) (β ∈ Pd and γ ∈ Pd) =⇒ βγ ∈ Pd.

Proof. Write µ = x + y
√
d and β = nr + ns

√
d with n = r2 − ds2, so that N(β) = n3.

Create in Mathematica the master set of 9,565,938 quintuples (r, s, x, y, d) modulo 27 for
which x2 − dy2 is nonzero modulo 3. Compute the subset of the master set for which
(nr + ns

√
d)(x + y

√
d)3 ∈ Pd. This turns out to be exactly the same subset for which

β = nr + ns
√
d ∈ Pd, thereby proving (7.4).

Next, write γ = mx + my
√
d with m = x2 − dy2, so that N(γ) = m3. Using the same

master set, compute the subset for which (nr+ns
√
d)(mx+my

√
d) ∈ Pd. This turns out to

contain the subset for which both of these factors lie in Pd, thus proving (7.5). The details
of the Mathematica proof are given in [4]. �

For u ∈ Sd, recall that ν denotes the real cube root u1/3, n denotes the cube root of the
norm of u, and v denotes the real cube root of the fundamental unit f(d).

Theorem 7.3. Let u ∈ S∗d have nonzero norm modulo 3. Assume that 3 - h(d). Then ν ∈M
if and only if u ∈ Pd.

Proof. By definition of S∗d , any rational prime dividing u must ramify in O(d). Thus, by
Lemma 7.1, we have (u) = A3 for some ideal A in O(d). Since 3 - h(d) and both of A3 , Ah(d)

are principal, it follows that A is principal. This shows that (u) = (µ3) for some µ ∈ O(d),
so that u has the form (7.1). Without loss of generality, we will assume the plus sign in

(7.1), and we write u = f(d)(x+ y
√
d)3, where (x+ y

√
d) is an element of O(d) whose norm

is not divisible by 3.
Clearly ν = v(x+ y

√
d) ∈M if and only if v ∈M . As noted above Lemma 7.1, v ∈M if

and only if f(d) ∈ Pd. Thus ν ∈M if and only if f(d) ∈ Pd. It remains to prove that

(7.6) f(d) ∈ Pd ⇐⇒ f(d)(x+ y
√
d)3 ∈ Pd.

This follows from the special case β = f(d) of Lemma 7.2. �

Let Me denote the ring class field for the order Z[e
√
−3d] in F = Q(

√
−3d). In particular,

M1 = M . For u ∈ O(d), let c = c(u) be the product of the distinct rational primes which
divide u but not d. Note that for u ∈ Sd, we have c(u) = 1 if and only if u ∈ S∗d .

Theorem 7.5 below extends Theorem 7.3. Just as for Theorem 7.3, we conjecture that the
condition on the class number can be dropped. The proof of Theorem 7.5 is conditional on
the following conjecture.

Conjecture 7.4. Let β ∈ O(d) have a cubic norm with 3 - N(β). Then β1/3 ∈ Mc if and
only if β ∈ Pd, where c = c(β). In particular, this equivalence holds for every β ∈ Rd with
3 - N(β).

Remark (7I). Let β, γ ∈ Rd with 3 - N(βγ). If β1/3 ∈ Mc(β) and γ1/3 ∈ Mc(γ), then by

definition of Mc(u), we have (βγ)1/3 ∈ Mc(βγ). This demonstrates that (7.5) is consistent
with Conjecture 7.4.
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Theorem 7.5. Let u ∈ Sd have nonzero norm modulo 3. Assume that Conjecture 7.4 holds
and that 3 - h(d). Then ν ∈Mc if and only if u ∈ Pd, where c = c(u).

Proof. Let T ∈ {h(d), 2h(d)} be chosen such that 3 | (T − 1). By (7.3),

(7.7) (uT ) = (AT )3qTQT .

Since QT is a principal ideal of norm qT , we have (qTQT ) = (γ) with γ ∈ Rd. By (7.7),
q = c, where c = c(u) = c(γ). Since AT is principal, we have uT = µ3

0β for some µ0 ∈ O(d)
and β ∈ Rd. Therefore u3ku = µ3

0β for some k. Multiplying by the conjugate u′3k, we obtain

(7.8) j3u = µ3β

for some µ ∈ O(d), where j = N(u)k is not divisible by 3. Consequently

(7.9) jν = µβ1/3.

Since j, µ ∈M ⊂Mc,

(7.10) ν ∈Mc ⇐⇒ β1/3 ∈Mc ⇐⇒ β ∈ Pd,

where the first equivalence follows from (7.9) and the second follows from Conjecture 7.4.
By Lemma 7.2 and (7.8),

(7.11) β ∈ Pd ⇐⇒ µ3β ∈ Pd ⇐⇒ j3u ∈ Pd ⇐⇒ u ∈ Pd.

The result now follows from (7.10) and (7.11). �

Some numerical examples supporting Theorem 7.5 with 3 | h(d) are given in the last
section of [4].

Theorem 7.6. Let u ∈ O(d) have a cubic norm and write ν = u1/3. Then ν ∈ Mc if and
only if ν ∈Mc′, where c′ = c′(u) denotes the odd part of c = c(u).

Proof. It suffices to prove that ν ∈Mc implies ν ∈Mc′ for even c. Assume for the purpose of
contradiction that ν ∈Mc but ν /∈Mc′ . By [3, Thm. 7.24], Mc has degree 2 over Mc′ . Thus
the minimal polynomial of ν over Mc′ is quadratic. Since this quadratic polynomial must
divide the cubic polynomial x3 − u = x3 − ν3 over Mc′ , it follows that this cubic polynomial
has a linear factor over Mc′ . Since the cube roots of unity lie in M , we obtain the desired
contradiction ν ∈Mc′ . �

We close this section with two conjectures. When u is a fundamental unit, Conjecture 7.7
reduces to Theorem 1.5, while Conjecture 7.8 reduces to Theorem 6.2. Extensive numerical
evidence for Conjectures 7.4, 7.7, and 7.8 is given in [4].

Conjecture 7.7. Let u ∈ Sd and let c′ = c′(u) denote the odd part of c = c(u). When
ν ∈ Mc, the norm of D(F (ν)/F )c−4 equals 1 or 36 according as 3 - d or 3 | d, and when
ν /∈ Mc, the norm of D(F (ν)/F )c−4 equals 38 or 318 according as 3 - d or 3 | d, except that
when d ≡ 3 (mod 4), each c−4 is to be replaced by c′−4.

Conjecture 7.8. For every u ∈ Sd, we have ν ∈M3c, where c = c(u).
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8. Generalization of Theorem 6.1

Let d > 1 be squarefree. In this section, we compute the value of (m+n
√
d

2
)
p−1
3 (mod p) for

the primes p = x2 + 3dy2, where m2 − dn2 = ±4. Of course the value is 1 (mod p) if and

only if m+n
√
d

2
is a cubic residue for these p. Theorem 6.2 shows that the value is 1 (mod p)

whenever 3 | y, so throughout this section, it will be assumed that 3 - y. The signs of x
and y will be chosen such that 3 | (x − y). Theorems 8.1 and 8.2 address the cases when
m2−dn2 = −4 and m2−dn2 = 4, respectively. In the latter case, we may assume that p - n,

since otherwise m ≡ ±2 (mod p) so that m+n
√
d

2
is a cubic residue for p.

Set ω = −1+
√
−3

2
. We will utilize properties (8.1)–(8.4) for the cubic Jacobi symbol [11, p.

63]. For integers a, b, c, d with 3 - c , (d, c) = 1 , and a− 2 ≡ b ≡ 0 (mod 3),

(8.1)
( ω

a+ bω

)
3

= ω
a+b+1

3 ,
( 1− ω
a+ bω

)
3

= ω
2(a+1)

3 ,
(d
c

)
3

= 1.

By the cubic reciprocity law,

(8.2)
(a+ bω

c+ dω

)
3

=
(c+ dω

a+ bω

)
3
, when b ≡ d ≡ 0 (mod 3), 3 - ac.

When a− 2 ≡ b ≡ 0 (mod 3), it follows from (8.1) that

(8.3)
(1 + 2ω

a+ bω

)
3

=
(ω(1− ω)

a+ bω

)
3

= ω
b
3 ,

( 3

a+ bω

)
3

=
(−ω2(1− ω)2

a+ bω

)
3

= ω
2b
3 .

If 3 - a and (a2, c2 + 3d2) = 1, we have(c+ d(1 + 2ω)

a

)
3

(−c+ d(1 + 2ω)

a

)
3

=
(−c2 − 3d2

a

)
3

= 1,

and so

(8.4)
(−c+ d(1 + 2ω)

a

)
3

=
(c+ d(1 + 2ω)

a

)−1
3
.

We will also need

(8.5)
(m+ n

2
+mω

)(m+ n

2
+mω2

)
=

3m2 + n2

4
.

Theorem 8.1. Suppose that m2 − dn2 = −4. Then modulo p = x2 + 3dy2, we have

(8.6)
(m+ n

√
d

2

) p−1
3 ≡


1 if m ≡ 0,±4 (mod 9),
1
2

(
− 1 + (mn/3

3
) x
dy

√
d
)

if m ≡ ±3 (mod 9),
1
2

(
− 1− (mn

3
) x
dy

√
d
)

if m ≡ ±1 (mod 9),
1
2

(
− 1 + (mn

3
) x
dy

√
d
)

if m ≡ ±2 (mod 9),

where
( ·
3

)
is the Legendre symbol.

Proof. When 9 | m, (8.6) follows from Case 1 for Theorem 6.2, so assume from now on that
9 - m. Since 3 - n, we may choose the signs of m,n so that m ≡ n ≡ 1 (mod 3) when 3 - m,
and n ≡ m/3 ≡ 1 (mod 3) when 3 | m. It suffices to prove (8.6) for this choice of signs,
since if the sign of m or n is reversed, one can take conjugates in (8.6). Observe that the

Legendre symbol
(mn

3

)
equals 1 when 3 - m and

(
mn/3

3

)
equals 1 when 3 | m.

16



Case 1: d ≡ 2 (mod 4)
In this case, m2 := m/2 and n2 := n/2 are relatively prime integers. Set x1 = y and y1 = y−x

3
.

Then

(8.7) p = (1 + 3d)x21 − 6x1y1 + 9y21

and

(8.8)
2(1 + 3d)x1 − 6y1

6dy1
≡ x

dy
(mod p).

First suppose that 3 | m. Using (8.1)-(8.3) and (8.5), we deduce that(−6n− 6m(1 + 2ω)

1 + 3d

)
3

=
(m2 + n2 +mω

1 + 3d

)
3

=
(m2 + n2 +mω

(1 + 3d)n2
2

)
3

(m2 + n2 +mω

n2

)
3

=
( (1 + 3d)n2

2

m2 + n2 +mω

)
3

(1 + 2ω

n2

)
3

=
( 3 + 3m2

2 + n2
2

m2 + n2 +mω

)
3

=
( 3

m2 + n2 +mω

)
3

= ω
2m
3 .

Appealing to [11, Theorem 5.1] with the quadratic form (8.7), we obtain, using (8.8),(m+ n
√
d

2

) p−1
3 ≡ 1

2

(
− 1 +

x

dy

√
d
)

(mod p),

as desired.
Now assume that 3 - m. Observe that d ≡ dn2 = m2 + 4 ≡ 2 (mod 3). Using (8.1)-(8.3)

and (8.5), we deduce that(−6n− 6m(1 + 2ω)

1 + 3d

)
3

=
(m2 + n2 +mω

1 + 3d

)
3

=
( −ω2

1 + 3d

)
3

(m+ (m2 − n2)ω

1 + 3d

)
3

=
( ω

−1− 3d

)2
3

(m+ (m2 − n2)ω

1 + 3d

)
3

= ω−2d
(m+ (m2 − n2)ω

n2

)
3

(m+ (m2 − n2)ω

(1 + 3d)n2
2

)
3

= ωd
(2 + ω

n2

)
3

( (1 + 3d)n2
2

m+ (m2 − n2)ω

)
3

= ω2
(−ω2(1− ω)

n2

)
3

( 3 + 3m2
2 + n2

2

m+ (m2 − n2)ω

)
3

= ω2
( ω
n2

)
3

( 3

m+ (m2 − n2)ω

)
3

= ω2 · ω
n2+1

3

( 3

−m− (m2 − n2)ω

)
3

= ω2 · ω
n2+1

3 · ω−
m−n

3 = ω
4−m

3 .

Appealing again to [11, Theorem 5.1] with the quadratic form (8.7), we obtain (8.6).
Case 2: d ≡ 1 (mod 4)
In this case, m and n have the same parity. Set x1 = x−y

3
and y1 = 2x+4y

3
. Then

(8.9) p = (3d+ 4)x21 − (3d− 2)x1y1 +
3d+ 1

4
y21.
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First suppose that 3 | m. Write n2 = n/(n, 2) and m2 = m/(n, 2). Using (8.1)-(8.3) and
also (8.5) with n replaced by −2n, we deduce that(−(3d− 2)n− 3m(1 + 2ω)

3d+ 4

)
3

=
(6n− 3m(1 + 2ω)

3d+ 4

)
3

=
(m− 2n+ 2mω

3d+ 4

)
3

=
(m2 − 2n2 + 2m2ω

3d+ 4

)
3

=
(m2 − 2n2 + 2m2ω

n2

)
3

(m2 − 2n2 + 2m2ω

(3d+ 4)n2
2

)
3

=
(1 + 2ω

n2

)
3

( (3d+ 4)n2
2

m2 − 2n2 + 2m2ω

)
3

=
(3m2

2 + 4n2
2 + 12/(n, 2)2

m2 − 2n2 + 2m2ω

)
3

=
( 12/(n, 2)2

m2 − 2n2 + 2m2ω

)
3

=
( 3

m2 − 2n2 + 2m2ω

)
3

( 4/(n, 2)2

m2 − 2n2 + 2m2ω

)
3

=
( 3

m2 − 2n2 + 2m2ω

)
3

(m2 − 2n2 + 2m2ω

2/(2, n)

)2
3

=
( 3

m2 − 2n2 + 2m2ω

)
3

= ω
2m
3 = ω2.

Appealing to [11, Theorem 5.1] with the quadratic form (8.9), we obtain (8.6) in the case
3 | m.

Next suppose that 3 - m. Note that d = (m2 + 4)/n2 ≡ 2 (mod 3). From (8.1)–(8.3),(−(3d− 2)n− 3m(1 + 2ω)

3d+ 4

)
3

=
(6n− 3m(1 + 2ω)

3d+ 4

)
3

=
(m− 2n+ 2mω

3d+ 4

)
3

=
( −ω2

3d+ 4

)
3

(−ω(m− 2n+ 2mω)

3d+ 4

)
3

=
( ω2

3d+ 4

)
3

(2m+ (m+ 2n)ω

3d+ 4

)
3

=
( ω

−4− 3d

)2
3

(2m2 + (m2 + 2n2)ω

3d+ 4

)
3

= ω
1−4−3d

3

(2m2 + (m2 + 2n2)ω

n2

)
3

(2m2 + (m2 + 2n2)ω

(3d+ 4)n2
2

)
3

= ω−d−1
(2 + ω

n2

)
3

( (3d+ 4)n2
2

2m2 + (m2 + 2n2)ω

)
3

=
(−ω2(1− ω)

n2

)
3

(3m2
2 + 4n2

2 + 12/(2, n)2

2m2 + (m2 + 2n2)ω

)
3

=
( ω
n2

)
3

( 12/(n, 2)2

2m2 + (m2 + 2n2)ω

)
3

=
( ω
n2

)
3

( 3

2m2 + (m2 + 2n2)ω

)
3

( 2/(n, 2)

2m2 + (m2 + 2n2)ω

)2
3

=
( ω
n2

)
3

( 3

2m2 + (m2 + 2n2)ω

)
3

(2m2 + (m2 + 2n2)ω

2/(n, 2)

)2
3

=
( ω
n2

)
3

( 3

2m2 + (m2 + 2n2)ω

)
3

( ω

2/(n, 2)

)2
3

= ω
4−m

3 .

Appealing once again to [11, Theorem 5.1] with the quadratic form (8.9), we obtain (8.6) in
the case 3 - m, which completes the proof. �
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From now on let m2 − dn2 = 4, so that (m − 2)(m + 2) = dn2. Always choose a sign of
m so that ord3(m − 2) ≥ ord3n. Set m1 = m−2

(m−2,n) and n1 = n
(m−2,n) . Then (m1, n1) = 1

and 3 - n1. Fix the sign of n so that n1 ≡ 1 (mod 3). For brevity, define α = ord3(m − 2),
β = ord3n, and γ = ord3d. From the formula for dn2, we have α = γ + 2β when β > 0. If
3 - m1 and β > 0, then β = α = γ + 2β, which is impossible. Thus

(8.10) 3 - m1 ⇐⇒ 3 - (m− 2)n.

Let m4 = 4m1/(m − 2, n), which is an integer since m4 = dn2
1 − m2

1. Let m0 denote the
odd part of m4. We have m0 | m1, so m0 is relatively prime with n1. Also m0 divides
m4(m+ 2) = 4dn2

1. Thus

(8.11) m0 | d.

Consequently (m4, 3d+ 1) = 1 when 2 | d and (m4, 3d+ 4) = 1 when 2 - d.
We claim that

(8.12) 9 | m1 ⇐⇒ m ≡ 2 (mod 27).

To see this, observe that (8.12) is equivalent to

(8.13) α− β ≥ 2⇐⇒ α ≥ 3.

If β = 0, then α ≤ 1, so both sides of (8.13) are false. If β > 0, then (8.13) is equivalent to

(8.14) γ + β ≥ 2⇐⇒ γ + 2β ≥ 3.

Since γ = 0 or γ = 1, (8.14) holds, so (8.12) is proved.
In view of (8.12), the proof in Case 2 of Theorem 6.2 shows that if either 9 | m or m ≡ 2

(mod 27), then m+n
√
d

2
is a cubic residue of the primes p = x2 + 3dy2. The converse is a

consequence of the following technical theorem.

Theorem 8.2. Suppose that m2 − dn2 = 4, 9 - m, 27 - (m− 2), and ord3(m− 2) ≥ ord3n.
Then modulo p = x2 + 3dy2, we have

(8.15)
(m+ n

√
d

2

) p−1
3 ≡


1
2

(
− 1 + ( (m−2)n/3

3
) x
dy

√
d
)

if m ≡ 5, 8 (mod 9),
1
2

(
− 1− ( (m−2)n/27

3
) x
dy

√
d
)

if m ≡ 11, 20 (mod 27),
1
2

(
− 1 + (mn/3

3
) x
dy

√
d
)

if m ≡ 0 (mod 3),
1
2

(
− 1 + ( (m+2)n/3

3
) x
dy

√
d
)

if m ≡ 1 (mod 3),

where
( ·
3

)
is the Legendre symbol.

Proof. Note that 9 - n, otherwise 27 would divide m− 2. When 3 | (m− 2), we have 3 ‖ m1

by (8.10) and (8.12).
Case 1: 2 | d.
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In this case (m,n) = 2. Suppose first that 3 | (m − 2), so that either m ≡ 5, 8 (mod 9) or
m ≡ 11, 20 (mod 27). Using (8.1)–(8.3) and (8.5), we see that

(−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

=
(m1 − n1 + 2m1ω

3d+ 1

)
3

=
(m1 − n1 + 2m1ω

n1

)
3

(m1 − n1 + 2m1ω

(3d+ 1)n2
1

)
3

=
(1 + 2ω

3d+ 1

)
3

( (3d+ 1)n2
1

m1 − n1 + 2m1ω

)
3

=
( 3m2

1 + n2
1 + 3m4

m1 − n1 + 2m1ω

)
3

=
( 3m4

m1 − n1 + 2m1ω

)
3

=
( 3

m1 − n1 + 2m1ω

)
3

( m4

m1 − n1 + 2m1ω

)
3
.

Assume that m ≡ 5, 8 (mod 9). Then 3 ‖ m1, 3 - n and 3 ‖ m−2
(m−2,n)2 . From the above we

deduce that (−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

=
( 32

m1 − n1 + 2m1ω

)
3

( m4/3

m1 − n1 + 2m1ω

)
3

= ω
2m1
3

(m1 − n1 + 2m1ω

m4/3

)
3

= ω
2m1
3

( −n1

m4/3

)
3

= ω
2m1
3 = ω2(

(m−2)n/3
3

),

where the last equality follows because (m− 2, n)2 ≡ 1 (mod 3).
Applying [11, Thm. 5.5] with the quadratic form (8.7), and using (8.8), we obtain the

first line in (8.15).
Next assume m ≡ 11, 20 (mod 27). Then 9 ‖ m− 2. By (8.10) and (8.12), 3 ‖ m1. Hence

3 ‖ n and 3 - m4. This time

(−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

=
( 3

m1 − n1 + 2m1ω

)
3

( m4

m1 − n1 + 2m1ω

)
3

= ω
m1
3

(m1 − n1 + 2m1ω

m4

)
3

= ω
m1
3

(−n1

m4

)
3

= ω
m1
3 = ω(

(m−2)n/27
3

),

where the last equality follows because (m− 2, n)2 ≡ 0 (mod 9).
Applying [11, Thm. 5.5] with the quadratic form (8.7), and using (8.8),we obtain the

second line in (8.15).
Finally assume that m ≡ 0, 1 (mod 3). We have 9 - m, 3 - m − 2 and 3 - n since

ord3(m− 2) ≥ ord3n. Hence 3 - m1n1 and so 4(2−m) ≡ m4 = m2
1 − dn2

1 ≡ 1− d (mod 3).
This implies d ≡ m− 1 (mod 3).
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First assume m1 ≡ n1 (mod 3). Then(−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

=
(m1 − n1 + 2m1ω

3d+ 1

)
3

=
( ω

3d+ 1

)
3

(m1 + n1 − (m1 − n1)ω

3d+ 1

)
3

= ω−d
(m1 + n1 − (m1 − n1)ω

n1

)
3

(m1 + n1 − (m1 − n1)ω

(3d+ 1)n2
1

)
3

= ω−d
(1− ω

n1

)
3

( (3d+ 1)n2
1

m1 + n1 − (m1 − n1)ω

)
3

= ω−d
(1− ω

n1

)
3

( 3m2
1 + n2

1 + 3m4

m1 + n1 − (m1 − n1)ω

)
3

= ω−d
(1− ω
−n1

)
3

( 3m4

m1 + n1 − (m1 − n1)ω

)
3

= ω−d · ω
2(1−n1)

3

( 3

m1 + n1 − (m1 − n1)ω

)
3

( m4

m1 + n1 − (m1 − n1)ω

)
3

= ω
2(1−n1)

3
−d
( 3

m1 + n1 − (m1 − n1)ω

)
3

(m1 + n1 − (m1 − n1)ω

m4

)
3

= ω
2(1−n1)

3
−d · ω

2(n1−m1)
3

(1 + ω

m4

)
3

= ω
2(1−m1)

3
−d
(−ω2

m4

)
3

= ω
m1−1

3
+(1−m)

( ω

−m2
4

)
3

= ω
1−(m+1)(m−2

3 )

3 ,

where the last equality follows (after a tedious calculation) using the congruence m − 2 ≡
(m− 2, n) (mod 3).

If on the other hand m1 ≡ −n1 (mod 3), then by (8.4),(−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

=
(−6(−n1) + 6m1(1 + 2ω)

3d+ 1

)−1
3

= ω−
1−(m+1)(m−2

3 )

3 .

Since m1 ≡ ( (m−2)n
3

)n1 (mod 3), we have in either case(−6n1 + 6m1(1 + 2ω)

3d+ 1

)
3

= ω(
(m−2)n

3
)
1−(m+1)(m−2

3 )

3 = ω(n
3
)
(m−2

3 )−(m+1)

3 .

The rightmost member equals ω−(
mn/3

3
) or ω−(

(m+2)n/3
3

) according as m is congruent to 0 or
1 mod 3. Applying [11, Theorem 5.5] with the quadratic form (8.7), and using (8.8), we
obtain the last two lines of (8.15).
Case 2: 2 - d.
Setting x1 = y and y1 = x+2y

3
, we have

(8.16) p = (3d+ 4)x21 − 12x1y1 + 9y21,

and setting x2 = x−y
3

and y2 = −2x+4y
3

, we get

(8.17) p = (3d+ 4)x22 + (3d− 2)x2y2 +
3d+ 1

4
y22 for d ≡ 1 (mod 4).
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Note that

(8.18)
(−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
((3d− 2)n1 + 3m1(1 + 2ω)

3d+ 4

)
3
.

It is easy to check that

(8.19)
2(3d+ 4)x1 − 12y1

6dy1
=

2(3d+ 4)x2 + (3d− 2)y2
3dy2

≡ − x

dy
(mod p)

and

(8.20) (m1 − 2n1 + 2m1ω)(m1 − 2n1 + 2m1ω
2) = 3m2

1 + 4n2
1 = (3d+ 4)n2

1 − 3m4.

Formulas (8.17)–(8.19) will be needed later when applying [11, Theorem 5.5] for the case
d ≡ 1 (mod 4).

Suppose first that 3 | (m − 2), so that either m ≡ 5, 8 (mod 9) or m ≡ 11, 20 (mod 27).
Using (8.1)–(8.3) and (8.20), we see that(−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
(m1 − 2n1 + 2m1ω

3d+ 4

)
3

=
(m1 − 2n1 + 2m1ω

n1

)
3

(m1 − 2n1 + 2m1ω

(3d+ 4)n2
1

)
3

=
(1 + 2ω

n1

)
3

( (3d+ 4)n2
1

m1 − 2n1 + 2m1ω

)
3

=
( 3m2

1 + 4n2
1 + 3m4

m1 − 2n1 + 2m1ω

)
3

=
( 32 ·m4/3

m1 − 2n1 + 2m1ω

)
3
.

Assume that m ≡ 5, 8 (mod 9). Then 3 ‖ m1, 3 - n and 3 ‖ m4. We have( m4/3

m1 − 2n1 + 2m1ω

)
3

=
(m1 − 2n1 + 2m1ω

m4/3

)
3

=
(m1 − 2n1 + 2m1ω

m0/3

)
3

=
(−2n1

m0/3

)
3

= 1.

Hence, (−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
( 3

−m1 + 2n1 − 2m1ω

)2
3

= ω
m1
3 = ω(

m1n1/3
3

) = ω(
(m−2)n/3

3
).

Applying [11, Thm. 5.5] with the quadratic forms (8.16),(8.17) and using (8.19), we obtain
the first line in (8.15).

Next assume m ≡ 11, 20 (mod 27). Then 9 ‖ m− 2. By (8.10) and (8.12), 3 ‖ m1. Hence
3 ‖ n and 3 - m4. We have

( m4

m1 − 2n1 + 2m1ω

)
3

=
(m1 − 2n1 + 2m1ω

m4

)
3

=
(m1 − 2n1 + 2m1ω

m0

)
3

=
(−2n1

m0

)
3

= 1.
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Hence, (−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
( 3

−m1 + 2n1 − 2m1ω

)
3

= ω
2m1
3 = ω(

2m1n1/3
3

) = ω(
2(m−2)n/27

3
).

Applying [11, Thm. 5.5] with the quadratic forms (8.16),(8.17) and using (8.19), we obtain
the second line in (8.15).

Finally assume that m ≡ 0, 1 (mod 3). As in Case 1, we have 9 - m, 3 - m− 2 and 3 - n.
Hence 3 - m1n1 and so 4(2−m) ≡ m4 = m2

1− dn2
1 ≡ 1− d (mod 3). This implies d ≡ m− 1

(mod 3).
First assume m1 ≡ n1 (mod 3). Then(−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
(m1 − 2n1 + 2m1ω

3d+ 4

)
3

=
( −ω2

3d+ 4

)
3

(2m1 + (m1 + 2n1)ω

3d+ 4

)
3

=
( ω

−4− 3d

)2
3

(2m1 + (m1 + 2n1)ω

n1

)
3

(2m1 + (m1 + 2n1)ω

(3d+ 4)n2
1

)
3

= ω
2(1−4−3d)

3

(2 + ω

n1

)
3

( (3d+ 4)n2
1

2m1 + (m1 + 2n1)ω

)
3

= ωd+1
(−ω2(1− ω)

n1

)
3

( 3m2
1 + 4n2

1 + 3m4

2m1 + (m1 + 2n1)ω

)
3

= ωm
(ω2(1− ω)

−n1

)
3

( 3m4

2m1 + (m1 + 2n1)ω

)
3

= ωm · ω
4(1−n1)

3

( 3

2m1 + (m1 + 2n1)ω

)
3

(2m1 + (m1 + 2n1)ω

m4

)
3

= ωm · ω
4(1−n1)

3 · ω
2(m1+2n1)

3

( ω

m4

)
3

because m0 | m1 and m4 equals m0 times a power of 2. Therefore(−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

= ωm+
4−4n1+2m1+4n1+1−(m−2

3 )m4
3 = ω

(m+1)(m−2
3 )−1

3 ,

where the last equality follows (after a tedious calculation) using the congruence m − 2 ≡
(m− 2, n) (mod 3).

If on the other hand m1 ≡ −n1 (mod 3), then by (8.4),(−12n1 + 6m1(1 + 2ω)

3d+ 4

)
3

=
(−12(−n1) + 6m1(1 + 2ω)

3d+ 1

)−1
3

= ω−
(m+1)(m−2

3 )−1

3 .

Since m1 ≡ ( (m−2)n
3

)n1 (mod 3), we have in either case(−12n1 + 6m1(1 + 2ω)

3d+ 1

)
3

= ω(
(m−2)n

3
)
(m+1)(m−2

3 )−1

3 = ω(n
3
)
m+1−(m−2

3 )

3 .
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The rightmost member equals ω(
mn/3

3
) or ω(

(m+2)n/3
3

) according as m is congruent to 0 or 1
mod 3. Applying [11, Theorem 5.5] with the quadratic forms (8.16),(8.17) and using (8.19),
we obtain the last two lines of (8.15). �

For real b, c, let {Uk(b, c)} be the Lucas sequence defined by

U0 = 0, U1 = 1, Uk+1 = bUk − cUk−1 (k = 1, 2, 3, . . .).

It is well known that for b2 − 4c 6= 0 and k ≥ 0,

Uk(b, c) =
1√

b2 − 4c

((b+
√
b2 − 4c

2

)k
−
(b−√b2 − 4c

2

)k)
.

For squarefree d > 1, nonzero integers m, n, and ε = ±1, write m2 − dn2 = 4ε. Then

Uk(m, ε) =
1

n
√
d

((m+ n
√
d

2

)k
−
(m− n√d

2

)k)
.

The two corollaries below evaluate the Lucas numbers U p−1
3

(m, ε) (mod p) for primes

p = x2 + 3dy2 with p - n. When 3 | y, it follows from Theorem 6.2 that m+n
√
d

2
is a cubic

residue mod p, so that U p−1
3

(m, ε) ≡ 0 (mod p). Thus we assume that 3 - y. Fix the signs

of x, y so that x ≡ y (mod 3). From Theorems 6.1, 8.1 and 8.2, we deduce:

Corollary 8.3. Suppose that m2 − dn2 = −4. Then

U p−1
3

(m,−1) ≡


0 (mod p) if m ≡ 0,±4 (mod 9),(mn/3

3

)
x
dny

(mod p) if m ≡ ±3 (mod 9),

−
(
mn
3

)
x
dny

(mod p) if m ≡ ±1 (mod 9),(
mn
3

)
x
dny

(mod p) if m ≡ ±2 (mod 9).

Corollary 8.4. Suppose that m2−dn2 = 4 with a sign of m chosen such that ord3(m−2) ≥
ord3n. Then

U p−1
3

(m, 1) ≡



0 (mod p) if m ≡ 2 (mod 27),(
(m−2)n/3

3

)
x
dny

(mod p) if m ≡ 5, 8 (mod 9),

−
( (m−2)n/27

3

)
x
dny

(mod p) if m ≡ 11, 20 (mod 27),(mn/3
3

)
x
dny

(mod p) if m ≡ 0 (mod 3),( (m+2)n/3
3

)
x
dny

(mod p) if m ≡ 1 (mod 3).

Example. Take m = 2t, so that {Uk(m, 1)} is a sequence of Chebyshev polynomials of the
second kind in the argument t. First suppose that t is an integer multiple of 3. Choose s ≡ 1
(mod 3) such that (t2 − 1)/s2 is squarefree. Then by Corollary 8.4 with n = 2s and d =

(t2 − 1)/s2, we have U p−1
3

(m, 1) ≡
( t/3

3

)
xs

2y(t2−1) (mod p). For example, with t = 21, s = −2,

d = 110, x = y = 1, and p = 331, we have U110(m, 1) ≡ 249 (mod 331). Next suppose that
t ≡ 2 (mod 3). Note that 9 - (t2−1), otherwise 3 | n, contradicting ord3(m−2) = 0. With s,

d, and n as above, it follows from Corollary 8.4 that U p−1
3

(m, 1) ≡
(
(t+1)/3

3

)
xs

2y(t2−1) (mod p).
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