J. Nanjing Univ. Math. Biquarterly 9(1992), no.1, 92-101

List of the results in the paper
 NOTES ON QUARTIC RESIDUE SYMBOLS
 AND RATIONAL RECIPROCITY LAWS

Zhi-Hong Sun

Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China
E-mail: hyzhsun@public.hy.js.cn

Notations.

\mathbb{Z}-the set of integers, $\left(\frac{a}{m}\right)$ - the Jacobi symbol, $\left(\frac{a+b i}{c+d i}\right)_{4}$ - the quartic Jacobi symbol, (m, n) - the greatest common divisor of m and $n, \mathbb{Z}[i]$ - the set $\{a+b i \mid$ $a, b \in \mathbb{Z}\}, \bar{\pi}$ - the complex conjugate of π.

For $a, b \in \mathbb{Z}$ the Lucas sequence $\left\{u_{n}(a, b)\right\}$ is defined by

$$
u_{0}(a, b)=0, u_{1}(a, b)=1 \text { and } u_{n+1}(a, b)=b u_{n}(a, b)-a u_{n-1}(a, b)(n \geq 1)
$$

For odd prime p and quadratic residue $t(\bmod p)$ let \sqrt{t} denote one of the solutions of the congruence $x^{2} \equiv t(\bmod p)$.

Proposition 1. Let m be a positive odd number, $a, b \in \mathbb{Z}$ and $\left(a^{2}+b^{2}, m\right)=1$. Then

$$
\left(\frac{a+b i}{m}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{m}\right) .
$$

Theorem 1. Let p be an odd prime and $b, c \in \mathbb{Z}$.
(1) If $\left(\frac{b^{2}-c^{2}}{p}\right)=1$ and $p \nmid c(b+c)$, then

$$
\left(\frac{b+c}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{b+\sqrt{b^{2}-c^{2}}}{p}\right) .
$$

(2) If $p \equiv 3(\bmod 4), p \nmid c$ and $\left(\frac{b^{2}+c^{2}}{p}\right)=1$, then

$$
\left(\frac{b+c i}{p}\right)_{4}=\left(\frac{2 \sqrt{b^{2}+c^{2}}}{p}\right)\left(\frac{b+\sqrt{b^{2}+c^{2}}}{p}\right)
$$

(3) If $p \equiv 3(\bmod 4)$ and $\left(\frac{b^{2}+c^{2}}{p}\right)=-1$, then

$$
\left(\frac{b+c i}{p}\right)_{4}=-\left(\frac{2 c \sqrt{-b^{2}-c^{2}}}{p}\right)\left(\frac{b+\sqrt{-b^{2}-c^{2}} i}{p}\right)_{4}=i\left(\frac{2 c}{p}\right)\left(\frac{u_{\frac{p+1}{2}}\left(-c^{2} / 4 . b\right)}{p}\right) .
$$

Theorem 2. Let p and q be primes such that $p \equiv 3(\bmod 4), q \equiv 1(\bmod 4)$ and $\left(\frac{p}{q}\right)=1$, and let $q=b^{2}+c^{2}$ with $b, c \in \mathbb{Z}$ and $2 \mid c$.
(i) If $p \mid c$, then $x^{4} \equiv p(\bmod q)$ is solvable if and only if $q \equiv 1(\bmod 8)$.
(ii) If $p \mid b$, then $x^{4} \equiv p(\bmod q)$ is solvable if and only if $q \equiv p+2(\bmod 8)$.
(iii) If $p \nmid b c$, then $x^{4} \equiv p(\bmod q)$ is solvable if and only if $\left(\frac{b+\sqrt{q}}{p}\right)=(-1)^{\frac{q-1}{4}}$, where \sqrt{q} satisfies the condition $\left(\frac{\sqrt{q}}{p}\right)=(-1)^{\frac{p+1}{4}}$.

If p is a prime of the form $4 k+3, a, b \in \mathbb{Z}$ and $\left(\frac{a^{2}+b^{2}}{p}\right)=1$, then

$$
\left\{(a+b i)^{\frac{p^{2}-1}{8}}\right\}^{4}=(a+b i)^{\frac{p^{2}-1}{2}} \equiv\left(\frac{a+b i}{p}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{p}\right)=1(\bmod p)
$$

Thus there is a unique $r \in\{0,1,2,3\}$ such that $(a+b i)^{\frac{p^{2}-1}{8}} \equiv i^{r}(\bmod p)$. From this we define the octic residue symbol $\left(\frac{a+b i}{p}\right)_{8}=i^{r}$.
Lemma 1. Let p be a prime of the form $4 k+3, a, b \in \mathbb{Z}, 2 \nmid a, 2 \mid b,\left(\frac{a^{2}+b^{2}}{p}\right)=1$ and $\left(\frac{\sqrt{a^{2}+b^{2}}}{p}\right)=\left(\frac{a+b i}{p}\right)_{4}$. Then

$$
\left(\frac{a+b i}{p}\right)_{8}=\left(\frac{\sqrt{(x+a) / 2}+\sqrt{(x-a) / 2} i}{p}\right)_{4}
$$

where

$$
x=\sqrt{a^{2}+b^{2}}, \quad\left(\frac{\sqrt{(x+a) / 2}}{p}\right)=1 \quad \text { and } \quad\left(\frac{\sqrt{(x-a) / 2}}{p}\right)=\left(\frac{2 b}{p}\right) .
$$

Theorem 3. Let p be a prime of the form $4 k+3, a, b \in \mathbb{Z}, p \nmid a b,\left(\frac{a+b i}{p}\right)_{4}=1$. Then

$$
\left(\frac{a+b i}{p}\right)_{8}=\left(\frac{2 b}{p}\right)\left(\frac{b+\sqrt{\left(a-\sqrt{a^{2}+b^{2}}\right)^{2}+b^{2}}}{p}\right)
$$

where

$$
\left(\frac{\sqrt{a^{2}+b^{2}}}{p}\right)=1 \quad \text { and } \quad\left(\frac{\sqrt{\left(a-\sqrt{a^{2}+b^{2}}\right)^{2}+b^{2}}}{p}\right)=\left(\frac{b}{p}\right)
$$

Proposition 2. Let $a, b, c, d \in \mathbb{Z}, 2 \nmid c, 2 \mid d,(c, d)=1$ and $\left(a^{2}+b^{2}, c^{2}+d^{2}\right)=1$. Then

$$
\left(\frac{a+b i}{c+d i}\right)_{4}^{2}=(-1)^{\frac{c^{2}+d^{2}-1}{4}}\left(\frac{a d-b c}{c^{2}+d^{2}}\right) .
$$

§3. The simple proofs of Burde's reciprocity law and Scholz's reciprocity

 law.Let p and q be distinct primes of the form $4 k+1$, and let $\varepsilon_{p}=\left(t_{p}+u_{p} \sqrt{p}\right) / 2$ and $\varepsilon_{q}=\left(t_{q}+u_{q} \sqrt{q}\right) / 2$ be the fundamental units of quadratic fields $\mathbb{Q}(\sqrt{p})$ and $\mathbb{Q}(\sqrt{q})$ respectively. Then clearly $t_{p}^{2}-p u_{p}^{2}=-4$ and $t_{q}^{2}-q u_{q}^{2}=-4$.

Scholz's reciprocity law asserts that if $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)=1$, then

$$
\left(\frac{\varepsilon_{p}}{q}\right)=\left(\frac{\varepsilon_{q}}{p}\right) .
$$

Now we deduce Scholz's reciprocity law from quadratic reciprocity law. Suppose $t_{p}+t_{q}=2^{\alpha} m$ with $2 \nmid m$. Then

$$
\begin{aligned}
\left(\frac{m}{q}\right)= & \left(\frac{q}{|m|}\right)=\left(\frac{q u_{q}^{2}}{|m|}\right)=\left(\frac{p u_{p}^{2}+t_{q}^{2}-t_{p}^{2}}{|m|}\right) \\
& =\left(\frac{p u_{p}^{2}}{|m|}\right)=\left(\frac{p}{|m|}\right)=\left(\frac{m}{p}\right) .
\end{aligned}
$$

Thus, if $p \equiv q(\bmod 8)$, then $\left(\frac{2}{p}\right)=\left(\frac{2}{q}\right)$ and so

$$
\left(\frac{t_{p}+t_{q}}{p}\right)=\left(\frac{2^{\alpha}}{p}\right)\left(\frac{m}{p}\right)=\left(\frac{2^{\alpha}}{q}\right)\left(\frac{m}{q}\right)=\left(\frac{t_{p}+t_{q}}{q}\right) .
$$

If $p \equiv 1(\bmod 8)$ and $q \equiv 5(\bmod 8)$, then clearly $8 \mid t_{p}, t_{q} \equiv 1(\bmod 2)$ or $t_{q} \equiv$ $4(\bmod 8)$. Hence $\alpha=0$ or 2 and so

$$
\left(\frac{t_{p}+t_{q}}{p}\right)=\left(\frac{m}{p}\right)=\left(\frac{m}{q}\right)=\left(\frac{2^{\alpha}}{q}\right)\left(\frac{m}{q}\right)=\left(\frac{t_{p}+t_{q}}{q}\right) .
$$

By symmetry, if $p \equiv 5(\bmod 8)$ and $q \equiv 1(\bmod 8)$, we also have $\left(\frac{t_{p}+t_{q}}{p}\right)=\left(\frac{t_{p}+t_{q}}{q}\right)$.
Now, by Theorem 1(1) we have

$$
\begin{aligned}
\left(\frac{\varepsilon_{p}}{q}\right)= & \left(\frac{\left(t_{p}+u_{p} \sqrt{p}\right) / 2}{q}\right)=\left(\frac{2}{q}\right)\left(\frac{t_{p}+\sqrt{p u_{p}^{2}}}{q}\right)=\left(\frac{2}{q}\right)\left(\frac{t_{p}+\sqrt{t_{p}^{2}+4}}{q}\right) \\
& =\left(\frac{t_{p}+\sqrt{-4}}{q}\right)=\left(\frac{t_{p}+t_{q}}{q}\right)
\end{aligned}
$$

By symmetry we also have

$$
\left(\frac{\varepsilon_{q}}{p}\right)=\left(\frac{t_{p}+t_{q}}{p}\right)
$$

Hence by the previous claim we get

$$
\left(\frac{\varepsilon_{p}}{q}\right)=\left(\frac{t_{p}+t_{q}}{q}\right)=\left(\frac{t_{p}+t_{q}}{p}\right)=\left(\frac{\varepsilon_{q}}{p}\right)
$$

This proves Scholz's reciprocity law.
Let p and q be distinct primes of the form $4 k+1, p=\pi \bar{\pi}$ and $q=\lambda \bar{\lambda}$, where π and λ are primary primes in $\mathbb{Z}[i]$. Burde's reciprocity law states that if $p=a^{2}+b^{2}, q=$ $c^{2}+d^{2}, 2 \nmid a c$ and $\left(\frac{p}{q}\right)=1$, then

$$
\left(\frac{q}{\pi}\right)_{4}\left(\frac{p}{\lambda}\right)_{4}=(-1)^{\frac{q-1}{4}}\left(\frac{a d-b c}{q}\right)
$$

Now we use quartic reciprocity law to prove Burde's reciprocity law. Write $\pi=$ $a+b i$ and $\lambda=c+d i$. By Propositions 1, 2 and quartic reciprocity law we have

$$
\left(\frac{\lambda}{\pi}\right)_{4}^{2}\left(\frac{\lambda}{\bar{\pi}}\right)_{4}^{2}=\left(\frac{\lambda}{p}\right)_{4}^{2}=\left(\frac{q}{p}\right)=1
$$

and

$$
\begin{aligned}
\left(\frac{\bar{\lambda}}{\pi}\right)_{4}\left(\frac{\bar{\pi}}{\lambda}\right)_{4} & =\overline{\left(\frac{\lambda}{\bar{\pi}}\right)_{4}}\left(\frac{\bar{\pi}}{\lambda}\right)_{4}=\overline{\left(\frac{\lambda}{\bar{\pi}}\right)_{4}}\left(\frac{\lambda}{\bar{\pi}}\right)_{4} \cdot\left(\frac{\lambda}{\bar{\pi}}\right)_{4}\left(\frac{\bar{\pi}}{\lambda}\right)_{4} \cdot\left(\frac{\lambda}{\bar{\pi}}\right)_{4}^{-2} \\
& =\left(\frac{\lambda}{\bar{\pi}}\right)_{4}\left(\frac{\bar{\pi}}{\lambda}\right)_{4} \cdot\left(\frac{\lambda}{\pi}\right)_{4}^{2}=(-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot(-1)^{\frac{q-1}{4}}\left(\frac{a d-b c}{q}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(\frac{q}{\pi}\right)_{4}\left(\frac{p}{\lambda}\right)_{4} & =\left(\frac{\lambda}{\pi}\right)_{4}\left(\frac{\pi}{\lambda}\right)_{4}\left(\frac{\bar{\lambda}}{\pi}\right)_{4}\left(\frac{\bar{\pi}}{\lambda}\right)_{4} \\
& =(-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot(-1)^{\frac{p-1}{4} \cdot \frac{q-1}{4}} \cdot(-1)^{\frac{q-1}{4}}\left(\frac{a d-b c}{q}\right) \\
& =(-1)^{\frac{q-1}{4}}\left(\frac{a d-b c}{q}\right)
\end{aligned}
$$

This proves Burde's reciprocity law.

