The Fibonacci Quarterly 44(2006), no.2, 145-153.
EXPANSIONS AND IDENTITIES CONCERNING LUCAS SEQUENCES

Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College,
Huaian, Jiangsu 223001, P.R. China
E-mail: zhsun@hytc.edu.cn
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

In the paper we obtain some new expansions and combinatorial identities concerning Lucas sequences.

1. Introduction.

For complex numbers P and Q the Lucas sequences $\left\{U_{n}(P, Q)\right\}$ and $\left\{V_{n}(P, Q)\right\}$ are defined by

$$
\begin{equation*}
U_{0}(P, Q)=0, U_{1}(P, Q)=1, U_{n+1}(P, Q)=P U_{n}(P, Q)-Q U_{n-1}(P, Q)(n \geq 1) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{0}(P, Q)=2, V_{1}(P, Q)=P, V_{n+1}(P, Q)=P V_{n}(P, Q)-Q V_{n-1}(P, Q)(n \geq 1) \tag{1.2}
\end{equation*}
$$

Set $D=P^{2}-4 Q$. It is well known that

$$
U_{n}(P, Q)= \begin{cases}\frac{1}{\sqrt{D}}\left\{\left(\frac{P+\sqrt{D}}{2}\right)^{n}-\left(\frac{P-\sqrt{D}}{2}\right)^{n}\right\} & \text { if } D \neq 0 \tag{1.3}\\ n\left(\frac{P}{2}\right)^{n-1} & \text { if } D=0\end{cases}
$$

and

$$
\begin{equation*}
V_{n}(P, Q)=\left(\frac{P+\sqrt{D}}{2}\right)^{n}+\left(\frac{P-\sqrt{D}}{2}\right)^{n} \tag{1.4}
\end{equation*}
$$

In Section 2 we state various expansions for $U_{n}(P, Q)$ and illustrate the connections among them. In Section 3 we investigate the properties of $\left\{S_{n}(x)\right\}$ and $\left\{G_{n}(x)\right\}$, where

$$
S_{n}(x)=\sum_{k=0}^{n} \frac{2 n+1}{2 n+1-k}\binom{2 n+1-k}{k} x^{n-k} \quad \text { and } \quad G_{n}(x)=\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k} x^{k}
$$

For example, we have $S_{n}(x)=G_{n}(x+2)$. Let $U_{n}=U_{n}(P, Q)$ and $V_{n}=V_{n}(P, Q)$. In Section 3 we also establish the following identity:

$$
U_{(2 n+1) k}=U_{k} \sum_{m=0}^{n}(-1)^{\left[\frac{n-m}{2}\right]}\binom{\left[\frac{n+m}{2}\right]}{m} Q^{k(n-m)} V_{2 k}^{m}
$$

where $[x]$ denotes the greatest integer not exceeding x.
In Section 4, using the results in Sections 2 and 3 we establish several combinatorial identities. For example, if m and n are nonnegative integers with $m \leq n$, then

$$
\begin{aligned}
\frac{2 n+1}{2 m+1}\binom{n+m}{2 m} & =\sum_{k=m}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}\binom{k}{m} 2^{k-m}=\sum_{k=m}^{n}(-1)^{n-k}\binom{n+k}{2 k}\binom{k}{m} 4^{k-m} \\
& =\frac{1}{4^{m}} \sum_{k=0}^{m}\binom{2 n+1}{2 k+1}\binom{n-k}{n-m}
\end{aligned}
$$

2. Expansions for $U_{n}(P, Q)$.

Let $U_{n}=U_{n}(P, Q)$ and $V_{n}=V_{n}(P, Q)$ be the Lucas sequences given by (1.1) and (1.2). From (1.3) and (1.4) one can easily check the following known facts (cf.[1,4,5,8]):

$$
\begin{align*}
& V_{n}=P U_{n}-2 Q U_{n-1}=2 U_{n+1}-P U_{n}=U_{n+1}-Q U_{n-1} \tag{2.1}\\
& U_{2 n}=U_{n} V_{n}, V_{2 n}=V_{n}^{2}-2 Q^{n} \tag{2.2}\\
& V_{n}^{2}-\left(P^{2}-4 Q\right) U_{n}^{2}=4 Q^{n} \tag{2.3}\\
& U_{n+k}=V_{k} U_{n}-Q^{k} U_{n-k}(n \geq k) \tag{2.4}
\end{align*}
$$

By (2.4), if $U_{k} \neq 0$, then $U_{k(n+1)} / U_{k}=V_{k} U_{k n} / U_{k}-Q^{k} U_{k(n-1)} / U_{k}$. Thus

$$
\begin{equation*}
U_{k n} / U_{k}=U_{n}\left(V_{k}, Q^{k}\right) \tag{2.5}
\end{equation*}
$$

Since $U_{2}=P$ and $V_{2}=P^{2}-2 Q$, by (2.5) we have

$$
\begin{equation*}
U_{2 n}(P, Q)=P U_{n}\left(P^{2}-2 Q, Q^{2}\right) \tag{2.6}
\end{equation*}
$$

Next we look at certain expansions for $U_{n}(P, Q)$. By induction one can prove the following well known result (cf. [5, (2.5)], [2, (1.60), (1.61), (1.64)], [7, Lemma 1.4] and [8, (4.2.36)])

$$
\begin{equation*}
U_{n+1}(P, Q)=\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k}(-Q)^{k} P^{n-2 k} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}(P, Q)=\sum_{k=0}^{[n / 2]} \frac{n}{n-k}\binom{n-k}{k} P^{n-2 k}(-Q)^{k} \tag{2.8}
\end{equation*}
$$

Combining (2.6) and (2.7) we get

$$
\begin{equation*}
U_{2 n+2}(P, Q)=P \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k}\left(-Q^{2}\right)^{k}\left(P^{2}-2 Q\right)^{n-2 k} \tag{2.9}
\end{equation*}
$$

From (1.3) and the binomial theorem one can easily deduce another expansion:

$$
\begin{equation*}
U_{n+1}(P, Q)=\frac{1}{2^{n}} \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} P^{n-2 k}\left(P^{2}-4 Q\right)^{k} \tag{2.10}
\end{equation*}
$$

This together with (2.6) gives

$$
\begin{equation*}
U_{2 n+2}(P, Q)=\frac{P}{2^{n}} \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1}\left(P^{2}\left(P^{2}-4 Q\right)\right)^{k}\left(P^{2}-2 Q\right)^{n-2 k} \tag{2.11}
\end{equation*}
$$

Using (1.3) and (1.4) one can easily prove the following transformation formulas:

$$
\begin{align*}
& U_{2 n}(P, Q)=\frac{P}{\sqrt{P^{2}-4 Q}} U_{2 n}\left(\sqrt{P^{2}-4 Q},-Q\right) \tag{2.12}\\
& V_{2 n}(P, Q)=V_{2 n}\left(\sqrt{P^{2}-4 Q},-Q\right) \tag{2.13}\\
& U_{2 n+1}(P, Q)=\frac{1}{\sqrt{P^{2}-4 Q}} V_{2 n+1}\left(\sqrt{P^{2}-4 Q},-Q\right) \tag{2.14}\\
& V_{2 n+1}(P, Q)=P U_{2 n+1}\left(\sqrt{P^{2}-4 Q},-Q\right) \tag{2.15}
\end{align*}
$$

Here (2.12)-(2.15) are due to my twin brother Zhi-Wei Sun (he never published these formulas). From (2.12) and (2.7) we see that

$$
\begin{equation*}
U_{2 n+2}(P, Q)=P \sum_{k=0}^{n}\binom{2 n+1-k}{k} Q^{k}\left(P^{2}-4 Q\right)^{n-k} \tag{2.16}
\end{equation*}
$$

Combining (2.14) with (2.8) yields

$$
\begin{equation*}
U_{2 n+1}(P, Q)=\sum_{k=0}^{n} \frac{2 n+1}{2 n+1-k}\binom{2 n+1-k}{k} Q^{k}\left(P^{2}-4 Q\right)^{n-k} \tag{2.17}
\end{equation*}
$$

Thus, if $U_{m}=U_{m}(P, Q)$ and $U_{k} \neq 0$, applying (2.5), (2.3) and (2.17) we have

$$
\begin{equation*}
\frac{U_{(2 n+1) k}}{U_{k}}=\sum_{m=0}^{n} \frac{2 n+1}{2 n+1-m}\binom{2 n+1-m}{m} Q^{k m}\left(\left(P^{2}-4 Q\right) U_{k}^{2}\right)^{n-m} \tag{2.18}
\end{equation*}
$$

3. The polynomials $S_{n}(x)$ and $G_{n}(x)$.

For any positive integer n and $k \in\{0,1, \ldots,[n / 2]\}$ define

$$
C_{n, k}=\frac{n}{n-k}\binom{n-k}{k}
$$

It is clear that

$$
\begin{aligned}
C_{n, k} & =\binom{n-k}{k}+\binom{n-1-k}{k-1}=\frac{n}{k}\binom{n-1-k}{k-1} \\
& =\frac{n}{n-2 k}\binom{n-1-k}{k}=\frac{n \cdot(n-1-k)!}{k!(n-2 k)!}
\end{aligned}
$$

By (2.8) we have

$$
V_{n}(x, a)=\sum_{k=0}^{[n / 2]} C_{n, k}(-a)^{k} x^{n-2 k}
$$

$C_{n, k}$ also concerns with the first Chebyshev polynomial $T_{n}(x)$ (in fact, $V_{n}(x, 1)=$ $2 T_{n}(x / 2)$) and Dickson polynomial $D_{n}(x, a)$ (in fact, $D_{n}(x, a)=V_{n}(x, a)$). See also [6].
Definition 3.1. For nonnegative integer n and complex number x define

$$
S_{n}(x)=\sum_{k=0}^{n} \frac{2 n+1}{2 n+1-k}\binom{2 n+1-k}{k} x^{n-k}=\sum_{k=0}^{n} C_{2 n+1, k} x^{n-k}
$$

The first few $S_{n}(x)$ are shown below:

$$
\begin{aligned}
& S_{0}(x)=1, S_{1}(x)=x+3, S_{2}(x)=x^{2}+5 x+5 \\
& S_{3}(x)=x^{3}+7 x^{2}+14 x+7, S_{4}(x)=x^{4}+9 x^{3}+27 x^{2}+30 x+9 \\
& S_{5}(x)=x^{5}+11 x^{4}+44 x^{3}+77 x^{2}+55 x+11
\end{aligned}
$$

Theorem 3.1. $\left\{S_{n}(x)\right\}$ is given by $S_{0}(x)=1, S_{1}(x)=x+3$ and $S_{n+1}(x)=(x+$ 2) $S_{n}(x)-S_{n-1}(x)(n \geq 1)$.

Proof. By (2.17) we have $U_{2 n+1}(\sqrt{x+4}, 1)=S_{n}(x)$. Taking $k=2$ in (2.4) we find

$$
U_{2 n+3}(P, Q)=\left(P^{2}-2 Q\right) U_{2 n+1}(P, Q)-Q^{2} U_{2 n-1}(P, Q)
$$

Thus, for $n \geq 1$,

$$
\begin{aligned}
S_{n+1}(x) & =U_{2 n+3}(\sqrt{x+4}, 1)=(x+2) U_{2 n+1}(\sqrt{x+4}, 1)-U_{2 n-1}(\sqrt{x+4}, 1) \\
& =(x+2) S_{n}(x)-S_{n-1}(x)
\end{aligned}
$$

This together with the fact that $S_{0}(x)=1$ and $S_{1}(x)=x+3$ proves the theorem.
In [7] the author introduced

$$
G_{n}(x)=\prod_{r=1}^{n}\left(x+2 \cos \frac{2 r-1}{2 n+1} \pi\right)
$$

and showed that

$$
\begin{equation*}
G_{0}(x)=1, \quad G_{1}(x)=x+1, \quad G_{n+1}(x)=x G_{n}(x)-G_{n-1}(x)(n \geq 1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}(x)=\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k} x^{k}=U_{n}(x, 1)+U_{n+1}(x, 1) . \tag{3.2}
\end{equation*}
$$

Theorem 3.2. For nonnegative integer n and nonzero complex number x we have

$$
\begin{aligned}
S_{n}(x) & =G_{n}(x+2)=\frac{1}{\sqrt{x}} V_{2 n+1}(\sqrt{x},-1)=U_{2 n+1}(\sqrt{x+4}, 1) \\
& =U_{n}(x+2,1)+U_{n+1}(x+2,1)
\end{aligned}
$$

Proof. The result follows from (2.8), (2.17), (3.1), (3.2) and Theorem 3.1.
Theorem 3.3. For complex numbers $P, Q(Q \neq 0)$ and nonnegative integer n we have

$$
U_{2 n+1}(P, Q)=Q^{n} G_{n}\left(\frac{P^{2}-2 Q}{Q}\right)=\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k} Q^{n-k}\left(P^{2}-2 Q\right)^{k}
$$

Proof. From (2.17) and Theorem 3.2 we see that

$$
U_{2 n+1}(P, Q)=Q^{n} S_{n}\left(\frac{P^{2}-4 Q}{Q}\right)=Q^{n} G_{n}\left(\frac{P^{2}-4 Q}{Q}+2\right)=Q^{n} G_{n}\left(\frac{P^{2}-2 Q}{Q}\right) .
$$

Thus applying (3.2) we obtain the result.
Let \mathbb{Z} be the set of integers. From Theorem 3.3 we have
Theorem 3.4. If $n, k \in \mathbb{Z}, n \geq 0, k \geq 1, U_{m}=U_{m}(P, Q), V_{m}=V_{m}(P, Q)$ and $Q U_{k} \neq 0$, then

$$
\frac{U_{(2 n+1) k}}{U_{k}}=\sum_{m=0}^{n}(-1)^{\left[\frac{n-m}{2}\right]}\binom{\left[\frac{n+m}{2}\right]}{m} Q^{k(n-m)} V_{2 k}^{m}
$$

Proof. From (2.5) we know that $U_{(2 n+1) k} / U_{k}=U_{2 n+1}\left(P^{\prime}, Q^{\prime}\right)$, where $P^{\prime}=V_{k}$ and $Q^{\prime}=Q^{k}$. Since $P^{\prime 2}-2 Q^{\prime}=V_{2 k}$ by (2.2), applying Theorem 3.3 we obtain the result.

4. Some related combinatorical identities.

Putting $P=1$ and $Q=-x$ in (2.7), (2.9), (2.10), (2.11), (2.16) and then comparing the expansions for $U_{2 n+2}(1,-x)$ we obtain the following result.
Theorem 4.1. Let n be a nonnegative integer, and let x be a complex number. Then

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{2 n+1-k}{k} x^{k} & =\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n-k}{k}(-1)^{k} x^{2 k}(1+2 x)^{n-2 k} \\
& =\frac{1}{2^{2 n+1}} \sum_{k=0}^{n}\binom{2 n+2}{2 k+1}(1+4 x)^{k} \\
& =\frac{1}{2^{n}} \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1}(1+4 x)^{k}(1+2 x)^{n-2 k} \\
& =\sum_{k=0}^{n}\binom{2 n+1-k}{k}(-x)^{k}(1+4 x)^{n-k}
\end{aligned}
$$

By comparing the coefficients of x^{m} in Theorem 4.1 we have

Theorem 4.2. Let n and m be two integers with $0 \leq m \leq n$. Then

$$
\begin{aligned}
\binom{2 n+1-m}{m} & =\sum_{k=0}^{\left[\frac{m}{2}\right]}\binom{n-k}{k}(-1)^{k}\binom{n-2 k}{n-m} 2^{m-2 k} \\
& =2^{2 m-2 n-1} \sum_{k=m}^{n}\binom{2 n+2}{2 k+1}\binom{k}{m} \\
& =\sum_{k=0}^{m}\binom{2 n+1-k}{k}(-1)^{k}\binom{n-k}{n-m} 4^{m-k}
\end{aligned}
$$

Theorem 4.3. For any nonnegative integer n and complex number x,

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{2 n+1}{2 k+1}\binom{n+k}{2 k} x^{k} & =\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}(x+2)^{k} \\
& =\sum_{k=0}^{n}\binom{2 n-k}{k}(-1)^{k}(x+4)^{n-k} \\
& =\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} x^{k}(x+4)^{n-k} .
\end{aligned}
$$

Proof. Clearly

$$
\sum_{k=0}^{n} \frac{2 n+1}{2 k+1}\binom{n+k}{2 k} x^{k}=\sum_{k=0}^{n} \frac{2 n+1}{2 n+1-2 k}\binom{2 n-k}{k} x^{n-k}=S_{n}(x)
$$

Since $S_{n}(x)=G_{n}(x+2)$, by (3.2) we have

$$
S_{n}(x)=\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}(x+2)^{k}
$$

On the other hand, by Theorem 3.2, $S_{n}(x)=U_{2 n+1}(\sqrt{x+4}, 1)$. Applying (2.7) and (2.10) we get

$$
S_{n}(x)=\sum_{k=0}^{n}\binom{2 n-k}{k}(-1)^{k}(x+4)^{n-k}=\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} x^{k}(x+4)^{n-k}
$$

Combining the above proves the theorem.
Theorem 4.4. If m and n are two nonnegative integers with $m \leq n$, then

$$
\begin{aligned}
\frac{2 n+1}{2 m+1}\binom{n+m}{2 m} & =\binom{n+m}{2 m+1}+\binom{n+m+1}{2 m+1}=\sum_{k=m}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left.\frac{n+k}{2}\right]}{k}\binom{k}{m} 2^{k-m} \\
& =\sum_{k=m}^{n}(-1)^{n-k}\binom{n+k}{2 k}\binom{k}{m} 4^{k-m}=\frac{1}{4^{m}} \sum_{k=0}^{m}\binom{2 n+1}{2 k+1}\binom{n-k}{n-m}
\end{aligned}
$$

Proof. It's easy to verify that

$$
\frac{2 n+1}{2 m+1}\binom{n+m}{2 m}=\binom{n+m}{2 m+1}+\binom{n+m+1}{2 m+1} .
$$

Since

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}(x+2)^{k}=\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k} \sum_{m=0}^{k}\binom{k}{m} 2^{k-m} x^{m} \\
& =\sum_{m=0}^{n} \sum_{k=m}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}\binom{k}{m} 2^{k-m} x^{m}, \\
& \sum_{k=0}^{n}\binom{2 n-k}{k}(-1)^{k}(x+4)^{n-k}=\sum_{k=0}^{n}\binom{2 n-k}{k}(-1)^{k} \sum_{m=0}^{n-k}\binom{n-k}{m} 4^{n-k-m} x^{m} \\
& =\sum_{m=0}^{n} \sum_{k=0}^{n-m}\binom{2 n-k}{k}\binom{n-k}{m}(-1)^{k} 4^{n-k-m} x^{m} \\
& =\sum_{m=0}^{n} \sum_{k=m}^{n}\binom{n+k}{2 k}\binom{k}{m}(-1)^{n-k} 4^{k-m} x^{m}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} x^{k}(x+4)^{n-k} & =\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} \sum_{m=0}^{n-k}\binom{n-k}{m} 4^{m} x^{n-m} \\
& =\frac{1}{2^{2 n}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} \sum_{m=k}^{n}\binom{n-k}{n-m} 4^{n-m} x^{m} \\
& =\sum_{m=0}^{n} \frac{1}{4^{m}} \sum_{k=0}^{m}\binom{2 n+1}{2 k+1}\binom{n-k}{n-m} x^{m}
\end{aligned}
$$

by comparing the coefficients of x^{m} in Theorem 4.3 we obtain the result.
Theorem 4.5. For any nonnegative integer n,

$$
\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k}= \begin{cases}(-1)^{n} & \text { if } n \not \equiv 1(\bmod 3) \\ 2(-1)^{n+1} & \text { if } n \equiv 1(\bmod 3)\end{cases}
$$

and

$$
\sum_{k=0}^{n}(-1)^{\left[\frac{n-k}{2}\right]}\binom{\left[\frac{n+k}{2}\right]}{k} 3^{k}=L_{2 n+1}
$$

where $L_{m}=V_{m}(1,-1)$ is the Lucas sequence.
Proof. From Theorem 3.2 we see that $G_{n}(3)=L_{2 n+1}$ and

$$
\begin{aligned}
G_{n}(1) & =U_{2 n+1}(\sqrt{3}, 1)=\frac{1}{\sqrt{-1}}\left\{\left(\frac{\sqrt{3}+\sqrt{-1}}{2}\right)^{2 n+1}-\left(\frac{\sqrt{3}-\sqrt{-1}}{2}\right)^{2 n+1}\right\} \\
& =\frac{1}{(\sqrt{-1})^{2 n+2}}\left\{\left(\frac{-1+\sqrt{-3}}{2}\right)^{2 n+1}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{2 n+1}\right\} \\
& =(-1)^{n+1}\left(\omega^{2 n+1}+\omega^{2(2 n+1)}\right)= \begin{cases}(-1)^{n} & \text { if } n \not \equiv 1(\bmod 3), \\
2(-1)^{n+1} & \text { if } n \equiv 1(\bmod 3),\end{cases}
\end{aligned}
$$

where $\omega=(-1+\sqrt{-3}) / 2$. Thus applying (3.2) yields the result.
Remark 4.1 By (2.8) and (1.4),

$$
\begin{aligned}
\sum_{k=0}^{[n / 2]}(-1)^{n-k} \frac{n}{n-k}\binom{n-k}{k} & =V_{n}(-1,1)=\left(\frac{-1+\sqrt{-3}}{2}\right)^{n}+\left(\frac{-1-\sqrt{-3}}{2}\right)^{n} \\
& =\omega^{n}+\omega^{2 n}= \begin{cases}2 & \text { if } 3 \mid n, \\
-1 & \text { if } 3 \nmid n\end{cases}
\end{aligned}
$$

See [3, Exercise 44, p.445] and [2, (1.68)].

ACKNOWLEDGEMENT

The author wishes to thank the referee for reading the manuscript thoroughly which resulted in numerous corrections and improvements.

References

1. L.E. Dickson, History of the Theory of Numbers, Vol.I, Chelsea, New York, 1952, pp. 393-407.
2. H.W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Morgantown, W. Va., 1972.
3. G.H. Hardy, A Course of Pure Mathematics, Tenth Edition, Cambridge, UK, 1952.
4. P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, Berlin, 1989, pp. 44-50.
5. P. Ribenboim, My numbers, my friends, Springer-Verlag New York, Inc., New York, Berlin, London, 2000, pp. 1-41.
6. Neil J.A. Sloane, Online Encyclopedia of Integer Sequences, No. A082985 and A084533, http://www.research.att.com/njas/sequences.
7. Z.H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory I, J. Nanjing Univ. Math. Biquarterly 9 (1992), 227-240, MR94a:11026.
8. H.C. Williams, Édouard Lucas and Primality Testing, Canadian Mathematical Society Series of Monographs and Advanced Texts (Vol.22), Wiley, New York, 1998, pp. 74-92.
AMS Classification Numbers: 11B39, 05A19.
