Binary quadratic forms and sums of triangular numbers

by
Zhi-Hong Sun (Huaian)

1. Introduction. Let \mathbb{Z} and \mathbb{N} be the set of integers and the set of positive integers, respectively. For $a, b, n \in \mathbb{N}$ let

$$
t_{n}(a, b)=|\{\langle x, y\rangle: n=a x(x-1) / 2+b y(y-1) / 2, x, y \in \mathbb{N}\}| .
$$

For convenience we also define $t_{0}(a, b)=1$ and $t_{-n}(a, b)=0$ for $n \in \mathbb{N}$. Let

$$
\psi(q)=\sum_{k=1}^{\infty} q^{k(k-1) / 2} \quad(|q|<1)
$$

Then clearly

$$
\begin{equation*}
\psi\left(q^{a}\right) \psi\left(q^{b}\right)=1+\sum_{n=1}^{\infty} t_{n}(a, b) q^{n} \quad(|q|<1) . \tag{1.1}
\end{equation*}
$$

Ramanujan conjectured and Berndt proved (1, pp. 302-303]) that

$$
\begin{equation*}
q \psi(q) \psi\left(q^{7}\right)=\sum_{n=1}^{\infty}\left(\frac{-28}{n}\right) \frac{q^{n}}{1-q^{n}} \quad(|q|<1), \tag{1.2}
\end{equation*}
$$

where $\left(\frac{k}{m}\right)$ is the Legendre-Jacobi-Kronecker symbol. According to Berndt (11), (1.2) is of extreme interest, and it would appear to be very difficult to prove it without the addition theorem for elliptic integrals. By (1.1), the equality (1.2) is equivalent to

$$
\begin{equation*}
t_{n}(1,7)=\sum_{k \mid n+1,2 \nmid k}\left(\frac{k}{7}\right) . \tag{1.3}
\end{equation*}
$$

In [5, 7, 8 , K. S. Williams and the author proved (1.3) and so (1.2) by using the theory of binary quadratic forms.

[^0]Let $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}=\{\langle x, y\rangle: x, y \in \mathbb{Z}\}$. For $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$ with $a, c>0$ and $b^{2}-4 a c<0$ let

$$
\begin{equation*}
R([a, b, c], n)=\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b x y+c y^{2}\right\}\right| \tag{1.4}
\end{equation*}
$$

In 5 the author proved the following result.
Theorem 1.1 ([5], Theorem 2.1 and Remark 2.1]). Let $a, b, n \in \mathbb{N}$. Then

$$
4 t_{n}(a, b)= \begin{cases}R\left(\left[a, a, \frac{a+b}{4}\right], 2 n+\frac{a+b}{4}\right)-R\left([a, 0, b], 2 n+\frac{a+b}{4}\right) \\ R\left(\left[2 a, 2 a, \frac{a+b}{2}\right], 4 n+\frac{a+b}{2}\right) & \text { if } 4 \mid a+b-2, \\ R([4 a, 4 a, a+b], 8 n+a+b) & \text { if } 2 \nmid a+b .\end{cases}
$$

Moreover, if $2 \nmid a b$ and $8 \mid a+b$, then

$$
\begin{aligned}
& R([a, 0, b], 2 n+(a+b) / 4) \\
& \quad= \begin{cases}0 & \text { if } 2 \nmid n+(a+b) / 8 \\
R([a, a,(a+b) / 4],(8 n+a+b) / 16) & \text { if } 2 \mid n+(a+b) / 8\end{cases}
\end{aligned}
$$

For 20 values of $\langle a, b\rangle$, the explicit formulas for $t_{n}(a, b)$ are known. See Table 1.1.

Table 1.1

$t_{n}(a, b)$	References for formulas for $t_{n}(a, b)$
$t_{n}(1,1)$	Legendre [4]
$t_{n}(1,3), t_{n}(1,7)$	Ramanujan, Berndt [1, 2], Williams [8]
$t_{n}(1,15), t_{n}(3,5)$	Sun, Williams [7]
$t_{n}(1,2)$	Sun [5, Theorem 3.1]
$t_{n}(1,4)$	Sun [5, Theorem 3.2]
$t_{n}(1,5)$	Sun [5, Theorem 3.3]
$t_{n}(1,9)$	Sun [5, Theorem 3.4]
$t_{n}(1,13)$	Sun [5, Theorem 3.5]
$t_{n}(1,25)$	Sun [5, Theorem 3.6]
$t_{n}(1,37)$	Sun [5, Theorem 3.7]
$t_{n}(1,11)$	Sun [5, Theorems 4.1 and 4.2]
$t_{n}(1,19), t_{n}(1,43)$	Sun [5, Theorem 4.1]
$t_{n}(1,67), t_{n}(1,163)$	Sun [5, Theorem 4.1]
$t_{n}(1,27)$	Sun [5, Theorem 4.3]
$t_{n}(1,23)$	Sun [5, Theorems 4.4 and 4.5]
$t_{n}(1,31)$	Sun [5, Theorem 4.4]

In this paper, by developing the theory of binary quadratic forms we completely determine $t_{n}(a, b)$ for 123 more values of $\langle a, b\rangle$. See Table 1.2. We also show that $t_{2 n-2}(7,9)-t_{2 n-8}(1,63), t_{2 n-2}(5,11)-t_{2 n-7}(1,55)$ and $t_{2 n-2}(3,13)-t_{2 n-5}(1,39)$ are multiplicative functions of $n \in \mathbb{N}$.

Table 1.2

$t_{n}(a, b)$	Values of $t_{n}(a, b)$
$t_{n}(1, b), t_{n}(2, b / 2)(b=6,10,22,58)$	Theorem 2.2
$t_{n}(1,12), t_{n}(3,4), t_{n}(1,28), t_{n}(4,7)$	Theorem 2.2
$t_{n}(1,18), t_{n}(2,9)$	Theorem 2.4
$t_{n}(1,60), t_{n}(3,20), t_{n}(4,15), t_{n}(5,12)$	Theorem 2.5
$t_{n}(1,45), t_{n}(5,9)$	Theorem 2.7
$t_{n}(1,3 b), t_{n}(3, b)(b=7,11,19,31,59)$	Theorem 5.1
$t_{n}(a, 6 m / a)(a \mid 6, m=5,7,13,17)$	Theorem 5.2
$t_{n}(a, 10 m / a)(a \mid 10, m=7,13,19)$	Theorem 5.3
$t_{n}(1,85), t_{n}(5,17)$	Theorem 5.4
$t_{n}(1,133), t_{n}(7,19)$	Theorem 5.5
$t_{n}(1,253), t_{n}(11,23)$	Theorem 5.6
$t_{n}(a, 15 m / a)(a \mid 15, m=7,11,23)$	Theorem 7.1
$t_{n}(1,273), t_{n}(3,91), t_{n}(7,39), t_{n}(13,21)$	Theorem 7.2
$t_{n}(1,357), t_{n}(3,119), t_{n}(7,51), t_{n}(17,21)$	Theorem 7.3
$t_{n}(1,385), t_{n}(5,77), t_{n}(7,55), t_{n}(11,35)$	Theorem 7.4
$t_{n}(a, 210 / a)(a \mid 30)$	Theorem 7.5
$t_{n}(a, 330 / a)(a \mid 30)$	Theorem 7.6
$t_{n}(a, 462 / a)(a \mid 42)$	Theorem 7.7
$t_{n}(a, 1365 / a)(a \mid 105)$	Theorem 8.2
$t_{n}(1,8)$	Theorem 10.1
$t_{n}(1,63), t_{n}(7,9)$	Theorem 10.2

A nonsquare integer d with $d \equiv 0,1(\bmod 4)$ is called a discriminant. Let d be a discriminant. The conductor of d is the largest positive integer $f=f(d)$ such that $d / f^{2} \equiv 0,1(\bmod 4)$. As usual we set $w(d)=1,2,4,6$ according as $d>0, d<-4, d=-4$ or $d=-3$. For $a, b, c \in \mathbb{Z}$ we denote the equivalence class containing the form $a x^{2}+b x y+c y^{2}$ by $[a, b, c]$. It is known ([3]) that

$$
\begin{equation*}
[a, b, c]=[c,-b, a]=\left[a, 2 a k+b, a k^{2}+b k+c\right] \quad \text { for } k \in \mathbb{Z} \tag{1.5}
\end{equation*}
$$

Let $H(d)$ be the form class group consisting of classes of primitive, integral binary quadratic forms of discriminant d, and let $h(d)=|H(d)|$. For $n \in \mathbb{N}$ and $[a, b, c] \in H(d)$ we define $R([a, b, c], n)$ and $N(n, d)=$ $\sum_{K \in H(d)} R(K, n)$ as in [6]. In particular, when $a>0$ and $b^{2}-4 a c<0$,
then $R([a, b, c], n)$ is given by (1.4). It is known that $R([a, b, c], n)=$ $R([a,-b, c], n)$. If $R([a, b, c], n)>0$, we say that $n \in R([a, b, c]), n$ is represented by $[a, b, c]$ or $a x^{2}+b x y+c y^{2}$, and write $n=a x^{2}+b x y+c y^{2}$.

Let $n \in \mathbb{N}$ and let d be a negative discriminant such that $h(d)=4$. For $m \in \mathbb{N}$ let C_{m} be the cyclic group of order m. Then $H(d) \cong C_{4}$ or $H(d) \cong C_{2} \times C_{2}$. If $H(d) \cong C_{4}$ with generator A, for 50 such discriminants d, in Section 9 we give explicit formulas for $R(A, n)$. When $H(d) \cong C_{2} \times \cdots \times C_{2}$, in Sections 2, 3, 4, 6 and 8 we determine $R(K, n)$ for any $K \in H(d)$. As applications, in Sections 2, 5, 7, 8 and 10 we deduce many explicit formulas for $t_{n}(a, b)$.

In addition to the above notation, throughout this paper $[x]$ denotes the greatest integer not exceeding $x, \mu(n)$ denotes the Möbius function, (a, b) denotes the greatest common divisor of integers a and b. For a prime p and $n \in \mathbb{N}, \operatorname{ord}_{p} n$ denotes the unique nonnegative integer α such that $p^{\alpha} \| n$ (i.e. $p^{\alpha} \mid n$ but $\left.p^{\alpha+1} \nmid n\right)$.

Throughout this paper p denotes a prime and products (sums) over p run through all distinct primes p satisfying any restrictions given under the product (summation) symbol. For example the condition $p \equiv 1(\bmod 4)$ under a product restricts the product to those distinct primes p which are of the form $4 k+1$.
2. Formulas for $t_{n}(1, b)$ in the cases $b=6,10,12,18,22,28,45,58,60$. Let d be a discriminant and $n \in \mathbb{N}$. In view of [6, Lemma 4.1], we introduce

$$
\begin{align*}
& \delta(n, d)=\sum_{k \mid n}\left(\frac{d}{k}\right) \tag{2.1}\\
= & \begin{cases}\prod_{\left(\frac{d}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right) & \text { if } 2 \mid \operatorname{ord}_{q} n \text { for every prime } q \text { with }\left(\frac{d}{q}\right)=-1, \\
0 & \text { otherwise. }\end{cases}
\end{align*}
$$

We recall that $N(n, d)=\sum_{K \in H(d)} R(K, n)$.
Lemma 2.1 ([6, Theorem 4.1]). Let d be a discriminant with conductor f. Let $n \in \mathbb{N}$ and $d_{0}=d / f^{2}$. Then

$$
N(n, d)= \begin{cases}0 & \text { if }\left(n, f^{2}\right) \text { is not a square, } \\ m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \cdot & w(d) \delta\left(\frac{n}{m^{2}}, d_{0}\right) \\ & i f\left(n, f^{2}\right)=m^{2} \text { for } m \in \mathbb{N} .\end{cases}
$$

In particular, when $(n, f)=1$ we have $N(n, d)=w(d) \delta\left(n, d_{0}\right)$.
As $f\left(d_{0}\right)=1$, by Lemma 2.1 we have $N\left(n / m^{2}, d_{0}\right)=w\left(d_{0}\right) \delta\left(n / m^{2}, d_{0}\right)$. Thus, if $\left(n, f^{2}\right)=m^{2}$ for $m \in \mathbb{N}$, using Lemma 2.1 we see that

$$
\begin{equation*}
\frac{N(n, d)}{w(d)}=m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \cdot \frac{N\left(n / m^{2}, d_{0}\right)}{w\left(d_{0}\right)} \tag{2.2}
\end{equation*}
$$

This is a reduction formula for $N(n, d)$.
Lemma 2.2. Let $a, b, n \in \mathbb{N}$ with $2 \nmid n$.
(i) If $2 \nmid a$ and $4 \nmid(a-b) b$, then

$$
R([a, 0,4 b], n)= \begin{cases}R([a, 0, b], n) & \text { if } n \equiv a(\bmod 4) \\ 0 & \text { otherwise }\end{cases}
$$

If $2 \nmid a, 2 \mid b$ and $8 \nmid b$, then

$$
R([a, 0,4 b], n)= \begin{cases}R([a, 0, b], n) & \text { if } n \equiv a(\bmod 8) \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If $2 \nmid a+b$ and $8 \nmid a b$, then

$$
R([4 a, 4 a, a+b], n)= \begin{cases}R([a, 0, b], n) & \text { if } n \equiv a+b(\bmod 8) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Suppose $2 \nmid a$ and $4 \nmid(a-b) b$. Clearly $n=a x^{2}+4 b y^{2}$ implies $2 \nmid x$ and so $n \equiv a(\bmod 4)$. Now assume $n \equiv a(\bmod 4)$ and $n=a x^{2}+b y^{2}$. If $2 \nmid y$, then $a-b \equiv n-b y^{2}=a x^{2}(\bmod 4)$ and so $4 \mid(a-b) b$. This contradicts the assumption. Thus $n=a x^{2}+b y^{2}$ implies $2 \mid y$. Therefore $R([a, 0, b], n)=R([a, 0,4 b], n)$.

Suppose $2 \nmid a, 2 \mid b$ and $8 \nmid b$. As $(2 m+1)^{2} \equiv 1(\bmod 8)$ we see that

$$
\begin{aligned}
R([a, 0,4 b], n) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b y^{2}, 2 \mid y\right\}\right| \\
& = \begin{cases}R([a, 0, b], n) & \text { if } n \equiv a(\bmod 8), \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

This proves (i).
Now let us consider (ii). Assume that $2 \nmid a+b$ and $8 \nmid a b$. Then

$$
\begin{aligned}
R([4 a, 4 a, a+b], n) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a(2 x+y)^{2}+b y^{2}\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b y^{2}, 2 \mid x-y\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right|
\end{aligned}
$$

As $(2 m+1)^{2} \equiv 1(\bmod 8)$, from the above we see that $R([4 a, 4 a, a+b], n)=0$ provided $n \not \equiv a+b(\bmod 8)$. Now assume $n \equiv a+b(\bmod 8)$. If $n=a x^{2}+b y^{2}$ with $x, y \in \mathbb{Z}$ and $2 \mid x y$, then $n \equiv a, a+4 b, b$ or $b+4 a(\bmod 8)$. Since $8 \nmid a b$ we have $a+b \not \equiv a, a+4 b, b, b+4 a(\bmod 8)$ and so $n \not \equiv a+b(\bmod 8)$. Thus, if $n=a x^{2}+b y^{2}$ for some $x, y \in \mathbb{Z}$, we must have $2 \nmid x y$. Hence, from the above we deduce $R([4 a, 4 a, a+b], n)=R([a, 0, b], n)$. So (ii) is true and the lemma is proved.

Theorem 2.1. Let $b \in\{6,10,12,22,28,58\}, b=2^{r} b_{0}\left(2 \nmid b_{0}\right), n \in \mathbb{N}$ and $2 \nmid n$. Then

$$
\begin{aligned}
R([1,0,4 b], n) & = \begin{cases}2 \sum_{k \mid n}\left(\frac{-b}{k}\right) & \text { if } n \equiv 1(\bmod 8), \\
0 & \text { otherwise },\end{cases} \\
R([4,4, b+1], n) & = \begin{cases}2 \sum_{k \mid n}\left(\frac{-b}{k}\right) & \text { if } n \equiv b+1(\bmod 8), \\
0 & \text { otherwise },\end{cases} \\
R\left(\left[2^{r+2}, 0, b_{0}\right], n\right) & = \begin{cases}2 \sum_{k \mid n}\left(\frac{-b}{k}\right) & \text { if } n \equiv b_{0}(\bmod 8), \\
0 & \text { otherwise }\end{cases} \\
R\left(\left[2^{r+2}, 2^{r+2}, 2^{r}+b_{0}\right], n\right) & = \begin{cases}2 \sum_{k \mid n}\left(\frac{-b}{k}\right) & \text { if } n \equiv 2^{r}+b_{0}(\bmod 8), \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Proof. As $2 \mid b, 2 \nmid b_{0}, r \in\{1,2\}$ and $2 \nmid n$, using Lemma 2.2 we see that

$$
\begin{aligned}
R([1,0,4 b], n) & = \begin{cases}R([1,0, b], n) & \text { if } 8 \mid n-1, \\
0 & \text { otherwise }\end{cases} \\
R\left(\left[2^{r+2}, 0, b_{0}\right], n\right) & = \begin{cases}R\left(\left[2^{r}, 0, b_{0}\right], n\right) & \text { if } 8 \mid n-b_{0} \\
0 & \text { otherwise }\end{cases} \\
R([4,4, b+1], n) & = \begin{cases}R([1,0, b], n) & \text { if } n \equiv b+1(\bmod 8), \\
0 & \text { otherwise }\end{cases} \\
R\left(\left[2^{r+2}, 2^{r+2}, 2^{r}+b_{0}\right], n\right) & = \begin{cases}R\left(\left[2^{r}, 0, b_{0}\right], n\right) & \text { if } n \equiv 2^{r}+b_{0}(\bmod 8), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

It is known that $H(-4 b)=\left\{[1,0, b],\left[2^{r}, 0, b_{0}\right]\right\}$. See [6, Table 9.1]. Clearly $n=x^{2}+b y^{2}$ implies $n \equiv 1, b+1(\bmod 8)$, and $n=2^{r} x^{2}+b_{0} y^{2}$ implies $n \equiv b_{0}, 2^{r}+b_{0}(\bmod 8)$. Since $1, b+1, b_{0}, 2^{r}+b_{0}$ are distinct modulo 8 , we see that

$$
N(n,-4 b)= \begin{cases}R([1,0, b], n) & \text { if } n \equiv 1, b+1(\bmod 8) \\ R\left(\left[2^{r}, 0, b_{0}\right], n\right) & \text { if } n \equiv b_{0}, 2^{r}+b_{0}(\bmod 8)\end{cases}
$$

Since $f(-4 b) \in\{1,4\}$ and $2 \nmid n$, we have $(n, f(-4 b))=1$. Hence, by Lemma 2.1 we have

$$
N(n,-4 b)=w(-4 b) \sum_{k \mid n}\left(\frac{-4 b}{k}\right)=2 \sum_{k \mid n}\left(\frac{-b}{k}\right)
$$

Now putting all the above together we deduce the result.
For $b \in\{6,10,12,22,28,58\}$ set $b=2^{r} b_{0}\left(2 \nmid b_{0}\right)$. From Theorem 1.1 we easily see that $4 t_{n}(1, b)=R([4,4, b+1], 8 n+b+1)$ and $4 t_{n}\left(2^{r}, b_{0}\right)=$
$R\left(\left[2^{r+2}, 2^{r+2}, 2^{r}+b_{0}\right], 8 n+2^{r}+b_{0}\right)$. Thus, applying Theorem 2.1 we deduce the following result.

Theorem 2.2. Let $n \in \mathbb{N}$ and $b \in\{6,10,12,22,28,58\}$.
(i) If $b \in\{6,10,22,58\}$, then

$$
t_{n}(1, b)=\frac{1}{2} \sum_{k \mid 8 n+b+1}\left(\frac{-b}{k}\right) \quad \text { and } \quad t_{n}(2, b / 2)=\frac{1}{2} \sum_{k \mid 8 n+2+b / 2}\left(\frac{-b}{k}\right)
$$

(ii) If $b \in\{12,28\}$, then

$$
t_{n}(1, b)=\frac{1}{2} \sum_{k \mid 8 n+b+1}\left(\frac{k}{b / 4}\right) \quad \text { and } \quad t_{n}(4, b / 4)=\frac{1}{2} \sum_{k \mid 8 n+4+b / 4}\left(\frac{k}{b / 4}\right) .
$$

Theorem 2.3. Let $a, b, n \in \mathbb{N}$.
(i) If $8 \nmid a, 8 \nmid b$ and $4 \nmid a+b$, then $t_{n}(a, b)=\frac{1}{4} R([a, 0, b], 8 n+a+b)$.
(ii) If $2 \nmid a, 8 \mid b-4$ and $4 \mid a+b / 4$, then $t_{n}(a, b)=\frac{1}{4} R([a, 0, b / 4], 8 n+a+b)$.

Proof. As $x(x-1) / 2=(1-x)(1-x-1) / 2$, we see that

$$
\begin{aligned}
4 t_{n}(a, b) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a\left(x^{2}-x\right) / 2+b\left(y^{2}-y\right) / 2\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a(2 x-1)^{2}+b(2 y-1)^{2}\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right|
\end{aligned}
$$

Let $x, y \in \mathbb{Z}$ be such that $8 n+a+b=a x^{2}+b y^{2}$. When $2 \mid x$ and $2 \mid y$, we have $4 \mid 8 n+a+b$ and so $4 \mid a+b$. When $2 \mid x$ and $2 \nmid y$, we have $a \equiv 8 n+a=$ $a x^{2}+b y^{2}-b \equiv a x^{2} \equiv 0,4 a(\bmod 8)$ and so $8 \mid a$. When $2 \nmid x$ and $2 \mid y$, we have $b \equiv 8 n+b=a x^{2}+b y^{2}-a \equiv b y^{2} \equiv 0,4 b(\bmod 8)$ and so $8 \mid b$. Thus, if $8 \nmid a, 8 \nmid b$ and $4 \nmid a+b$, by the above we must have $2 \nmid x y$. Hence,

$$
\begin{aligned}
4 t_{n}(a, b) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right| \\
& =R([a, 0, b], 8 n+a+b)
\end{aligned}
$$

This proves (i).
Now assume $2 \nmid a, 4 \mid b$, and $4 \mid a+b / 4$. Set $b=4 b_{0}$. Then $2 \nmid b_{0}$ and $4 \nmid a-b_{0}$. As $8 n+a+4 b_{0}=a x^{2}+4 b_{0} y^{2}(x, y \in \mathbb{Z})$ implies $2 \nmid x y$, and $8 n+a+4 b_{0}=a x^{2}+b_{0} y^{2}(x, y \in \mathbb{Z})$ implies $2 \mid y$, from the above we deduce

$$
\begin{aligned}
4 t_{n}(a, b) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+4 b_{0}=a x^{2}+4 b_{0} y^{2}, 2 \nmid x y\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+4 b_{0}=a x^{2}+4 b_{0} y^{2}\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+4 b_{0}=a x^{2}+b_{0} y^{2}\right\}\right|
\end{aligned}
$$

This completes the proof.

Theorem 2.4. Let $n \in \mathbb{N}$ and $a \in\{1,2\}$. Then

$$
t_{n}(a, 18 / a)= \begin{cases}\frac{1}{2} \sum_{k \mid 8 n+a+18 / a}\left(\frac{-2}{k}\right) & \text { if } 3 \mid n \\ \frac{1}{2} \sum_{k \mid(8 n+a+18 / a) / 9}\left(\frac{-2}{k}\right) & \text { if } 9 \mid n-a \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Theorem 2.3 yields $4 t_{n}(a, 18 / a)=R([a, 0,18 / a], 8 n+a+18 / a)$. As $H(-72)=\{[1,0,18],[2,0,9]\}$ and $f(-72)=3$, from [6, Theorem 9.3] and (2.1) we see that

$$
\begin{aligned}
& R([a, 0,18 / a], 8 n+a+18 / a) \\
& \quad= \begin{cases}\left(1-(-1)^{a}\left(\frac{8 n+a}{3}\right)\right) \sum_{k \mid 8 n+a+18 / a}\left(\frac{-8}{k}\right) & \text { if } 3 \nmid 8 n+a, \\
2 \sum_{k \mid(8 n+a+18 / a) / 9}\left(\frac{-8}{k}\right) & \text { if } 9 \mid 8 n+a \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

So the result follows.
Remark 2.1. Theorem 2.2 can also be proved by using Theorem 2.3 instead of Theorem 1.1. When $b \in\{6,10,12,18,22,28,58\}$ and $8 n+b+1$ is a prime power, the formulas for $t_{n}(1, b)$ have been given by the author in [5, Theorems 5.1 and 5.3]. When $b \in\{3,5,9,11,29\}$ and $8 n+b+2$ is a prime power, the formulas for $t_{n}(2, b)$ have been given by the author in [5], Theorems 5.2 and 5.4].

For $b \in\{5,13\}$ set $4 n+(b+1) / 2=b^{\alpha} n_{0}\left(b \nmid n_{0}\right)$. Clearly the fact that $2 \mid \operatorname{ord}_{p}(4 n+(b+1) / 2)$ for every odd prime p with $\left(\frac{-b}{p}\right)=-1$ implies $\left(\frac{-b}{n_{0}}\right)=\prod_{p \mid n_{0}}\left(\frac{-b}{p}\right)^{\operatorname{ord}_{p} n_{0}}=1$ and so $\left(\frac{n_{0}}{b}\right)=\left(\frac{b}{n_{0}}\right)=\left(\frac{-1}{n_{0}}\right)=(-1)^{(b+1) / 2}=-1$. From this and (2.1) we see that Theorems 3.3 and 3.5 in [5] can be rewritten as

$$
\begin{equation*}
t_{n}(1,5)=\frac{1}{2} \sum_{k \mid 4 n+3}\left(\frac{-5}{k}\right) \quad \text { and } \quad t_{n}(1,13)=\frac{1}{2} \sum_{k \mid 4 n+7}\left(\frac{-13}{k}\right) \tag{2.3}
\end{equation*}
$$

We also note that for $a, b, n \in \mathbb{N}$,

$$
\begin{aligned}
\mid\{\langle x, y\rangle & \left.\in \mathbb{Z}^{2}: n=a\left(2 x^{2}-x\right)+b\left(2 y^{2}-y\right)\right\} \mid \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a(4 x-1)^{2}+b(4 y-1)^{2}\right\}\right| \\
& =\frac{1}{4}\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right|=t_{n}(a, b) .
\end{aligned}
$$

Theorem 2.5. Let $n \in \mathbb{N}, a \in\{1,3,5,15\}$ and $8 n+a+60 / a=3^{\alpha} n_{0}$ $\left(3 \nmid n_{0}\right)$. Then

$$
t_{n}(a, 60 / a)=\left\{\begin{array}{l}
\frac{1}{4}\left(1+(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n_{0}}\left(\frac{k}{15}\right) \quad \text { if } a=1,15 \\
\frac{1}{4}\left(1-(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n_{0}}\left(\frac{k}{15}\right) \quad \text { if } a=3,5
\end{array}\right.
$$

Proof. From Theorem 2.3(ii) we see that $4 t_{n}(a, 60 / a)=R([a, 0,15 / a]$, $8 n+a+60 / a)$. By [6, Theorem 9.3] and (2.1) we have

$$
\begin{aligned}
& R([a, 0,15 / a], 8 n+a+60 / a) \\
& = \begin{cases}\left(1+(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid 3^{\alpha} n_{0}}\left(\frac{-15}{k}\right) & \text { if } a=1,15 \\
\left(1-(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid 3^{\alpha} n_{0}}\left(\frac{-15}{k}\right) & \text { if } a=3,5 .\end{cases}
\end{aligned}
$$

Now combining all the above with the fact that $\sum_{k \mid 3^{\alpha} n_{0}}\left(\frac{-15}{k}\right)=\sum_{k \mid n_{0}}\left(\frac{k}{15}\right)$ we deduce the result.

Theorem 2.6. Let $n \in \mathbb{N}$ and $n=5^{\alpha} n_{0}\left(5 \nmid n_{0}\right)$. Then

$$
\begin{aligned}
& R([1,0,45], n)= \begin{cases}2 \sum_{k \mid n_{0} / 9}\left(\frac{-20}{k}\right) & \text { if } 9 \mid n \text { and } n_{0} \equiv \pm 1(\bmod 5), \\
2 \sum_{k \mid n_{0}}\left(\frac{-20}{k}\right) & \text { if } 3 \mid n-1 \text { and } n_{0} \equiv \pm 1(\bmod 5), \\
0 & \text { otherwise, }\end{cases} \\
& R([5,0,9], n)= \begin{cases}2 \sum_{k \mid n_{0} / 9}\left(\frac{-20}{k}\right) & \text { if } 9 \mid n \text { and } n_{0} \equiv \pm 1(\bmod 5), \\
2 \sum_{k \mid n_{0}}\left(\frac{-20}{k}\right) & \text { if } 3 \mid n-2 \text { and } n_{0} \equiv \pm 1(\bmod 5), \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. It is known that $f(-180)=3$ and $H(-180)=\{[1,0,45],[5,0,9]$, $[2,2,23],[7,4,7]\}$. If $n \equiv 2(\bmod 3)$ or $n \equiv \pm 3(\bmod 9)$, then clearly $n=$ $x^{2}+45 y^{2}$ is insolvable and so $R([1,0,45], n)=0$. If $9 \mid n$, then clearly

$$
\begin{aligned}
R([1,0,45], n) & =R([1,0,5], n / 9)=R\left([1,0,5], 5^{\alpha} n_{0} / 9\right) \\
& =R\left([1,0,5], 5^{\alpha-1} n_{0} / 9\right)=\cdots=R\left([1,0,5], n_{0} / 9\right)
\end{aligned}
$$

It is known that $f(-20)=1$ and $H(-20)=\{[1,0,5],[2,2,3]\}$. Thus, if $n_{0} \equiv \pm 2(\bmod 5)$, then $n_{0} / 9 \equiv \mp 2(\bmod 5)$ and so $R([1,0,45], n)=$ $R\left([1,0,45], n_{0} / 9\right)=0$; if $n_{0} \equiv \pm 1(\bmod 5)$, as $n_{0} / 9=2 x^{2}+2 x y+3 y^{2}$ implies $2 n_{0} / 9=(2 x+y)^{2}+5 y^{2} \equiv \pm 1(\bmod 5)$ and so $n_{0} \equiv \pm 2(\bmod 5)$, we have $R\left([2,2,3], n_{0} / 9\right)=0$ and so

$$
R([1,0,45], n)=R\left([1,0,5], n_{0} / 9\right)=N\left(n_{0} / 9,-20\right)=2 \sum_{k \mid n_{0} / 9}\left(\frac{-20}{k}\right)
$$

Now we assume $n \equiv 1(\bmod 3)$. Then $3 \nmid n_{0}$. For $m \in \mathbb{N}, 5 m=x^{2}+45 y^{2}$ implies $5 \mid x$, and $5 m=5 x^{2}+9 y^{2}$ implies $5 \mid y$. Thus $R([1,0,45], 5 m)=$ $R([5,0,9], m)$ and $R([5,0,9], 5 m)=R([1,0,45], m)$. Therefore,

$$
\begin{aligned}
R([1,0,45], n) & =R\left([1,0,45], 5^{\alpha} n_{0}\right)=R\left([5,0,9], 5^{\alpha-1} n_{0}\right) \\
& =R\left([1,0,45], 5^{\alpha-2} n_{0}\right)=\cdots= \begin{cases}R\left([1,0,45], n_{0}\right) & \text { if } 2 \mid \alpha \\
R\left([5,0,9], n_{0}\right) & \text { if } 2 \nmid \alpha .\end{cases}
\end{aligned}
$$

If $n_{0} \equiv \pm 2(\bmod 5)$, then n_{0} cannot be represented by $x^{2}+45 y^{2}$ and $5 x^{2}+9 y^{2}$. Thus $R([1,0,45], n)=0$ by the above. Now suppose $n_{0} \equiv \pm 1(\bmod 5)$. It is easily seen that n_{0} cannot be represented by $[2,2,23]$ and $[7,4,7]$. Clearly $n_{0}=x^{2}+45 y^{2}$ implies $n_{0} \equiv 1(\bmod 3)$, and $n_{0}=5 x^{2}+9 y^{2}$ implies $n_{0} \equiv 2(\bmod 3)$. Since $n_{0}=5^{-\alpha} n \equiv(-1)^{\alpha} n \equiv(-1)^{\alpha}(\bmod 3)$, using the above and Lemma 2.1 we see that

$$
\begin{aligned}
R([1,0,45], n) & = \begin{cases}R\left([1,0,45], n_{0}\right) & \text { if } n_{0} \equiv 1(\bmod 3) \\
R\left([5,0,9], n_{0}\right) & \text { if } n_{0} \equiv 2(\bmod 3)\end{cases} \\
& =N\left(n_{0},-180\right)=2 \sum_{a \mid n_{0}}\left(\frac{-20}{a}\right)
\end{aligned}
$$

Combining all the above we prove the formula for $R([1,0,45], n)$. Since $R([1,0,45], 5 n)=R([5,0,9], n)$, replacing n with $5 n$ in the formula for $R([1,0,45], n)$ we deduce the result for $R([5,0,9], n)$. This completes the proof.

Theorem 2.7. Let $n \in \mathbb{N}$.
(i) If $4 n+23=5^{\alpha} n_{1}\left(5 \nmid n_{1}\right)$, then

$$
t_{n}(1,45)= \begin{cases}\frac{1}{2} \sum_{k \mid n_{1} / 9}(-1)^{(k-1) / 2}\left(\frac{k}{5}\right) & \text { if } 9 \mid n-1 \text { and } n_{1} \equiv \pm 2(\bmod 5) \\ \frac{1}{2} \sum_{k \mid n_{1}}(-1)^{(k-1) / 2}\left(\frac{k}{5}\right) & \text { if } 3 \mid n \text { and } n_{1} \equiv \pm 2(\bmod 5) \\ 0 & \text { otherwise }\end{cases}
$$

(ii) If $4 n+7=5^{\alpha} n_{1}\left(5 \nmid n_{1}\right)$, then

$$
t_{n}(5,9)= \begin{cases}\frac{1}{2} \sum_{k \mid n_{1} / 9}(-1)^{(k-1) / 2}\left(\frac{k}{5}\right) & \text { if } 9 \mid n-5 \text { and } n_{1} \equiv \pm 2(\bmod 5) \\ \frac{1}{2} \sum_{k \mid n_{1}}(-1)^{(k-1) / 2}\left(\frac{k}{5}\right) & \text { if } 3 \mid n \text { and } n_{1} \equiv \pm 2(\bmod 5) \\ 0 & \text { otherwise }\end{cases}
$$

Proof. From Theorem 2.3(i) we have

$$
4 t_{n}(1,45)=R([1,0,45], 8 n+46) \quad \text { and } \quad 4 t_{n}(5,9)=R([5,0,9], 8 n+14)
$$

Thus applying Theorem 2.6 we deduce the result.
From Theorem 2.7, (2.1) and the fact that $(-1)^{(k-1) / 2}\left(\frac{k}{5}\right)=\left(\frac{-20}{k}\right)$ we have the following corollaries.

Corollary 2.1. Let $n \in \mathbb{N}$ and $4 n+23=5^{\alpha} n_{1}$ with $5 \nmid n_{1}$. Then n is represented by $\frac{x(x-1)}{2}+45 \frac{y(y-1)}{2}$ if and only if $9 \mid n^{2}(n-1), n_{1} \equiv \pm 2(\bmod 5)$ and $2 \mid \operatorname{ord}_{q} n_{1}$ for every prime $q \equiv 11,13,17,19(\bmod 20)$.

Corollary 2.2. Let $n \in \mathbb{N}$ and $4 n+7=5^{\alpha} n_{1}$ with $5 \nmid n_{1}$. Then n is represented by $5 \frac{x(x-1)}{2}+9 \frac{y(y-1)}{2}$ if and only if $9 \mid n^{2}(n-5), n_{1} \equiv \pm 2(\bmod 5)$ and $2 \mid \operatorname{ord}_{q} n_{1}$ for every prime $q \equiv 11,13,17,19(\bmod 20)$.
3. General results for $R(K, n)$ when $K \in H(d)$ and $H(d) \cong C_{2} \times$ $\cdots \times C_{2}$. Let d be a discriminant with conductor f and $d_{0}=d / f^{2}$. Assume $k, m \in \mathbb{N}, k\left|d_{0}, 4 \nmid k, m\right| f$ and $(k, f / m)=1$. By [6, Lemma 2.1], for any $K \in H(d)$ there exist $a, b, c \in \mathbb{Z}$ such that $K=\left[a, b k m, c k m^{2}\right]$ with $(a, k m)=1$ and $(c, k)=1$. Following [6, Definition 2.1] we define $\varphi_{k, m}(K)=$ $[a k, b k, c]$.

By the definition, for any $\left[a, b m, c m^{2}\right] \in H(d)$ and $[a, b k, c k] \in H(d)$ with $(c, k)=1$ we have

$$
\varphi_{1, m}\left(\left[a, b m, c m^{2}\right]\right)=[a, b, c], \quad \varphi_{k, 1}([a, b k, c k])=[a k, b k, c]
$$

and

$$
\varphi_{k, m}(K)=\varphi_{k, 1}\left(\varphi_{1, m}(K)\right) \quad \text { for } K \in H(d)
$$

From [6, Theorem 2.1] we know that $\varphi_{1, m}$ is a surjective homomorphism from $H(d)$ to $H\left(d / m^{2}\right)$.

Let d be a discriminant and $H^{2}(d)=\left\{K^{2}: K \in H(d)\right\}$. Let $G(d)=$ $H(d) / H^{2}(d)$ denote the group of genera, and let $\omega(d)$ denote the number of distinct prime divisors of d. It is well known ([3]) that $|G(d)|=2^{t(d)}$, where

$$
t(d)= \begin{cases}\omega(d) & \text { if } d \equiv 0(\bmod 32) \\ \omega(d)-2 & \text { if } d \equiv 4(\bmod 16) \\ \omega(d)-1 & \text { otherwise }\end{cases}
$$

Lemma 3.1 ([6, Theorem 6.1]). Let d be a discriminant with conductor f, $d_{0}=d / f^{2}$ and $n \in \mathbb{N}$. If $\left(n, f^{2}\right)$ is not a square, or there exists a prime p such that $2 \nmid \operatorname{ord}_{p} n$ and $\left(\frac{d_{0}}{p}\right)=-1$, then $R(G, n)=0$ for any $G \in G(d)$. Suppose $\left(n, f^{2}\right)=m^{2}$ for $m \in \mathbb{N}$ and $\left(\frac{d_{0}}{p}\right)=0,1$ for every prime p with $2 \nmid \operatorname{ord}_{p} n$. Then there are exactly $2^{t(d)-t\left(d / m^{2}\right)}$ genera G representing n, and for such a genus G we have $R(G, n)=N(n, d) / 2^{t(d)-t\left(d / m^{2}\right)}$.

Lemma 3.2. Let d be a discriminant with conductor f and $\left|H^{2}(d)\right|=1$. For any positive divisor m of f we have $\left|H^{2}\left(d / m^{2}\right)\right|=1$ and

$$
m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right)= \begin{cases}2^{t(d)-t\left(d / m^{2}\right)} \frac{w\left(d / m^{2}\right)}{w(d)} & \text { if } d<0 \\ 2^{t(d)-t\left(d / m^{2}\right)} \frac{\log \varepsilon(d)}{\log \varepsilon\left(d / m^{2}\right)} & \text { if } d>0\end{cases}
$$

where $\varepsilon(d)=\left(x_{1}+y_{1} \sqrt{d}\right) / 2$ and $\left(x_{1}, y_{1}\right)$ is the solution in positive integers to the equation $x^{2}-d y^{2}=4$ for which $x_{1}+y_{1} \sqrt{d}$ is least.

Proof. From [6, Theorem 2.1 and Lemma 2.6(i)] we know that $\varphi_{1, m}$ is a surjective homomorphism from $H^{2}(d)$ to $H^{2}\left(d / m^{2}\right)$. Since $\left|H^{2}(d)\right|=1$, we must have $\left|H^{2}\left(d / m^{2}\right)\right|=1$. As $\left|H^{2}(d)\right|=1$, we have $G(d)=H(d) / H^{2}(d) \cong$ $H(d)$ and so $h(d)=|G(d)|=2^{t(d)}$. Since $\left|H^{2}\left(d / m^{2}\right)\right|=1$, we have $G\left(d / m^{2}\right)$ $=H\left(d / m^{2}\right) / H^{2}\left(d / m^{2}\right) \cong H\left(d / m^{2}\right)$ and so $h\left(d / m^{2}\right)=\left|G\left(d / m^{2}\right)\right|=2^{t\left(d / m^{2}\right)}$. Now applying the above and [6, Lemma 3.5] we obtain the result.

Theorem 3.1. Let d be a discriminant with conductor $f, d_{0}=d / f^{2}$ and $\left|H^{2}(d)\right|=1$. Let $K \in H(d)$ and $n \in \mathbb{N}$ with $R(K, n)>0$. Then $\left(n, f^{2}\right)=m^{2}$ for some $m \in \mathbb{N}$ and

$$
R(K, n)=\left\{\begin{array}{c}
w\left(\frac{d}{m^{2}}\right) \prod_{\left(\frac{d_{0}}{p}\right)=1}\left(1+\operatorname{ord}_{p} \frac{n}{m^{2}}\right) \quad \text { if } d<0 \\
\frac{1}{2^{t(d)-t\left(d / m^{2}\right)}} \cdot m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \\
\times \prod_{\left(\frac{d_{0}}{p}\right)=1}\left(1+\operatorname{ord}_{p} \frac{n}{m^{2}}\right) \quad \text { if } d>0
\end{array}\right.
$$

Proof. Since $\left|H^{2}(d)\right|=1$, every genus consists of a single class. Thus, applying Lemmas 2.1 and 3.1 we have $\left(n, f^{2}\right)=m^{2}$ for some $m \in \mathbb{N}$ and

$$
\begin{aligned}
R(K, n) & =\frac{1}{2^{t(d)-t\left(d / m^{2}\right)}} N(n, d) \\
& =\frac{w(d)}{2^{t(d)-t\left(d / m^{2}\right)}} \cdot m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \prod_{\left(\frac{d_{0}}{p}\right)=1}\left(1+\operatorname{ord}_{p} \frac{n}{m^{2}}\right) .
\end{aligned}
$$

This together with Lemma 3.2 gives the result.
Euler called a positive integer n a convenient number if it satisfies the following criterion: Let m be an odd number such that $(m, n)=1$ and $m=$ $x^{2}+n y^{2}$ with $(x, y)=1$. If the equation $m=x^{2}+n y^{2}$ has only one solution with $x, y \geq 0$, then m is a prime.

According to [3], Euler listed 65 convenient numbers as in Table 3.1 below. He was interested in convenient numbers because they helped him
find large primes. Gauss observed that a positive integer n is a convenient number if and only if $\left|H^{2}(-4 n)\right|=1$. In 1973 it was known that Euler's list is complete except for possibly one more n.

Table 3.1

$h(-4 n)$	n 's with $\left\|H^{2}(-4 n)\right\|=1$
1	$1,2,3,4,7$
2	$5,6,8,9,10,12,13,15,16,18,22,25,28,37,58$
4	$21,24,30,33,40,42,45,48,57,60,70,72,78$, 8
	$105,120,93,102,112,130,133,177,190,232,253$ $345,357,385,408,462,520,760$
16	$840,1320,1365,1848$

Theorem 3.2. Let $d<0$ be a discriminant with conductor f and $d_{0}=$ d / f^{2}. Let $d_{1} \in \mathbb{N}, d_{1} \mid d_{0}$ and $K \in H(d)$. Let $\left(n, f^{2}\right)=m^{2}$ for $m \in \mathbb{N}$. Let $k=$ $\prod_{p \mid d_{1}, 2 \nmid \operatorname{ord}_{p} n} p$ and $n_{1}=\prod_{p \nmid d_{1}} p^{\operatorname{ord}_{p}\left(n / m^{2}\right)}$. Then $R(K, n)=R\left(\varphi_{k, m}(K), n_{1}\right)$.

Proof. By [6, Theorem 3.2] we have $R(K, n)=R\left(K^{\prime}, n / m^{2}\right)$, where $K^{\prime}=$ $\varphi_{1, m}(K) \in H\left(d / m^{2}\right)$. Let p be a prime such that $p \mid d_{1}$ and $p \mid n / m^{2}$. Since $\left(n / m^{2}, f^{2} / m^{2}\right)=1$ we have $\left(n / m^{2}, f / m\right)=1$ and so $p \nmid f / m$. By [6, Lemma 2.1] we may assume $K^{\prime}=[a, b p, c p]$ with $a, b, c \in \mathbb{Z}$ and $p \nmid a c$. Suppose $\alpha_{p}=\operatorname{ord}_{p}\left(n / m^{2}\right)$. Then $2 \nmid \alpha_{p}$ if and only if $2 \nmid \operatorname{ord}_{p} n$. Applying [6, Lemma 3.4] we have

$$
R\left(K^{\prime}, \frac{n}{m^{2}}\right)=R\left(K^{\prime}, \frac{n / m^{2}}{p^{2}}\right)=\cdots=R\left(K^{\prime}, \frac{n / m^{2}}{p^{2\left[\alpha_{p} / 2\right]}}\right)
$$

Thus,

$$
R\left(K^{\prime}, \frac{n}{m^{2}}\right)=\cdots=R\left(K^{\prime}, \frac{n / m^{2}}{\prod_{p\left|d_{1}, p\right| n / m^{2}} p^{2\left[\alpha_{p} / 2\right]}}\right)=R\left(K^{\prime}, k n_{1}\right)
$$

From the above and [6, Lemma 3.4] we deduce

$$
\begin{aligned}
R(K, n) & =R\left(K^{\prime}, n / m^{2}\right)=R\left(K^{\prime}, k n_{1}\right)=R\left(\varphi_{k, 1}\left(K^{\prime}\right), n_{1}\right) \\
& =R\left(\varphi_{k, 1}\left(\varphi_{1, m}(K)\right), n_{1}\right)=R\left(\varphi_{k, m}(K), n_{1}\right)
\end{aligned}
$$

This is the result.
Lemma 3.3 ([6, Theorem 2.2]). Let d be a discriminant with conductor f and $d_{0}=d / f^{2}$. Suppose $k \in \mathbb{N}, k \mid d_{0}, 4 \nmid k$ and $(k, f)=1$. For $K \in H(d)$ we have

$$
\varphi_{k, 1}(K)= \begin{cases}{[k, 0,-d /(4 k)] K} & \text { if } 4 k \mid d \\ {\left[k, k,\left(k^{2}-d\right) /(4 k)\right] K} & \text { if } 4 k \nmid d\end{cases}
$$

Theorem 3.3. Let d be a discriminant with conductor f and $d_{0}=d / f^{2}$. Let $k \in \mathbb{N}$ be squarefree, $k \mid d_{0}$ and $(k, f)=1$. Let $n \in \mathbb{N}$,

$$
I=\left\{\begin{array}{ll}
{\left[1,0, \frac{-d}{4}\right]} & \text { if } 4 \mid d, \\
{\left[1,1, \frac{1-d}{4}\right]} & \text { if } 4 \nmid d
\end{array} \quad \text { and } \quad K= \begin{cases}{\left[k, 0, \frac{-d}{4 k}\right]} & \text { if } 4 k \mid d, \\
{\left[k, k, \frac{k^{2}-d}{4 k}\right]} & \text { if } 4 k \nmid d .\end{cases}\right.
$$

Then $R(K, n)=R(I, k n)$.
Proof. By Lemma 3.3 we have $\varphi_{k, 1}(I)=K$. Thus applying [6, Lemma 3.4] we obtain $R(I, k n)=R\left(\varphi_{k, 1}(I), n\right)=R(K, n)$ as asserted.
4. Formulas for $R(K, n)$ when $K \in H(d), d<0, f(d)=1$ and $H(d) \cong C_{2} \times C_{2}$. Let $d<0$ be a discriminant. Then $H(d) \cong C_{2} \times C_{2}$ if and only if d has one of the 34 values given in [6, Proposition 11.1(ii)].

Theorem 4.1. Let $b \in\{7,11,19,31,59\}$, and set $A_{1}=[1,0,3 b], A_{2}=$ $[2,2,(3 b+1) / 2], A_{3}=[3,0, b]$ and $A_{6}=[6,6,(b+3) / 2]$. Let $i \in\{1,2,3,6\}$, $n \in \mathbb{N}$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} n_{0}$ with $2 \nmid n_{0}$ and $3 \nmid n_{0}$. Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3 b}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}1(\bmod 12) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i} \\ b(\bmod 12) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i} \\ (3 b+1) / 2(\bmod 12) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i} \\ (b+3) / 2(\bmod 12) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i}\end{cases}
$$

Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-3 b}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
Proof. It is known that $f(-12 b)=1$ and $H(-12 b)=\left\{A_{1}, A_{2}, A_{3}, A_{6}\right\} \cong$ $C_{2} \times C_{2}$. As $2 \nmid n_{0}$ and $3 \nmid n_{0}$, we see that

$$
\begin{aligned}
& R\left(A_{1}, n_{0}\right)>0 \Rightarrow n_{0} \equiv 1(\bmod 12) \\
& R\left(A_{3}, n_{0}\right)>0 \Rightarrow n_{0} \equiv b(\bmod 12) \\
& R\left(A_{2}, n_{0}\right)>0 \Rightarrow n_{0} \equiv(3 b+1) / 2(\bmod 12) \\
& R\left(A_{6}, n_{0}\right)>0 \Rightarrow n_{0} \equiv(b+3) / 2(\bmod 12)
\end{aligned}
$$

If $2 \nmid \operatorname{ord}_{q} n_{0}$ for some prime q with $\left(\frac{-3 b}{q}\right)=-1$, we see that $q \mid n_{0}, 2 \nmid \operatorname{ord}_{q} n$ and $\left(\frac{-12 b}{q}\right)=-1$. Thus, applying Lemma 2.1 we have $N(n,-12 b)=0$ and so $R\left(A_{i}, n\right)=0$.

Suppose that $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3 b}{q}\right)=-1$. From Lemma 2.1 we have $N\left(n_{0},-12 b\right)>0$. Observe that $1, b,(3 b+1) / 2$ and $(b+3) / 2$ are incongruent modulo 12. Applying the above we deduce

$$
\begin{aligned}
& R\left(A_{1}, n_{0}\right)>0 \Leftrightarrow n_{0} \equiv 1(\bmod 12) \\
& R\left(A_{3}, n_{0}\right)>0 \Leftrightarrow n_{0} \equiv b(\bmod 12) \\
& R\left(A_{2}, n_{0}\right)>0 \Leftrightarrow n_{0} \equiv(3 b+1) / 2(\bmod 12), \\
& R\left(A_{6}, n_{0}\right)>0 \Leftrightarrow n_{0} \equiv(b+3) / 2(\bmod 12)
\end{aligned}
$$

Set

$$
k_{i}=2^{\frac{1-(-1)^{\alpha_{i}}}{2}} 3^{\frac{1-(-1)^{\beta_{i}}}{2}}= \begin{cases}1 & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 2 & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 3 & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i}, \\ 6 & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i} .\end{cases}
$$

By Lemma 3.3 we have $\varphi_{k_{i}, 1}\left(A_{1}\right)=A_{k_{i}}$. Thus applying Theorems 3.2 and 3.3 we get

$$
R\left(A_{i}, n\right)=R\left(A_{1}, i n\right)=R\left(\varphi_{k_{i}, 1}\left(A_{1}\right), n_{0}\right)=R\left(A_{k_{i}}, n_{0}\right)
$$

Hence, using the above we deduce

$$
\begin{aligned}
R\left(A_{i}, n\right)>0 & \Leftrightarrow R\left(A_{k_{i}}, n_{0}\right)>0 \\
& \Leftrightarrow n_{0} \equiv \begin{cases}1(\bmod 12) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\
b(\bmod 12) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i}, \\
(3 b+1) / 2(\bmod 12) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\
(b+3) / 2(\bmod 12) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i} .\end{cases}
\end{aligned}
$$

If $R\left(A_{i}, n\right)>0$, by Theorem 3.1 we have

$$
R\left(A_{i}, n\right)=w(-12 b) \prod_{\left(\frac{-12 b}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right)=2 \prod_{\left(\frac{-3 b}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)
$$

So the theorem is proved.
In a similar way one can prove the following results.
Theorem 4.2. Let $m \in\{5,7,13,17\}, i \in\{1,2,3,6\}, n \in \mathbb{N}$ and in $=$ $2^{\alpha_{i}} 3^{\beta_{i}} n_{0}$ with $\left(6, n_{0}\right)=1$. Then $R([i, 0,6 m / i], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-6 m}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}1,6 m+1(\bmod 24) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 2 m+3,8 m+3(\bmod 24) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i}, \\ 3 m+2,3 m+8(\bmod 24) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ m, m+6(\bmod 24) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i} .\end{cases}
$$

Moreover, if $R([i, 0,6 m / i], n)>0$, then

$$
R([i, 0,6 m / i], n)=2 \prod_{\left(\frac{-6 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)
$$

Theorem 4.3. Let $m \in\{7,13,19\}, i \in\{1,2,5,10\}, n \in \mathbb{N}$ and in $=$ $2^{\alpha_{i}} 5^{\beta_{i}} n_{0}$ with $\left(10, n_{0}\right)=1$. Then $R([i, 0,10 m / i], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-10 m}{q}\right)=-1$ and
$n_{0} \equiv \begin{cases}1,9,1+10 m, 9+10 m(\bmod 40) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 5+2 m, 5+8 m, 5+18 m, 5+32 m(\bmod 40) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i}, \\ 5 m+2,5 m+8,5 m+18,5 m+32(\bmod 40) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ m, 9 m, 10+m, 10+9 m(\bmod 40) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i} .\end{cases}$
Moreover, if $R([i, 0,10 m / i], n)>0$, then

$$
R([i, 0,10 m / i], n)=2 \prod_{\left(\frac{-10 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)
$$

Theorem 4.4. Let $A_{1}=[1,0,85]$, $A_{2}=[2,2,43], A_{5}=[5,0,17]$ and $A_{10}=[10,10,11]$. Let $i \in\{1,2,5,10\}, n \in \mathbb{N}$ and in $=2^{\alpha_{i}} 5^{\beta_{i}} n_{0}$ with $\left(10, n_{0}\right)=1$. Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-85}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}1,9(\bmod 20) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 13,17(\bmod 20) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i}, \\ 3,7(\bmod 20) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i}, \\ 11,19(\bmod 20) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i} .\end{cases}
$$

Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-85}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
Theorem 4.5. Let $A_{1}=[1,0,133], A_{2}=[2,2,67], A_{7}=[7,0,19]$ and $A_{14}=[14,14,13]=[13,12,13]$. Let $i \in\{1,2,7,14\}, n \in \mathbb{N}$ and in $=$ $2^{\alpha_{i}} 7^{\beta_{i}} n_{0}$ with $\left(14, n_{0}\right)=1$. Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-133}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}1,9,25(\bmod 28) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \mid \beta_{i} \\ 3,19,27(\bmod 28) & \text { if } 2 \mid \alpha_{i} \text { and } 2 \nmid \beta_{i} \\ 11,15,23(\bmod 28) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \mid \beta_{i} \\ 5,13,17(\bmod 28) & \text { if } 2 \nmid \alpha_{i} \text { and } 2 \nmid \beta_{i}\end{cases}
$$

Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-133}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
THEOREM 4.6. Let $A_{1}=[1,0,253], A_{2}=[2,2,127], A_{11}=[11,0,23]$ and $A_{22}=[22,22,17]=[17,12,17]$. Let $i \in\{1,2,11,22\}, n \in \mathbb{N}$ and in $=$ $2^{\alpha_{i}} 11^{\beta_{i}} n_{0}$ with $\left(22, n_{0}\right)=1$. Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-253}{q}\right)=-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{\alpha_{i}+\beta_{i}}$ and $\left(\frac{n_{0}}{11}\right)=(-1)^{\alpha_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-253}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 4.7. Let $m \in\{13,29,37,53\}, i \in\{1,3,5,15\}, n \in \mathbb{N}$ and in $=$ $3^{\alpha_{i}} 5^{\beta_{i}} n_{0}$ with $\left(15, n_{0}\right)=1$. Then $R([i, i,(i+15 m / i) / 4], n)>0$ if and only
if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-15 m}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{[(m-2) / 3] \alpha_{i}+\beta_{i}}$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+[(m-3) / 5] \beta_{i}}$. Moreover, if $R([i, i,(i+15 m / i) / 4], n)>0$, then $R([i, i,(i+15 m / i) / 4], n)=2 \prod_{\left(\frac{-15 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 4.8. Let $i \in\{1,3,7,21\}, n \in \mathbb{N}$ and in $=3^{\alpha_{i}} 7^{\beta_{i}} n_{0}$ with $\left(21, n_{0}\right)=1$. Then $R([i, i,(i+483 / i) / 4], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-483}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}+\beta_{i}}$. Moreover, if $R([i, i,(i+483 / i) / 4], n)>0$, then $R([i, i,(i+483 / i) / 4], n)=$ $2 \prod_{\left(\frac{-483}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 4.9. Let $i \in\{1,5,7,35\}, n \in \mathbb{N}$ and in $=5^{\alpha_{i}} 7^{\beta_{i}} n_{0}$ with $\left(35, n_{0}\right)=1$. Then $R([i, i,(i+595 / i) / 4], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-595}{q}\right)=-1,\left(\frac{n_{0}}{5}\right)=(-1)^{\beta_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}}$. Moreover, if $R([i, i,(i+595 / i) / 4], n)>0$, then $R([i, i,(i+595 / i) / 4], n)=$ $2 \prod_{\left(\frac{-595}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 4.10. Let $i \in\{1,3,11,33\}$, $n \in \mathbb{N}$ and in $=3^{\alpha_{i}} 11^{\beta_{i}} n_{0}$ with $\left(33, n_{0}\right)=1$. Then $R([i, i,(i+627 / i) / 4], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-627}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\beta_{i}}$ and $\left(\frac{n_{0}}{11}\right)=(-1)^{\beta_{i}}$. Moreover, if $R([i, i,(i+627 / i) / 4], n)>0$, then $R([i, i,(i+627 / i) / 4], n)=$ $2 \prod_{\left(\frac{-627}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 4.11. Let $i \in\{1,5,11,55\}, n \in \mathbb{N}$ and in $=5^{\alpha_{i}} 11^{\beta_{i}} n_{0}$ with $\left(55, n_{0}\right)=1$. Then $R([i, i,(i+715 / i) / 4], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-715}{q}\right)=-1,\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}}$ and $\left(\frac{n_{0}}{11}\right)=(-1)^{\beta_{i}}$. Moreover, if $R([i, i,(i+715 / i) / 4], n)>0$, then $R([i, i,(i+715 / i) / 4], n)=$ $2 \prod_{\left(\frac{-715}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 4.12. Let $i \in\{1,5,7,35\}, n \in \mathbb{N}$ and in $=5^{\alpha_{i}} 7^{\beta_{i}} n_{0}$ with $\left(35, n_{0}\right)=1$. Then $R([i, i,(i+1435 / i) / 4], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1435}{q}\right)=-1,\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}}$. Moreover, if $R([i, i,(i+1435 / i) / 4], n)>0$, then $R([i, i,(i+1435 / i) / 4], n)=$ $2 \prod_{\left(\frac{-1435}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

5. Formulas for $t_{n}(a, b)$ when $4 \nmid a+b$ and $H(-4 a b) \cong C_{2} \times C_{2}$

TheOrem 5.1. Let $n \in \mathbb{N}, a \in\{1,3\}, b \in\{7,11,19,31,59\}$ and $4 n+$ $(a+3 b / a) / 2=3^{\beta} n_{0}\left(3 \nmid n_{0}\right)$. Then $t_{n}(a, 3 b / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3 b}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}1(\bmod 3) & \text { if } b \in\{11,59\} \text { and } \beta \equiv(a+1) / 2(\bmod 2) \\ 2(\bmod 3) & \text { otherwise }\end{cases}
$$

Moreover, if $t_{n}(a, 3 b / a)>0$, then $t_{n}(a, 3 b / a)=\frac{1}{2} \prod_{\left(\frac{-3 b}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Proof. As $b \equiv 3(\bmod 4)$, we have $a+3 b / a \equiv 2(\bmod 4)$. Thus, by Theorem 2.3 we have $4 t_{n}(a, 3 b / a)=R([a, 0,3 b / a], 8 n+a+3 b / a)$. Since $a(8 n+a+3 b / a)=2 \cdot 3^{\beta+(a-1) / 2} n_{0}$, applying Theorem 4.1 we deduce that $t_{n}(a, 3 b / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3 b}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}(3 b+1) / 2(\bmod 12) & \text { if } 2 \mid \beta+(a-1) / 2 \tag{5.1}\\ (b+3) / 2(\bmod 12) & \text { if } 2 \nmid \beta+(a-1) / 2\end{cases}
$$

From $4 n+(a+3 b / a) / 2=3^{\beta} n_{0}$ we know that $n_{0} \equiv(3 b+1) / 2$ or $(b+3) / 2(\bmod 4)$ according as $2 \mid \beta+(a-1) / 2$ or $2 \nmid \beta+(a-1) / 2$. Thus, (5.1) is equivalent to

$$
\begin{aligned}
n_{0} & \equiv \begin{cases}(3 b+1) / 2 \equiv 2(\bmod 3) & \text { if } 2 \mid \beta+(a-1) / 2 \\
(b+3) / 2 \equiv 2 b(\bmod 3) & \text { if } 2 \nmid \beta+(a-1) / 2\end{cases} \\
& \equiv \begin{cases}1(\bmod 3) & \text { if } b \in\{11,59\} \text { and } \beta \equiv(a+1) / 2(\bmod 2), \\
2(\bmod 3) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence the result follows from Theorem 4.1.
From Theorems 4.2-4.6 and 2.3 one can similarly deduce the following results.

TheOrem 5.2. Let $n \in \mathbb{N}$, $m \in\{5,7,13,17\}$ and $a \in\{1,2,3,6\}$. If $8 n+a+6 m / a=3^{\beta} n_{0}\left(3 \nmid n_{0}\right)$, then $t_{n}(a, 6 m / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-6 m}{q}\right)=-1$ and

$$
n_{0} \equiv \begin{cases}(-1)^{a+1}(\bmod 3) & \text { if } m \in\{5,17\} \\ (-1)^{\beta} \mu(a)(\bmod 3) & \text { if } m \in\{7,13\}\end{cases}
$$

Moreover, if $t_{n}(a, 6 m / a)>0$, then $t_{n}(a, 6 m / a)=\frac{1}{2} \prod_{\left(\frac{-6 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
TheOrem 5.3. Let $n \in \mathbb{N}, m \in\{7,13,19\}, a \in\{1,2,5,10\}$ and $8 n+a+$ $10 \mathrm{~m} / a=5^{\beta} n_{0}\left(5 \nmid n_{0}\right)$. Then $t_{n}(a, 10 m / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-10 m}{q}\right)=-1$ and

$$
\left(\frac{n_{0}}{5}\right)= \begin{cases}(-1)^{a+1} & \text { if } m=7,13 \\ (-1)^{\beta} \mu(a) & \text { if } m=19\end{cases}
$$

Moreover, if $t_{n}(a, 10 m / a)>0$, then $t_{n}(a, 10 m / a)=\frac{1}{2} \prod_{\left(\frac{-10 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
TheOrem 5.4. Let $n \in \mathbb{N}, a \in\{1,5\}$ and $4 n+(a+85 / a) / 2=5{ }^{\beta} n_{0}$ $\left(5 \nmid n_{0}\right)$. Then $t_{n}(a, 85 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-85}{q}\right)=-1$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\beta+1} \mu(a)$. Moreover, if $t_{n}(a, 85 / a)>0$, then $t_{n}(a, 85 / a)=\frac{1}{2} \prod_{\left(\frac{-85}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 5.5. Let $n \in \mathbb{N}, a \in\{1,7\}$ and $4 n+(a+133 / a) / 2=7^{\beta} n_{0}$ $\left(7 \nmid n_{0}\right)$. Then $t_{n}(a, 133 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q
with $\left(\frac{-133}{q}\right)=-1$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta} \mu(a)$. Moreover, if $t_{n}(a, 133 / a)>0$, then $t_{n}(a, 133 / a)=\frac{1}{2} \prod_{\left(\frac{-133}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

ThEOREM 5.6. Let $n \in \mathbb{N}, a \in\{1,11\}$ and $4 n+(a+253 / a) / 2=$ $11^{\beta} n_{0}\left(11 \nmid n_{0}\right)$. Then $t_{n}(a, 253 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-253}{q}\right)=-1$ and $n_{0} \equiv 2,6,7,8,10(\bmod 11)$. Moreover, if $t_{n}(a, 253 / a)>0$, then $t_{n}(a, 253 / a)=\frac{1}{2} \prod_{\left(\frac{-253}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
6. Formulas for $R(K, n)$ when $K \in H(d), d<0, f(d)=1$ and $H(d) \cong C_{2} \times C_{2} \times C_{2}$

THEOREM 6.1. Let $i, n \in \mathbb{N}, i \mid 30$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} 5^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 30\right)=1$. Let $m \in\{7,11,23\}$ and

$$
A_{i}= \begin{cases}{[i, 0,15 m / i]} & \text { if } 2 \nmid i \\ {\left[i, i, \frac{1}{2}\left(\frac{i}{2}+\frac{15 m}{i / 2}\right)\right]} & \text { if } 2 \mid i\end{cases}
$$

Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-15 m}{q}\right)=-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{((m+1) / 4) \alpha_{i}+\beta_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+[(m+2) / 3] \beta_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}+[(m-3) / 5] \gamma_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=$ $2 \prod_{\left(\frac{-15 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Proof. It is known that $f(-60 m)=1$ and $H(-60 m)=\left\{A_{k}: k \in\{1,2\right.$, $3,5,6,10,15,30\}\} \cong C_{2} \times C_{2} \times C_{2}$. If $2 \nmid \operatorname{ord}_{q} n_{0}$ for some prime q with $\left(\frac{-15 m}{q}\right)=-1$, then $2 \nmid \operatorname{ord}_{q} n$ and $\left(\frac{-60 m}{q}\right)=-1$. Thus, applying Lemma 2.1 we have $N(n,-60 m)=2 \delta(n,-60 m)=0$ and so $R\left(A_{i}, n\right)=0$.

Suppose that $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-15 m}{q}\right)=-1$. From Lemma 2.1 we have $N\left(n_{0},-60 m\right)>0$. Now it is easily seen that $R\left(A_{k}, n_{0}\right)$ >0 depends only on the values of $\left(\frac{-1}{n_{0}}\right),\left(\frac{n_{0}}{3}\right)$ and $\left(\frac{n_{0}}{5}\right)$ given by Table 6.1.

Table 6.1. Criteria for $R\left(A_{k}, n_{0}\right)>0$

k	A_{k}	$\left(\frac{-1}{n_{0}}\right)$	$\left(\frac{n_{0}}{3}\right)$	$\left(\frac{n_{0}}{5}\right)$
1	$[1,0,15 m]$	1	1	1
2	$\left[2,2, \frac{1+15 m}{2}\right]$	$(-1)^{(m+1) / 4}$	-1	-1
3	$[3,0,5 m]$	-1	$(-1)^{[(m+2) / 3]}$	-1
5	$[5,0,3 m]$	1	-1	$(-1)^{[(m-3) / 5]}$
6	$\left[6,6, \frac{3+5 m}{2}\right]$	$-(-1)^{(m+1) / 4}$	$-(-1)^{[(m+2) / 3]}$	1
10	$\left[10,10, \frac{5+3 m}{2}\right]$	$(-1)^{(m+1) / 4}$	1	$-(-1)^{[(m-3) / 5]}$
15	$[15,0, m]$	-1	$-(-1)^{[(m+2) / 3]}$	$-(-1)^{[(m-3) / 5]}$
30	$\left[30,30, \frac{15+m}{2}\right]$	$-(-1)^{(m+1) / 4}$	$(-1)^{[(m+2) / 3]}$	$(-1)^{[(m-3) / 5]}$

Set $k_{i}=2^{\frac{1-(-1)^{\alpha_{i}}}{2}} 3^{\frac{1-(-1)^{\beta_{i}}}{2}} 5^{\frac{1-(-1)^{\gamma_{i}}}{2}}$. By Lemma 3.3 we have $\varphi_{k_{i}, 1}\left(A_{1}\right)$ $=A_{k_{i}}$. Thus applying Theorems 3.2 and 3.3 we get

$$
R\left(A_{i}, n\right)=R\left(A_{1}, i n\right)=R\left(\varphi_{k_{i}, 1}\left(A_{1}\right), n_{0}\right)=R\left(A_{k_{i}}, n_{0}\right)
$$

Hence, using the above we deduce

$$
\begin{aligned}
R\left(A_{i}, n\right)>0 \Leftrightarrow & R\left(A_{k_{i}}, n_{0}\right)>0 \\
\Leftrightarrow & \left(\frac{-1}{n_{0}}\right)=(-1)^{((m+1) / 4) \alpha_{i}+\beta_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+[(m+2) / 3] \beta_{i}+\gamma_{i}} \\
& \text { and }\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}+[(m-3) / 5] \gamma_{i}} .
\end{aligned}
$$

If $R\left(A_{i}, n\right)>0$, by Theorem 3.1 we have

$$
R\left(A_{i}, n\right)=w(-60 m) \prod_{\left(\frac{-60 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right)=2 \prod_{\left(\frac{-15 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)
$$

So the theorem is proved.
In a similar way one can prove the following results.
THEOREM 6.2. Let $i, n \in \mathbb{N}, i \mid 42$ and $i n=2^{\alpha_{i}} 3^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 42\right)=1$. Let

$$
A_{i}= \begin{cases}{[i, 0,273 / i]} & \text { if } 2 \nmid i, \\ {\left[i, i,\left(i^{2}+1092\right) /(4 i)\right]} & \text { if } 2 \mid i .\end{cases}
$$

Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-273}{q}\right)=$ $-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{\beta_{i}+\gamma_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-273}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

THEOREM 6.3. Let $i, n \in \mathbb{N}, i \mid 42$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 42\right)=1$. Let

$$
A_{i}= \begin{cases}{[i, 0,357 / i]} & \text { if } 2 \nmid i \\ {\left[i, i,\left(i^{2}+1428\right) /(4 i)\right]} & \text { if } 2 \mid i\end{cases}
$$

Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-357}{q}\right)$ $=-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\beta_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-357}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 6.4. Let $i, n \in \mathbb{N}, i \mid 70$ and in $=2^{\alpha_{i}} 5^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 70\right)=1$. Let

$$
A_{i}= \begin{cases}{[i, 0,385 / i]} & \text { if } 2 \nmid i \\ {\left[i, i,\left(i^{2}+1540\right) /(4 i)\right]} & \text { if } 2 \mid i\end{cases}
$$

Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-385}{q}\right)$ $=-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{\gamma_{i}},\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{i}+\gamma_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-385}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

TheOrem 6.5. Let $i, n \in \mathbb{N}, i \mid 30$ and $i n=2^{\alpha_{i}} 3^{\beta_{i}} 5^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 30\right)=1$. Then $R([i, 0,210 / i], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-210}{q}\right)=-1,\left(\frac{-2}{n_{0}}\right)=(-1)^{\gamma_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}}$. Moreover, if $R([i, 0,210 / i], n)>0$, then $R([i, 0,210 / i], n)=2 \prod_{\left(\frac{-210}{p}\right)=1}(1+$ $\operatorname{ord}_{p} n_{0}$).

THEOREM 6.6. Let $i, n \in \mathbb{N}, i \mid 30$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} 5^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 30\right)=1$. Then $R([i, 0,330 / i], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-330}{q}\right)=-1,\left(\frac{-2}{n_{0}}\right)=(-1)^{\alpha_{i}+\gamma_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}}$. Moreover, if $R([i, 0,330 / i], n)>0$, then $R([i, 0,330 / i], n)=2 \prod_{\left(\frac{-330}{p}\right)=1}(1+$ $\operatorname{ord}_{p} n_{0}$).

THEOREM 6.7. Let $i, n \in \mathbb{N}, i \mid 42$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 42\right)=1$. Then $R([i, 0,462 / i], n)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-462}{q}\right)=-1,\left(\frac{2}{n_{0}}\right)=(-1)^{\beta_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{i}+\gamma_{i}}$. Moreover, if $R([i, 0,462 / i], n)>0$, then $R([i, 0,462 / i], n)=2 \prod_{\left(\frac{-462}{p}\right)=1}(1+$ $\operatorname{ord}_{p} n_{0}$).

THEOREM 6.8. Let $i, n \in \mathbb{N}, i \mid 105$ and in $=3^{\alpha_{i}} 5^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 105\right)$ $=1$. Then $R\left(\left[i, i,\left(i^{2}+1155\right) /(4 i)\right], n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1155}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\beta_{i}},\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}+\beta_{i}}$. Moreover, if $R\left(\left[i, i,\left(i^{2}+1155\right) /(4 i)\right], n\right)>0$, then $R([i, i$, $\left.\left.\left(i^{2}+1155\right) /(4 i)\right], n\right)=2 \prod_{\left(\frac{-1155}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

THEOREM 6.9. Let $i, n \in \mathbb{N}, i \mid 105$ and in $=3^{\alpha_{i}} 5^{\beta_{i}} 7^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 105\right)$ $=1$. Then $R\left(\left[i, i,\left(i^{2}+1995\right) /(4 i)\right], n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1995}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\beta_{i}},\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}}$. Moreover, if $R\left(\left[i, i,\left(i^{2}+1995\right) /(4 i)\right], n\right)>0$, then $R\left(\left[i, i,\left(i^{2}+1995\right) /(4 i)\right], n\right)=2 \prod_{\left(\frac{-1995}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 6.10. Let $i, n \in \mathbb{N}, i \mid 231$ and in $=3^{\alpha_{i}} 7^{\beta_{i}} 11^{\gamma_{i}} n_{0}$ with ($n_{0}, 231$) $=1$. Then $R\left(\left[i, i,\left(i^{2}+3003\right) /(4 i)\right], n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3003}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\gamma_{i}},\left(\frac{n_{0}}{7}\right)=(-1)^{\alpha_{i}}$ and $\left(\frac{n_{0}}{11}\right)=(-1)^{\beta_{i}}$. Moreover, if $R\left(\left[i, i,\left(i^{2}+3003\right) /(4 i)\right], n\right)>0$, then $R([i, i$, $\left.\left.\left(i^{2}+3003\right) /(4 i)\right], n\right)=2 \prod_{\left(\frac{-3003}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 6.11. Let $i, n \in \mathbb{N}, i \mid 195$ and in $=3^{\alpha_{i}} 5^{\beta_{i}} 13^{\gamma_{i}} n_{0}$ with $\left(n_{0}, 195\right)$ $=1$. Then $R\left(\left[i, i,\left(i^{2}+3315\right) /(4 i)\right], n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-3315}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{\beta_{i}},\left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}}$ and $\left(\frac{n_{0}}{13}\right)=(-1)^{\beta_{i}+\gamma_{i}}$. Moreover, if $R\left(\left[i, i,\left(i^{2}+3315\right) /(4 i)\right], n\right)>0$, then $R\left(\left[i, i,\left(i^{2}+3315\right) /(4 i)\right], n\right)=2 \prod_{\left(\frac{-3315}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
7. Formulas for $t_{n}(a, b)$ when $4 \nmid a+b$ and $H(-4 a b) \cong C_{2} \times C_{2} \times C_{2}$

Theorem 7.1. Let $m \in\{7,11,23\}$, $a \in\{1,3,5,15\}$ and $n \in \mathbb{N}$. If $a(4 n+(a+15 m / a) / 2)=3^{\beta} 5^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $5 \nmid n_{0}$, then $t_{n}(a, 15 m / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-15 m}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=$ $-(-1)^{[(m+2) / 3] \beta+\gamma}$ and $\left(\frac{n_{0}}{5}\right)=-(-1)^{\beta+[(m-3) / 5] \gamma}$. Moreover, if $t_{n}(a, 15 m / a)$ >0, then $t_{n}(a, 15 m / a)=\frac{1}{2} \prod_{\left(\frac{-15 m}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Proof. Since $(-1)^{(m+1) / 4} \equiv(1-m) / 2 \equiv\left(a^{2}+15 m\right) / 2 \equiv 4 n a+$ $\left(a^{2}+15 m\right) / 2=3^{\beta} 5^{\gamma} n_{0} \equiv(-1)^{\beta} n_{0}(\bmod 4)$, we have $\left(\frac{-1}{n_{0}}\right)=(-1)^{(m+1) / 4+\beta}$. As $a+15 m / a \equiv a+a \equiv 2(\bmod 4)$, by Theorem 2.3 we have $4 t_{n}(a, 15 m / a)=$ $R([a, 0,15 m / a], 8 n+a+15 m / a)$. Now applying the above and Theorem 6.1 we deduce the result.

In a similar way, using Theorems $6.2-6.7$ one can prove the following results.

Theorem 7.2. Let $n \in \mathbb{N}$ and $a \in\{1,3,7,21\}$. If $4 n+(a+273 / a) / 2=$ $3^{\beta} 7^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $7 \nmid n_{0}$, then $t_{n}(a, 273 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-273}{q}\right)=-1, n_{0} \equiv 2(\bmod 3)$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta}\left(\frac{2}{a}\right)$. Moreover, if $t_{n}(a, 273 / a)>0$, then $t_{n}(a, 273 / a)=\frac{1}{2} \prod_{\left(\frac{-273}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 7.3. Let $n \in \mathbb{N}$ and $a \in\{1,3,7,21\}$. If $4 n+(a+357 / a) / 2=$ $3^{\beta} 7^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $7 \nmid n_{0}$, then $t_{n}(a, 357 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-357}{q}\right)=-1$ and $\left(\frac{n_{0}}{7}\right)=-\left(\frac{n_{0}}{3}\right)=(-1)^{\beta}\left(\frac{2}{a}\right)$. Moreover, if $t_{n}(a, 357 / a)>0$, then $t_{n}(a, 357 / a)=\frac{1}{2} \prod_{\left(\frac{-357}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 7.4. Let $n \in \mathbb{N}$ and $a \in\{1,5,7,35\}$. If $4 n+(a+385 / a) / 2=$ $5^{\beta} 7^{\gamma} n_{0}$ with $5 \nmid n_{0}$ and $7 \nmid n_{0}$, then $t_{n}(a, 385 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-385}{q}\right)=-1$ and $\left(\frac{n_{0}}{7}\right)=-\left(\frac{n_{0}}{5}\right)=(-1)^{\beta+\gamma} \mu(a)$. Moreover, if $t_{n}(a, 385 / a)>0$, then $t_{n}(a, 385 / a)=\frac{1}{2} \prod_{\left(\frac{-385}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 7.5. Let $a, n \in \mathbb{N}, a \mid 30$ and $\frac{a}{(2, a)}(8 n+a+210 / a)=3^{\beta} 5^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $5 \nmid n_{0}$. Then $t_{n}(a, 210 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-210}{q}\right)=-1$ and $\left(\frac{n_{0}}{3}\right)=(-1)^{\beta}\left(\frac{n_{0}}{5}\right)=(-1)^{a-1+\gamma}$. Moreover, if $t_{n}(a, 210 / a)>0$, then $t_{n}(a, 210 / a)=\frac{1}{2} \prod_{\left(\frac{-210}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 7.6. Let $a, n \in \mathbb{N}, a \mid 30$ and $\frac{a}{(2, a)}(8 n+a+330 / a)=3^{\beta} 5^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $5 \nmid n_{0}$. Then $t_{n}(a, 330 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-330}{q}\right)=-1$ and $\left(\frac{n_{0}}{5}\right)=(-1)^{\gamma}\left(\frac{n_{0}}{3}\right)=(-1)^{a-1+\beta}$. Moreover, if $t_{n}(a, 330 / a)>0$, then $t_{n}(a, 330 / a)=\frac{1}{2} \prod_{\left(\frac{-330}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Theorem 7.7. Let $a, n \in \mathbb{N}, a \mid 42$ and $\frac{a}{(2, a)}(8 n+a+462 / a)=3^{\beta} 7^{\gamma} n_{0}$ with $3 \nmid n_{0}$ and $7 \nmid n_{0}$. Then $t_{n}(a, 462 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$
for every prime q with $\left(\frac{-462}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=(-1)^{a-1}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta+\gamma}$. Moreover, if $t_{n}(a, 462 / a)>0$, then $t_{n}(a, 462 / a)=\frac{1}{2} \prod_{\left(\frac{-462}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.
8. Formulas for $t_{n}(a, 1365 / a)$

Theorem 8.1. Let $i, n \in \mathbb{N}, i \mid 210$ and in $=2^{\alpha_{i}} 3^{\beta_{i}} 5^{\gamma_{i}} 7^{\delta_{i}} n_{0}$ with $\left(n_{0}, 210\right)$ $=1$. Set $A_{i}=[i, 0,1365 / i]$ or $\left[i, i,\left(i^{2}+5460\right) /(4 i)\right]$ according as $2 \nmid i$ or $2 \mid i$. Then $R\left(A_{i}, n\right)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1365}{q}\right)=-1,\left(\frac{-1}{n_{0}}\right)=(-1)^{\alpha_{i}+\beta_{i}+\delta_{i}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}},\left(\frac{n_{0}}{5}\right)=$ $(-1)^{\alpha_{i}+\beta_{i}+\gamma_{i}+\delta_{i}}$ and $\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{i}+\gamma_{i}+\delta_{i}}$. Moreover, if $R\left(A_{i}, n\right)>0$, then $R\left(A_{i}, n\right)=2 \prod_{\left(\frac{-1365}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Proof. It is known that $f(-5460)=1$ and $H(-5460)=\left\{A_{k}: k \in \mathbb{N}\right.$, $k \mid 210\} \cong C_{2} \times C_{2} \times C_{2} \times C_{2}$. If $2 \nmid \operatorname{ord}_{q} n_{0}$ for some prime q with $\left(\frac{-1365}{q}\right)$ $=-1$, we see that $2 \nmid \operatorname{ord}_{q} n$ and $\left(\frac{-5460}{q}\right)=-1$. Thus, applying Lemma 2.1 we have $N(n,-5460)=2 \delta(n,-5460)=0$ and so $R\left(A_{i}, n\right)=0$.

Suppose that $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1365}{q}\right)=-1$. From Lemma 2.1 we have $N\left(n_{0},-5460\right)>0$. Now it is easily seen that $R\left(A_{i}, n_{0}\right)$ >0 depends only on the values of $\left(\frac{-1}{n_{0}}\right),\left(\frac{n_{0}}{3}\right),\left(\frac{n_{0}}{5}\right)$ and $\left(\frac{n_{0}}{7}\right)$ given by the following table.

Table 8.1. Criteria for $R\left(A_{i}, n_{0}\right)>0$

i	A_{i}	$\left(\frac{-1}{n_{0}}\right)$	$\left(\frac{n_{0}}{3}\right)$	$\left(\frac{n_{0}}{5}\right)$	$\left(\frac{n_{0}}{7}\right)$
1	$[1,0,1365]$	1	1	1	1
2	$[2,2,683]$	-1	-1	-1	1
3	$[3,0,455]$	-1	-1	-1	-1
5	$[5,0,273]$	1	-1	-1	-1
6	$[6,6,229]$	1	1	1	-1
7	$[7,0,195]$	-1	1	-1	-1
10	$[10,10,139]$	-1	1	1	-1
14	$[14,14,101]$	1	-1	1	-1
15	$[15,0,91]$	-1	1	1	1
21	$[21,0,65]$	1	-1	1	1
30	$[30,30,53]$	1	-1	-1	1
35	$[35,0,39]$	-1	-1	1	1
42	$[42,42,43]$	-1	1	-1	1
70	$[70,70,37]$	1	1	-1	1
105	$[105,0,13]$	1	1	-1	-1
210	$[210,210,59]$	-1	-1	1	-1

Set

$$
k=2^{\frac{1-(-1)^{\alpha_{1}}}{2}} 3^{\frac{1-(-1)^{\beta_{1}}}{2}} 5^{\frac{1-(-1)^{\gamma_{1}}}{2}} 7^{\frac{1-(-1)^{\delta_{1}}}{2}} .
$$

By Lemma 3.3 we have $\varphi_{k, 1}\left(A_{1}\right)=A_{k}$. Thus applying Theorem 3.2 we get

$$
R\left(A_{1}, n\right)=R\left(\varphi_{k, 1}\left(A_{1}\right), n_{0}\right)=R\left(A_{k}, n_{0}\right)
$$

Hence, using the above we deduce

$$
\begin{aligned}
R\left(A_{1}, n\right)>0 \Leftrightarrow & R\left(A_{k}, n_{0}\right)>0 \\
\Leftrightarrow & \left(\frac{-1}{n_{0}}\right)=(-1)^{\alpha_{1}+\beta_{1}+\delta_{1}},\left(\frac{n_{0}}{3}\right)=(-1)^{\alpha_{1}+\beta_{1}+\gamma_{1}} \\
& \left(\frac{n_{0}}{5}\right)=(-1)^{\alpha_{1}+\beta_{1}+\gamma_{1}+\delta_{1}} \text { and }\left(\frac{n_{0}}{7}\right)=(-1)^{\beta_{1}+\gamma_{1}+\delta_{1}}
\end{aligned}
$$

To see the criteria for $R\left(A_{i}, n\right)>0(i>1)$, we note that $R\left(A_{i}, n\right)=$ $R\left(A_{1}, i n\right)$ by Theorem 3.3.

If $R\left(A_{i}, n\right)>0$, by Theorem 3.1 we have

$$
R\left(A_{i}, n\right)=w(-5460) \prod_{\left(\frac{-5460}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right)=2 \prod_{\left(\frac{-1365}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)
$$

So the theorem is proved.
Theorem 8.2. Let $a, n \in \mathbb{N}, a \mid 105$ and $4 a n+\left(a^{2}+1365\right) / 2=3^{\beta} 5^{\gamma} 7^{\delta} n_{0}$ with $\left(n_{0}, 105\right)=1$. Then $t_{n}(a, 1365 / a)>0$ if and only if $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{-1365}{q}\right)=-1,\left(\frac{n_{0}}{3}\right)=-(-1)^{\beta+\gamma}$ and $\left(\frac{n_{0}}{7}\right)=$ $-\left(\frac{n_{0}}{5}\right)=(-1)^{\beta+\gamma+\delta}$. Moreover, if $t_{n}(a, 1365 / a)>0$, then $t_{n}(a, 1365 / a)=$ $\frac{1}{2} \prod_{\left(\frac{-1365}{p}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right)$.

Proof. From Theorem 2.3(i) we know that

$$
4 t_{n}(a, 1365 / a)=R([a, 0,1365 / a], 8 n+a+1365 / a)
$$

Since $4 a n+\left(a^{2}+1365\right) / 2=3^{\beta} 5^{\gamma} 7^{\delta} n_{0}$ we see that $(-1)^{\beta+\delta} n_{0} \equiv 3^{\beta} 5^{\gamma} 7^{\delta} n_{0} \equiv$ $\left(a^{2}+1365\right) / 2 \equiv 3(\bmod 4)$ and so $\left(\frac{-1}{n_{0}}\right)=-(-1)^{\beta+\delta}$. As $a(8 n+a+1365 / a)=$ $2 \cdot 3^{\beta} 5^{\gamma} 7^{\delta} n_{0}$, using Theorem 8.1 and the above we get

$$
\begin{aligned}
& t_{n}(a, 1365 / a)>0 \\
& \quad \Leftrightarrow R([a, 0,1365 / a], 8 n+a+1365 / a)>0 \\
& \quad \Leftrightarrow\left(\frac{n_{0}}{3}\right)=-(-1)^{\beta+\gamma},\left(\frac{n_{0}}{5}\right)=-(-1)^{\beta+\gamma+\delta},\left(\frac{n_{0}}{7}\right)=(-1)^{\beta+\gamma+\delta}
\end{aligned}
$$

When $t_{n}(a, 1365 / a)>0$, using Theorem 8.1 we deduce the remaining result.
9. Formulas for $R(A, n)$ when $d<0$ and $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$. From [6, Proposition 11.1] we know that all negative discriminants d with
$H(d) \cong C_{4}$ are:

$$
\begin{aligned}
& -39,-55,-56,-63,-68,-80,-128,-136,-144,-155,-156 \\
& -171,-184,-196,-203,-208,-219,-220,-252,-256,-259 \\
& -275,-291,-292,-323,-328,-355,-363,-387,-388,-400 \\
& -475,-507,-568,-592,-603,-667,-723,-763,-772,-955 \\
& -1003,-1027,-1227,-1243,-1387,-1411,-1467,-1507,-1555 .
\end{aligned}
$$

From [6, Theorem 11.3] and Lemma 2.1 we deduce the following result.
Lemma 9.1. Let d be a discriminant with conductor f. Suppose $H(d)=$ $\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I$ and $n \in \mathbb{N}$. Then

$$
R(A, n)= \begin{cases}0 & \text { if }\left(n, f^{2}\right) \text { is not a square } \\ N(n, d) / 4 & \text { if }\left(n, f^{2}\right)=m^{2} \text { with } m \in \mathbb{N} \text { and } h\left(d / m^{2}\right)=1 \\ \left(1-(-1)^{\sum_{p \in R\left(A_{0}\right)} \operatorname{ord}_{p} n}\right) N(n, d) / 4 \\ & \text { if }\left(n, f^{2}\right)=m^{2} \text { with } m \in \mathbb{N} \text { and } h\left(d / m^{2}\right)>1\end{cases}
$$

where A_{0} is a generator of $H\left(d / m^{2}\right)$. Hence $R(A, n)=0, N(n, d) / 4$ or $N(n, d) / 2$.

Lemma 9.2. Let d be a discriminant such that $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I$. Then no prime divisor of d can be represented by A.

Proof. Suppose that p is a prime divisor of d and $f=f(d)$. If $p \mid f$, by [6, Lemma $5.2(\mathrm{i})$] we know that p is not represented by any class in $H(d)$. If $p \nmid f$, by [6, Lemma 5.2(ii)] we know that p is represented by exactly one class $K \in H(d)$ and $K=K^{-1}$. Thus p is not represented by A. This proves the lemma.

Lemma 9.3. Let d be a discriminant and $a, b, c \in \mathbb{Z}$ with $b^{2}-4 a c=d$. Let p be a prime such that $p=a x^{2}+b x y+c y^{2}$ for some $x, y \in \mathbb{Z}$. Let q be an odd prime such that $q \mid d$ and $q \nmid a p$. Then $\left(\frac{p}{q}\right)=\left(\frac{a}{q}\right)$.

Proof. As $4 a p=(2 a x+b y)^{2}-d y^{2}$ we obtain the result.
Lemma 9.4. Let d be a discriminant with conductor f and $d_{0}=d / f^{2}$. Let $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I, n \in \mathbb{N}$ and $(n, f)=1$. Suppose that q is an odd prime divisor of d such that for any prime $p \neq q$,

$$
p \in R(I) \cup R\left(A^{2}\right) \Rightarrow\left(\frac{p}{q}\right)=1, \quad \text { and } \quad p \in R(A) \Rightarrow\left(\frac{p}{q}\right)=-1
$$

Suppose $n=q^{\alpha} n_{0}\left(q \nmid n_{0}\right)$. Then

$$
R(A, n)=\left(1-\left(\frac{n_{0}}{q}\right)\right) \frac{w(d)}{4} \sum_{k \mid n}\left(\frac{d_{0}}{k}\right)
$$

Proof. As $(n, f)=1$, by Lemmas 2.1 and 9.1 we have

$$
\begin{aligned}
R(A, n) & =\left(1-(-1)^{\sum_{p \in R(A)} \operatorname{ord}_{p} n}\right) \frac{N(n, d)}{4} \\
& =\left(1-(-1)^{\sum_{p \in R(A)} \operatorname{ord}_{p} n}\right) \frac{w(d)}{4} \sum_{k \mid n}\left(\frac{d_{0}}{k}\right)
\end{aligned}
$$

If there is a prime p such that $\left(\frac{d}{p}\right)=-1$ and $2 \nmid \operatorname{ord}_{p} n$, by (2.1) we have $\sum_{k \mid n}\left(\frac{d_{0}}{k}\right)=\sum_{k \mid n}\left(\frac{d}{k}\right)=0$ and so $R(A, n)=0$. Hence the result holds. Now assume $2 \mid \operatorname{ord}_{p} n$ for every prime p with $\left(\frac{d}{p}\right)=-1$. If p is a prime such that $p \mid d$ and $p \mid n$, as $(n, f)=1$ we have $p \nmid f$. From Lemma 9.2 and its proof we know that $p \in R(I) \cup R\left(A^{2}\right)$ and $p \notin R(A)$. Thus $q \notin R(A)$. Hence

$$
n_{0}=\prod_{\left(\frac{d}{p}\right)=-1} p^{\operatorname{ord}_{p} n} \prod_{p \in R(I) \cup R\left(A^{2}\right), p \neq q} p^{\operatorname{ord}_{p} n} \prod_{p \in R(A)} p^{\operatorname{ord}_{p} n}
$$

and therefore

$$
\begin{aligned}
\left(\frac{n_{0}}{q}\right) & =\prod_{\left(\frac{d}{p}\right)=-1}\left(\frac{p}{q}\right)^{\operatorname{ord}_{p} n} \prod_{p \in R(I) \cup R\left(A^{2}\right), p \neq q}\left(\frac{p}{q}\right)^{\operatorname{ord}_{p} n} \prod_{p \in R(A)}\left(\frac{p}{q}\right)^{\operatorname{ord}_{p} n} \\
& =\prod_{p \in R(A)}(-1)^{\operatorname{ord}_{p} n}=(-1)^{\sum_{p \in R(A)} \operatorname{ord}_{p} n}
\end{aligned}
$$

Now putting the above together we obtain the result.
Lemma 9.5. Let d be a discriminant with conductor f and $4 \mid d$. Let $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I, n \in \mathbb{N}$ and $(n, f)=1$. Suppose $a \in$ $\{-1,2,-2\}, n=2^{\alpha} n_{0}\left(2 \nmid n_{0}\right)$ and for any odd prime p,

$$
p \in R(I) \cup R\left(A^{2}\right) \Rightarrow\left(\frac{a}{p}\right)=1, \quad \text { and } \quad p \in R(A) \Rightarrow\left(\frac{a}{p}\right)=-1 .
$$

Then

$$
R(A, n)=\left(1-\left(\frac{a}{n_{0}}\right)\right) \frac{w(d)}{4} \sum_{k \mid n}\left(\frac{d / f^{2}}{k}\right)
$$

Proof. Replacing $q,\left(\frac{n_{0}}{q}\right),\left(\frac{p}{q}\right)$ with $2,\left(\frac{a}{n_{0}}\right),\left(\frac{a}{p}\right)$ in the proof of Lemma 9.4 we deduce the result.

Lemma 9.6. Let d be a negative discriminant with conductor f, $d_{0}=$ d / f^{2} and $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I$. Let $n \in \mathbb{N}$ and $\left(n, f^{2}\right)=m^{2}$ for $m \in \mathbb{N}$. Suppose $h\left(d / m^{2}\right)=1$. Then

$$
R(A, n)=w\left(\frac{d}{m^{2}}\right) \sum_{k \mid n / m^{2}}\left(\frac{d_{0}}{k}\right) .
$$

Proof. From Lemmas 9.1 and 2.1 we have

$$
R(A, n)=\frac{N(n, d)}{4}=\frac{1}{4} \cdot m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \cdot w(d) \sum_{k \mid n / m^{2}}\left(\frac{d_{0}}{k}\right)
$$

As $h(d)=4$ and $h\left(d / m^{2}\right)=1$, by [6, Lemma 3.5] we have

$$
m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \cdot w(d)=\frac{h(d) w\left(d / m^{2}\right)}{h\left(d / m^{2}\right)}=4 w\left(\frac{d}{m^{2}}\right)
$$

So the result follows.
Lemma 9.7. Let d be a negative discriminant with conductor $f, d_{0}=$ d / f^{2} and $H(d)=\left\{I, A, A^{2}, A^{3}\right\}$ with $A^{4}=I$. Let $n \in \mathbb{N}$ and $\left(n, f^{2}\right)=m^{2}$ for $m \in \mathbb{N}$. Suppose $d / m^{2} \neq-60$ and $h\left(d / m^{2}\right)=2$. Then

$$
R(A, n)=\left(1-\chi\left(\frac{n}{m^{2}}, \frac{d}{m^{2}}\right)\right) \sum_{k \mid n / m^{2}}\left(\frac{d_{0}}{k}\right)
$$

where $\chi\left(n^{\prime}, d^{\prime}\right) \in\{1,-1\}$ is given by [6, Table 9.2].
Proof. For $K \in H(d)$, by [6, Lemma 2.1(ii)] we may assume $K=$ $\left[a, b m, c m^{2}\right]$ with $(a, m)=1$. We recall that $\varphi_{1, m}\left(\left[a, b m, c m^{2}\right]\right)=[a, b, c]$. By [6, Theorem 2.1], $\varphi_{1, m}$ is a surjective homomorphism from $H(d)$ to $H\left(d / m^{2}\right)$. Suppose $H\left(d / m^{2}\right)=\left\{I_{0}, A_{0}\right\}$ with $A_{0}^{2}=I_{0}$. Then clearly $\varphi_{1, m}(A)=A_{0}$. Now applying [6, Theorem 3.2] we obtain $R(A, n)=R\left(A_{0}, n / m^{2}\right)$. As $d / m^{2}=d_{0}(f / m)^{2}$ and $\left(n / m^{2}, f / m\right)=1$, using (2.1) and [6, Theorem 9.3] we deduce $R\left(A_{0}, n / m^{2}\right)=\left(1-\chi\left(n / m^{2}, d / m^{2}\right)\right) \sum_{k \mid n / m^{2}}\left(\frac{d_{0}}{k}\right)$. So the result is true.

Theorem 9.1. Let $n \in \mathbb{N}$. Then

$$
\begin{array}{ll}
R([2,1,5], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n}\left(\frac{-39}{k}\right) \quad\left(n=3^{\alpha} n_{0}, 3 \nmid n_{0}\right), \\
R([2,1,7], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid n}\left(\frac{-55}{k}\right) \quad\left(n=5^{\alpha} n_{0}, 5 \nmid n_{0}\right), \\
R([3,2,5], n)=\frac{1}{2}\left(1-\left(\frac{2}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-56}{k}\right) \quad\left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([3,2,6], n)=\frac{1}{2}\left(1-\left(\frac{-1}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-68}{k}\right) \quad\left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([5,2,7], n)=\frac{1}{2}\left(1-\left(\frac{-2}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-136}{k}\right) \quad\left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right) .
\end{array}
$$

Proof. Clearly $H(-39)=\{[1,1,10],[2,1,5],[2,-1,5],[3,3,4]\} \cong C_{4}$ and $f(-39)=1$. Let $p \neq 3$ be a prime. If $p=x^{2}+x y+10 y^{2}$ or $3 x^{2}+3 x y+4 y^{2}$, by Lemma 9.3 we have $\left(\frac{p}{3}\right)=1$ and $\left(\frac{p}{13}\right)=0$, 1 . If $p=2 x^{2}+x y+5 y^{2}$, by Lemmas 9.2 and 9.3 we have $\left(\frac{p}{3}\right)=\left(\frac{p}{13}\right)=-1$. Thus taking $d=-39$, $f=1, A=[2,1,5]$ and $q=3$ in Lemma 9.4 we deduce the formula for $R([2,1,5], n)$.

It is known that $H(-55)=\{[1,1,14],[2,1,7],[2,-1,7],[4,3,4]\} \cong C_{4}$ and $f(-55)=1$. Let $p \neq 5$ be a prime. If $p=x^{2}+x y+14 y^{2}$ or $4 x^{2}+3 x y+4 y^{2}$, by Lemma 9.3 we have $\left(\frac{p}{5}\right)=1$ and $\left(\frac{p}{11}\right)=0$, 1 . If $p=2 x^{2}+x y+7 y^{2}$, by Lemmas 9.2 and 9.3 we have $\left(\frac{p}{5}\right)=\left(\frac{p}{11}\right)=-1$. Thus taking $d=-55, f=1$, $A=[2,1,7]$ and $q=5$ in Lemma 9.4 we deduce the formula for $R([2,1,7], n)$.

It is clear that $H(-56)=\{[1,0,14],[2,0,7],[3,2,5],[3,-2,5]\} \cong C_{4}$ and $f(-56)=1$. Let p be an odd prime. If $p=x^{2}+14 y^{2}$ or $2 x^{2}+7 y^{2}$, then clearly $\left(\frac{2}{p}\right)=1$ and $\left(\frac{-7}{p}\right)=0$, 1 . If $p=3 x^{2}+2 x y+5 y^{2}$, then clearly $\left(\frac{2}{p}\right)=\left(\frac{-7}{p}\right)=-1$. Hence taking $d=-56, f=1, A=[3,2,5]$ and $a=2$ in Lemma 9.5 we deduce the result for $R([3,2,5], n)$.

Clearly $H(-68)=\{[1,0,17],[2,2,9],[3,2,6],[3,-2,6]\} \cong C_{4}$ and $f(-68)$ $=1$. Let p be an odd prime. If $p=x^{2}+17 y^{2}$ or $2 x^{2}+2 x y+9 y^{2}$, then clearly $\left(\frac{-1}{p}\right)=1$ and $\left(\frac{17}{p}\right)=0,1$. If $p=3 x^{2}+2 x y+6 y^{2}$, then clearly $\left(\frac{-1}{p}\right)=-1$ and $\left(\frac{17}{p}\right)=-1$. Hence taking $d=-68, f=1, A=[3,2,6]$ and $a=-1$ in Lemma 9.5 we deduce the result for $R([3,2,6], n)$.

It is clear that $H(-136)=\{[1,0,34],[2,0,17],[5,2,7],[5,-2,7]\} \cong C_{4}$ and $f(-136)=1$. Let p be an odd prime. If $p=x^{2}+34 y^{2}$ or $2 x^{2}+17 y^{2}$, then clearly $\left(\frac{-2}{p}\right)=1$ and $\left(\frac{17}{p}\right)=0$, 1 . If $p=5 x^{2}+2 x y+7 y^{2}$, then clearly $\left(\frac{-2}{p}\right)=\left(\frac{17}{p}\right)=-1$. Hence taking $d=-136, f=1, A=[5,2,7]$ and $a=-2$ in Lemma 9.5 we deduce the result for $R([5,2,7], n)$.

By the above, the theorem is proved.
Using Lemmas 9.4 and 9.5 one can similarly prove the following results.
Theorem 9.2. Let $n \in \mathbb{N}$. Then

$$
\begin{array}{ll}
R([3,1,13], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid n}\left(\frac{-155}{k}\right) \quad\left(n=5^{\alpha} n_{0}, 5 \nmid n_{0}\right), \\
R([5,4,10], n)=\frac{1}{2}\left(1-\left(\frac{2}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-184}{k}\right) \quad\left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([3,1,17], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{7}\right)\right) \sum_{k \mid n}\left(\frac{-203}{k}\right) \quad\left(n=7^{\alpha} n_{0}, 7 \nmid n_{0}\right), \\
R([5,1,11], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n}\left(\frac{-219}{k}\right) \quad\left(n=3^{\alpha} n_{0}, 3 \nmid n_{0}\right) .
\end{array}
$$

Theorem 9.3. Let $n \in \mathbb{N}$. Then

$$
\begin{array}{ll}
R([5,1,13], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{7}\right)\right) \sum_{k \mid n}\left(\frac{-259}{k}\right) & \left(n=7^{\alpha} n_{0}, 7 \nmid n_{0}\right), \\
R([5,3,15], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n}\left(\frac{-291}{k}\right) & \left(n=3^{\alpha} n_{0}, 3 \nmid n_{0}\right), \\
R([7,4,11], n)=\frac{1}{2}\left(1-\left(\frac{-1}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-292}{k}\right) & \left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([3,1,27], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{17}\right)\right) \sum_{k \mid n}\left(\frac{-323}{k}\right) & \left(n=17^{\alpha} n_{0}, 17 \nmid n_{0}\right), \\
R([7,6,13], n)=\frac{1}{2}\left(1-\left(\frac{-2}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-328}{k}\right) & \left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right) .
\end{array}
$$

Theorem 9.4. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
R([7,3,13], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid n}\left(\frac{-355}{k}\right) & \left(n=5^{\alpha} n_{0}, 5 \nmid n_{0}\right), \\
R([7,2,14], n)=\frac{1}{2}\left(1-\left(\frac{-1}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-388}{k}\right) & \left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([11,2,13], n)=\frac{1}{2}\left(1-\left(\frac{2}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-568}{k}\right) & \left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([11,9,17], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{23}\right)\right) \sum_{k \mid n}\left(\frac{-667}{k}\right) & \left(n=23^{\alpha} n_{0}, 23 \nmid n_{0}\right), \\
R([11,5,17], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n}\left(\frac{-723}{k}\right) & \left(n=3^{\alpha} n_{0}, 3 \nmid n_{0}\right) .
\end{aligned}
$$

Theorem 9.5. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
R([13,11,17], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{7}\right)\right) \sum_{k \mid n}\left(\frac{-763}{k}\right) & \left(n=7^{\alpha} n_{0}, 7 \nmid n_{0}\right), \\
R([11,8,19], n)=\frac{1}{2}\left(1-\left(\frac{-1}{n_{0}}\right)\right) \sum_{k \mid n}\left(\frac{-772}{k}\right) & \left(n=2^{\alpha} n_{0}, 2 \nmid n_{0}\right), \\
R([7,5,35], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid n}\left(\frac{-955}{k}\right) & \left(n=5^{\alpha} n_{0}, 5 \nmid n_{0}\right),
\end{aligned}
$$

$$
\begin{aligned}
R([11,3,23], n) & =\frac{1}{2}\left(1-\left(\frac{n_{0}}{17}\right)\right) \sum_{k \mid n}\left(\frac{-1003}{k}\right) \quad\left(n=17^{\alpha} n_{0}, 17 \nmid n_{0}\right), \\
R([7,3,37], n) & =\frac{1}{2}\left(1-\left(\frac{n_{0}}{13}\right)\right) \sum_{k \mid n}\left(\frac{-1027}{k}\right) \quad\left(n=13^{\alpha} n_{0}, 13 \nmid n_{0}\right) .
\end{aligned}
$$

Theorem 9.6. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
R([11,7,29], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{3}\right)\right) \sum_{k \mid n}\left(\frac{-1227}{k}\right) \quad\left(n=3^{\alpha} n_{0}, 3 \nmid n_{0}\right), \\
R([17,7,19], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{11}\right)\right) \sum_{k \mid n}\left(\frac{-1243}{k}\right) \quad\left(n=11^{\alpha} n_{0}, 11 \nmid n_{0}\right), \\
R([13,11,29], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{19}\right)\right) \sum_{k \mid n}\left(\frac{-1387}{k}\right) \quad\left(n=19^{\alpha} n_{0}, 19 \nmid n_{0}\right), \\
R([5,3,71], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{17}\right)\right) \sum_{k \mid n}\left(\frac{-1411}{k}\right) \quad\left(n=17^{\alpha} n_{0}, 17 \nmid n_{0}\right), \\
R([13,1,29], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{11}\right)\right) \sum_{k \mid n}\left(\frac{-1507}{k}\right) \quad\left(n=11^{\alpha} n_{0}, 11 \nmid n_{0}\right), \\
R([17,3,23], n)=\frac{1}{2}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid n}\left(\frac{-1555}{k}\right) \quad\left(n=5^{\alpha} n_{0}, 5 \nmid n_{0}\right) .
\end{aligned}
$$

For a discriminant d and $n \in \mathbb{N}$ we recall that $\delta(n, d)=\sum_{k \mid n}\left(\frac{d}{k}\right)$.
Theorem 9.7. Let $n \in \mathbb{N}$ and $d_{0} \in\{-7,-19,-43,-67,-163\}$. Then

$$
R\left(\left[9,3,\left(1-d_{0}\right) / 4\right], n\right)= \begin{cases}\delta\left(n, d_{0}\right) & \text { if } 3 \mid n-2 \\ 2 \delta\left(n, d_{0}\right) & \text { if } 9 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $d=9 d_{0}$. Then we have $f(d)=3$ and $H(d)=\{[1,1,(1-d) / 4]$, $\left.\left[9,9,\left(9-d_{0}\right) / 4\right],\left[9,3,\left(1-d_{0}\right) / 4\right],\left[9,-3,\left(1-d_{0}\right) / 4\right]\right\}$. Clearly $H(d) \cong C_{4}$ and $\left[9,3,\left(1-d_{0}\right) / 4\right]$ is a generator of $H(d)$. As $\left(1-d_{0}\right) / 4 \equiv 2(\bmod 3)$, using Lemma 9.3 we see that a prime p is represented by $\left[9,3,\left(1-d_{0}\right) / 4\right]$ if and only if $\left(\frac{p}{3}\right)=-1$ and $\left(\frac{d_{0}}{p}\right)=\left(\frac{p}{-d_{0}}\right)=\left(\frac{9}{-d_{0}}\right)=1$, and $p=x^{2}+x y+\frac{1-d}{4} y^{2}$ or $9 x^{2}+9 x y+\frac{9-d_{0}}{4} y^{2}$ if and only if $\left(\frac{p}{3}\right)=1$ and $\left(\frac{d_{0}}{p}\right)=0,1$. Since $h\left(d_{0}\right)=1$, by Lemmas 9.1, 9.4 and 9.6 we have

$$
R\left(\left[9,3,\left(1-d_{0}\right) / 4\right], n\right)= \begin{cases}\frac{1}{2}\left(1-\left(\frac{n}{3}\right)\right) \sum_{k \mid n}\left(\frac{d_{0}}{k}\right) & \text { if } 3 \nmid n \\ 2 \sum_{k \mid n / 9}\left(\frac{d_{0}}{k}\right) & \text { if } 9 \mid n \\ 0 & \text { if } 3 \| n\end{cases}
$$

To complete the proof, we note that if $9 \mid n$ and $n=3^{\alpha} n_{0}\left(3 \nmid n_{0}\right)$, then

$$
\begin{equation*}
\sum_{k \mid n}\left(\frac{d_{0}}{k}\right)-\sum_{k \mid n / 9}\left(\frac{d_{0}}{k}\right)=\sum_{k \mid n_{0}}\left(\frac{d_{0}}{3^{\alpha-1} k}\right)\left(1+\left(\frac{d_{0}}{3}\right)\right)=0 . \tag{9.1}
\end{equation*}
$$

Theorem 9.8. Let $n \in \mathbb{N}$. Then

$$
R([3,2,11], n)= \begin{cases}\delta(n,-8) & \text { if } 4 \mid n-3, \\ 2 \delta(n / 4,-8) & \text { if } 16 \mid n-12, \\ 2 \delta(n / 16,-8) & \text { if } 16 \mid n, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. It is known that $H(-128)=\{[1,0,32],[4,4,9],[3,2,11],[3,-2,11]\}$ and $f(-128)=4$. For a prime p, it is clear that $p=3 x^{2}+2 x y+11 y^{2}$ if and only if $\left(\frac{-1}{p}\right)=-1$ and $\left(\frac{-2}{p}\right)=1$, and $p=x^{2}+32 y^{2}$ or $4 x^{2}+4 x y+9 y^{2}$ if and only if $\left(\frac{-1}{p}\right)=\left(\frac{-2}{p}\right)=1$. Thus, if $2 \nmid n$, by Lemma 9.5 we have $R([3,2,11], n)=\left(1-\left(\frac{-1}{n}\right)\right) \frac{2}{4} \sum_{k \mid n}\left(\frac{-8}{k}\right)$. If $(n, 16)=4$, then $n \equiv 4(\bmod 8)$. As $H(-32)=\{[1,0,8],[3,2,3]\}$, using Lemma 9.7 we see that $R([3,2,11], n)=\left(1-\left(\frac{-1}{n / 4}\right)\right) \sum_{k \mid n / 4}\left(\frac{-8}{k}\right)=\left(1-(-1)^{(n-4) / 8}\right) \sum_{k \mid n / 4}\left(\frac{-8}{k}\right)$.
If $(n, 16)=16$, then $16 \mid n$. As $h(-8)=1$, by Lemma 9.6 we have

$$
R([3,2,11], n)=2 \sum_{k \mid n / 16}\left(\frac{-8}{k}\right) .
$$

If $\left(n, 4^{2}\right)$ is not a square, by Lemma 9.1 we have $R([3,2,11], n)=0$. So the theorem is proved.

Theorem 9.9. Let $n \in \mathbb{N}$ and $n=2^{\alpha} n_{0}$ with $2 \nmid n_{0}$. Let $d_{1} \in\{5,13,37\}$. Then

$$
R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)= \begin{cases}\delta\left(n,-4 d_{1}\right) & \text { if } n \equiv 3(\bmod 4), \\ 2 \delta\left(n / 4,-4 d_{1}\right) & \text { if } 4 \mid n \text { and } 4 \mid n_{0}+1-2 \alpha, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Let $d=-16 d_{1}$. It is easily seen that $f(d)=2$ and

$$
H(d)=\left\{\left[1,0,4 d_{1}\right],\left[4,0, d_{1}\right],\left[8,4,\left(d_{1}+1\right) / 2\right],\left[8,-4,\left(d_{1}+1\right) / 2\right]\right\} .
$$

Clearly $H(d) \cong C_{4}$ and $\left[8,4,\left(d_{1}+1\right) / 2\right]$ is a generator of $H(d)$. For a prime p, it is clear that $p=8 x^{2}+4 x y+\frac{d_{1}+1}{2} y^{2}$ if and only if $\left(\frac{-1}{p}\right)=\left(\frac{d_{1}}{p}\right)=-1$, and
$p=x^{2}+4 d_{1} y^{2}$ or $4 x^{2}+d_{1} y^{2}$ if and only if $\left(\frac{-1}{p}\right)=1$ and $\left(\frac{d_{1}}{p}\right)=0,1$. Thus, if $2 \nmid n$, by Lemma 9.5 we have

$$
R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=\frac{1}{2}\left(1-\left(\frac{-1}{n}\right)\right) \sum_{k \mid n}\left(\frac{-4 d_{1}}{k}\right)
$$

If $2 \| n$, by Lemma 9.1 we have $R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=0$. If $4 \mid n$, as $H\left(d / 2^{2}\right)=H\left(-4 d_{1}\right)=\left\{\left[1,0, d_{1}\right],\left[2,2,\left(d_{1}+1\right) / 2\right]\right\}$, using Lemmas 2.1 and 9.1 we see that

$$
R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=\left(1-(-1)^{\sum_{p=2 x^{2}+2 x y+\frac{d_{1}+1}{2} y^{2}} \operatorname{ord}_{p} n}\right) \sum_{k \mid n / 4}\left(\frac{-4 d_{1}}{k}\right)
$$

If $2 \nmid \operatorname{ord}_{p}(n / 4)$ for some prime p with $\left(\frac{-4 d_{1}}{p}\right)=-1$, by (2.1) we have $\sum_{k \mid n / 4}\left(\frac{-4 d_{1}}{k}\right)=0$ and so $R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=0$. Now assume that $2 \mid \operatorname{ord}_{p}(n / 4)$ for every prime p with $\left(\frac{-4 d_{1}}{p}\right)=-1$. As $p=x^{2}+d_{1} y^{2}$ implies $p \equiv 1(\bmod 4)$, and $p=2 x^{2}+2 x y+\frac{d_{1}+1}{2} y^{2}$ implies $p=2$ or $p \equiv 3(\bmod 4)$, we see that

$$
\begin{aligned}
\left(\frac{-1}{n_{0}}\right) & =\prod_{p \mid n_{0}}\left(\frac{-1}{p}\right)^{\operatorname{ord}_{p} n_{0}}=\prod_{p \mid n_{0}}\left(\frac{-1}{p}\right)^{\operatorname{ord}_{p}(n / 4)} \\
& =\prod_{p \mid n_{0},\left(\frac{-4 d_{1}}{p}\right)=0,1}\left(\frac{-1}{p}\right)^{\operatorname{ord}_{p}(n / 4)}=\prod_{p=2 x^{2}+2 x y+\frac{d_{1}+1}{2} y^{2} \neq 2}(-1)^{\operatorname{ord}_{p}(n / 4)} \\
& =(-1)^{\alpha} \cdot(-1)^{\sum_{p=2 x^{2}+2 x y+\frac{d_{1}+1}{2} y^{2}} \operatorname{ord}_{p} n} .
\end{aligned}
$$

So we always have

$$
R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=\left(1-(-1)^{\alpha+\left(n_{0}-1\right) / 2}\right) \sum_{k \mid n / 4}\left(\frac{-4 d_{1}}{k}\right)
$$

Now putting the above together we deduce the result.
REMARK 9.1. As $[8,4,3]=[3,-4,8]=[3,2,7]$, we have $R([8,4,3], n)=$ $R([3,2,7], n)$. If $4 \mid n, d_{1} \in\{5,13\}$ and $n / 4=d_{1}^{r} n_{1}\left(d_{1} \nmid n_{1}\right)$, by appealing to Lemma 9.7 we have

$$
R\left(\left[8,4,\left(d_{1}+1\right) / 2\right], n\right)=\left(1-\left(\frac{n_{1}}{d_{1}}\right)\right) \sum_{k \mid n / 4}\left(\frac{-4 d_{1}}{k}\right)
$$

Using Lemmas 2.1 and 9.1-9.7 one can similarly prove the following results.

Theorem 9.10. Let $n \in \mathbb{N}$. Then

$$
R([5,2,10], n)= \begin{cases}\delta(n,-4) & \text { if } n \equiv 3,5,6(\bmod 7) \\ 4 \delta(n / 49,-4) & \text { if } 49 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

$$
R([3,1,23], n)= \begin{cases}\delta(n,-11) & \text { if } n \equiv \pm 2(\bmod 5) \\ 2 \delta(n / 25,-11) & \text { if } 25 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 9.11. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& R([7,1,17], n)= \begin{cases}\delta(n,-19) & \text { if } n \equiv \pm 2(\bmod 5) \\
2 \delta(n / 25,-19) & \text { if } 25 \mid n, \\
0 & \text { otherwise }\end{cases} \\
& R([7,1,13], n)= \begin{cases}\delta(n,-3) & \text { if } n \equiv 2,6,7,8,10(\bmod 11), \\
6 \delta(n / 121,-3) & \text { if } 121 \mid n, \\
0 & \text { otherwise }\end{cases} \\
& R([7,5,19], n)= \begin{cases}\delta(n,-3) & \text { if } n \equiv 2,5,6,7,8,11(\bmod 13), \\
6 \delta(n / 169,-3) & \text { if } 169 \mid n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem 9.12. Let $n \in \mathbb{N}, p \in\{3,5\}$ and $n=p^{\alpha} n_{0}\left(p \nmid n_{0}\right)$. Then

$$
R([p+2,2,8], n)= \begin{cases}\delta(n, p(p-16)) & \text { if } 2 \nmid n \text { and }\left(\frac{n_{0}}{p}\right)=-1 \\ \delta(n / 4, p(p-16)) & \text { if } 4 \mid n \text { and }\left(\frac{n_{0}}{p}\right)=-1 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 9.13. Let $n \in \mathbb{N}$. Then

$$
R([5,2,13], n)= \begin{cases}\delta(n,-4) & \text { if } n \equiv \pm 3(\bmod 8) \\ 2 \delta(n / 4,-4) & \text { if } n \equiv \pm 12(\bmod 32) \\ 2 \delta(n / 16,-4) & \text { if } n \equiv 16(\bmod 32) \\ 4 \delta(n / 64,-4) & \text { if } 64 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 9.14. Let $n \in \mathbb{N}$. Then

$$
R([5,4,8], n)= \begin{cases}\delta(n,-4) & \text { if } n \equiv 5(\bmod 6) \\ 2 \delta(n / 4,-4) & \text { if } n \equiv 8(\bmod 12) \\ 2 \delta(n / 9,-4) & \text { if } n \equiv 9(\bmod 18) \\ 4 \delta(n / 36,-4) & \text { if } 36 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 9.15. Let $n \in \mathbb{N}$. Then

$$
R([8,6,9], n)= \begin{cases}\delta(n,-7) & \text { if } n \equiv 5(\bmod 6) \\ \delta(n / 4,-7) & \text { if } n \equiv 8(\bmod 12) \\ 2 \delta(n / 9,-7) & \text { if } n \equiv 9(\bmod 18), \\ 2 \delta(n / 36,-7) & \text { if } 36 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 9.16. Let $n \in \mathbb{N}$. Then

$$
R([8,4,13], n)= \begin{cases}\delta(n,-4) & \text { if } n \equiv \pm 3(\bmod 10) \\ 2 \delta(n / 4,-4) & \text { if } n \equiv \pm 8(\bmod 20) \\ 2 \delta(n / 25,-4) & \text { if } n \equiv 25(\bmod 50) \\ 4 \delta(n / 100,-4) & \text { if } 100 \mid n \\ 0 & \text { otherwise }\end{cases}
$$

10. Formulas for $t_{n}(1,8), t_{n}(1,63), t_{n}(7,9), t_{n}(1,55), t_{n}(5,11)$, $t_{n}(1,39)$ and $t_{n}(3,13)$. For $k=1, \ldots, 12$ let

$$
q \prod_{m=1}^{\infty}\left\{\left(1-q^{k m}\right)\left(1-q^{(24-k) m}\right)\right\}=\sum_{n=1}^{\infty} \phi_{k}(n) q^{n} \quad(|q|<1)
$$

In [7], for $k=1,2,3,4,6,8,12$ we showed that $\phi_{k}(n)$ is a multiplicative function of n and determined the value of $\phi_{k}(n)$. See [7, Theorems 4.4 and 4.5].

Theorem 10.1. Suppose $n \in \mathbb{N}$. Then

$$
4 t_{n}(1,8)=\sum_{k \mid 8 n+9}\left(\frac{-2}{k}\right)-\phi_{8}(8 n+9)
$$

Proof. From Theorem 1.1 we know that $4 t_{n}(1,8)=R([4,4,9], 8 n+9)$. As $H(-128)=\{[1,0,32],[4,4,9],[3,2,11],[3,-2,11]\} \cong C_{4}$ and $f(-128)=4$, we have $R([1,0,32], 8 n+9)+R([4,4,9], 8 n+9)=N(8 n+9,-128)-$ $2 R([3,2,11], 8 n+9)$. On the other hand, by [7, Theorem 2.2] we have $R([1,0,32], 8 n+9)-R([4,4,9], 8 n+9)=2 \phi_{8}(8 n+9)$. Thus

$$
\begin{aligned}
4 t_{n}(1,8) & =R([4,4,9], 8 n+9) \\
& =\frac{1}{2} N(8 n+9,-128)-R([3,2,11], 8 n+9)-\phi_{8}(8 n+9)
\end{aligned}
$$

By Lemma 2.1 we have $N(8 n+9,-128)=2 \sum_{k \mid 8 n+9}\left(\frac{-8}{k}\right)$. By Theorem 9.8 we have $R([3,2,11], 8 n+9)=0$. Thus the result follows.

Theorem 10.2. Suppose $n \in \mathbb{N}$.
(i) If $n+8=2^{\alpha_{0}} n_{0}$ with $2 \nmid n_{0}$, then
$t_{n}(1,63)= \begin{cases}\sum_{k \mid n_{0}}\left(\frac{k}{7}\right) & \text { if } 9 \mid n-1, \\ \frac{1}{2} \sum_{k \mid n_{0}}\left(\frac{k}{7}\right) & \text { if } 3 \mid n \text { and } 2 \mid \alpha_{0}, \\ \frac{1}{2}\left(\sum_{k \mid n_{0}}\left(\frac{k}{7}\right)+(-1)^{\left(\alpha_{0}+1\right) / 2} \phi_{3}\left(n_{0}\right)\right) & \text { if } 6 \mid n \text { and } 2 \nmid \alpha_{0}, \\ 0 & \text { if } 3 \nmid n \text { and } 9 \nmid n-1 .\end{cases}$
(ii) If $n+2=2^{\alpha_{1}} n_{1}$ with $2 \nmid n_{1}$, then

$$
t_{n}(7,9)= \begin{cases}\sum_{k \mid n_{1}}\left(\frac{k}{7}\right) & \text { if } 9 \mid n+2, \\ \frac{1}{2} \sum_{k \mid n_{1}}\left(\frac{k}{7}\right) & \text { if } 3 \mid n \text { and } 2 \mid \alpha_{1}, \\ \frac{1}{2}\left(\sum_{k \mid n_{1}}\left(\frac{k}{7}\right)+(-1)^{\left(\alpha_{1}-1\right) / 2} \phi_{3}\left(n_{1}\right)\right) & \text { if } 6 \mid n \text { and } 2 \nmid \alpha_{1}, \\ 0 & \text { if } 3 \nmid n \text { and } 9 \nmid n+2 .\end{cases}
$$

Proof. From Theorem 1.1 we see that

$$
\begin{aligned}
4 t_{n}(1,63) & = \begin{cases}R([1,1,16], 2 n+16) & \text { if } 2 \nmid n \\
R([1,1,16], 2 n+16)-R([1,1,16], n / 2+4) & \text { if } 2 \mid n\end{cases} \\
4 t_{n}(7,9) & = \begin{cases}R([7,7,4], 2 n+4) & \text { if } 2 \nmid n \\
R([7,7,4], 2 n+4)-R([7,7,4], n / 2+1) & \text { if } 2 \mid n\end{cases}
\end{aligned}
$$

Observe that $R([7,7,4], m)=R([4,-7,7], m)=R([4,1,4], m)$. We then have

$$
4 t_{n}(7,9)= \begin{cases}R([4,1,4], 2 n+4) & \text { if } 2 \nmid n \\ R([4,1,4], 2 n+4)-R([4,1,4], n / 2+1) & \text { if } 2 \mid n\end{cases}
$$

As $H(-63)=\{[1,1,16],[4,1,4],[2,1,8],[2,-1,8]\} \cong C_{4}$, we have

$$
R([1,1,16], m)+R([4,1,4], m)=N(m,-63)-2 R([2,1,8], m)
$$

On the other hand, by [7, Theorem 2.2], $R([1,1,16], m)-R([4,1,4], m)$ $=2 \phi_{3}(\mathrm{~m})$. Thus,

$$
\begin{aligned}
R([1,1,16], m) & =\frac{1}{2} N(m,-63)-R([2,1,8], m)+\phi_{3}(m) \\
R([4,1,4], m) & =\frac{1}{2} N(m,-63)-R([2,1,8], m)-\phi_{3}(m)
\end{aligned}
$$

From Lemma 2.1 and (9.1) we see that

$$
N(m,-63)= \begin{cases}2 \sum_{k \mid m}\left(\frac{-7}{k}\right) & \text { if } 3 \nmid m \\ 8 \sum_{k \mid m / 9}\left(\frac{-7}{k}\right)=8 \sum_{k \mid m}\left(\frac{-7}{k}\right) & \text { if } 9 \mid m \\ 0 & \text { otherwise }\end{cases}
$$

By Theorem 9.7 we have

$$
\begin{aligned}
R([2,1,8], m) & =R([2,-3,9], m)=R([9,3,2], m) \\
& = \begin{cases}\sum_{k \mid m}\left(\frac{-7}{k}\right) & \text { if } 3 \mid m-2, \\
2 \sum_{k \mid m}\left(\frac{-7}{k}\right) & \text { if } 9 \mid m, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus, for $m=2^{t} m_{0}\left(2 \nmid m_{0}\right)$ we have

$$
\begin{aligned}
& \frac{1}{2} N(m,-63)-R([2,1,8], m) \\
& = \begin{cases}\sum_{k \mid m}\left(\frac{-7}{k}\right)=\sum_{k \mid m_{0}} \sum_{i=0}^{t}\left(\frac{-7}{2^{i} k}\right)=(t+1) \sum_{k \mid m_{0}}\left(\frac{k}{7}\right) & \text { if } 3 \mid m-1, \\
2 \sum_{k \mid m}\left(\frac{-7}{k}\right)=2 \sum_{k \mid m_{0}} \sum_{i=0}^{t}\left(\frac{-7}{2^{i} k}\right)=2(t+1) \sum_{k \mid m_{0}}\left(\frac{k}{7}\right) & \text { if } 9 \mid m \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Hence, for $\alpha, m_{0} \in \mathbb{N}$ with $2 \nmid m_{0}$ we have

$$
\begin{aligned}
& \frac{1}{2} N\left(2^{\alpha+1} m_{0},-63\right)-R\left([2,1,8], 2^{\alpha+1} m_{0}\right) \\
& -\frac{1}{2} N\left(2^{\alpha-1} m_{0},-63\right)+R\left([2,1,8], 2^{\alpha-1} m_{0}\right) \\
& = \begin{cases}(\alpha+2-\alpha) \sum_{k \mid m_{0}}\left(\frac{k}{7}\right)=2 \sum_{k \mid m_{0}}\left(\frac{k}{7}\right) & \text { if } 3 \mid 2^{\alpha} m_{0}+1, \\
(2(\alpha+2)-2 \alpha) \sum_{k \mid m_{0}}\left(\frac{k}{7}\right)=4 \sum_{k \mid m_{0}}\left(\frac{k}{7}\right) & \text { if } 9 \mid m_{0}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $2 \nmid n$, by [7, Theorem 4.5(i)] we have $\phi_{3}(2 n+16)=\phi_{3}(2 n+4)=0$. Hence, applying the above we obtain

$$
\begin{aligned}
4 t_{n}(1,63)= & R([1,1,16], 2 n+16) \\
& =\frac{1}{2} N(2 n+16,-63)-R([2,1,8], 2 n+16) \\
& = \begin{cases}2 \sum_{k \mid n+8}\left(\frac{k}{7}\right) & \text { if } 3 \mid n \\
4 \sum_{k \mid n+8}\left(\frac{k}{7}\right) & \text { if } 9 \mid n-1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
4 t_{n}(7,9) & =R([4,1,4], 2 n+4) \\
& =\frac{1}{2} N(2 n+4,-63)-R([2,1,8], 2 n+4) \\
& = \begin{cases}2 \sum_{k \mid n+2}\left(\frac{k}{7}\right) & \text { if } 3 \mid n, \\
4 \sum_{k \mid n+2}\left(\frac{k}{7}\right) & \text { if } 9 \mid n+2, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Now assume $2 \mid n$. Suppose $n=2^{\alpha_{0}} n_{0}-8=2^{\alpha_{1}} n_{1}-2$ with $2 \nmid n_{0} n_{1}$. From the above we deduce

$$
\begin{aligned}
4 t_{n}(1,63)= & R\left([1,1,16], 2^{\alpha_{0}+1} n_{0}\right)-R\left([1,1,16], 2^{\alpha_{0}-1} n_{0}\right) \\
= & \frac{1}{2} N\left(2^{\alpha_{0}+1} n_{0},-63\right)-R\left([2,1,8], 2^{\alpha_{0}+1} n_{0}\right)-\frac{1}{2} N\left(2^{\alpha_{0}-1} n_{0},-63\right) \\
& +R\left([2,1,8], 2^{\alpha_{0}-1} n_{0}\right)+\phi_{3}\left(2^{\alpha_{0}+1} n_{0}\right)-\phi_{3}\left(2^{\alpha_{0}-1} n_{0}\right) \\
= & \begin{cases}2 \sum_{k \mid n_{0}}\left(\frac{k}{7}\right)+\phi_{3}\left(2^{\alpha_{0}+1} n_{0}\right)-\phi_{3}\left(2^{\alpha_{0}-1} n_{0}\right) & \text { if } 3 \mid n, \\
4 \sum_{k \mid n_{0}}\left(\frac{k}{7}\right)+\phi_{3}\left(2^{\alpha_{0}+1} n_{0}\right)-\phi_{3}\left(2^{\alpha_{0}-1} n_{0}\right) & \text { if } 9 \mid n-1, \\
\phi_{3}\left(2^{\alpha_{0}+1} n_{0}\right)-\phi_{3}\left(2^{\alpha_{0}-1} n_{0}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
4 t_{n}(7,9)= & R\left([4,1,4], 2^{\alpha_{1}+1} n_{1}\right)-R\left([4,1,4], 2^{\alpha_{1}-1} n_{1}\right) \\
= & \frac{1}{2} N\left(2^{\alpha_{1}+1} n_{1},-63\right)-R\left([2,1,8], 2^{\alpha_{1}+1} n_{1}\right)-\frac{1}{2} N\left(2^{\alpha_{1}-1} n_{1},-63\right) \\
& +R\left([2,1,8], 2^{\alpha_{1}-1} n_{1}\right)-\phi_{3}\left(2^{\alpha_{1}+1} n_{1}\right)+\phi_{3}\left(2^{\alpha_{1}-1} n_{1}\right) \\
& \begin{cases}2 \sum_{k \mid n_{1}}\left(\frac{k}{7}\right)-\phi_{3}\left(2^{\alpha_{1}+1} n_{1}\right)+\phi_{3}\left(2^{\alpha_{1}-1} n_{1}\right) & \text { if } 3 \mid n, \\
4 \sum_{k \mid n_{1}}\left(\frac{k}{7}\right)-\phi_{3}\left(2^{\alpha_{1}+1} n_{1}\right)+\phi_{3}\left(2^{\alpha_{1}-1} n_{1}\right) & \text { if } 9 \mid n+2, \\
-\phi_{3}\left(2^{\alpha_{1}+1} n_{1}\right)+\phi_{3}\left(2^{\alpha_{1}-1} n_{1}\right) & \text { otherwise. }\end{cases}
\end{aligned}
$$

As $H(-63)=\{[1,1,16],[4,1,4],[2,1,8],[2,-1,8]\} \cong C_{4}$ and $\phi_{3}(m)=$ $\frac{1}{2}(R([1,1,16], m)-R([4,1,4], m))$, using [6, Theorem 7.4(ii)] we see that $\phi_{3}(m)$ is a multiplicative function of m. By [6, Theorem 8.7], for $t \in \mathbb{N}$ we have

$$
\phi_{3}\left(2^{t}\right)= \begin{cases}(-1)^{t / 2} & \text { if } 2 \mid t \\ 0 & \text { if } 2 \nmid t\end{cases}
$$

Thus, for $i=0,1$,

$$
\begin{aligned}
\phi_{3}\left(2^{\alpha_{i}+1} n_{i}\right)-\phi_{3}\left(2^{\alpha_{i}-1} n_{i}\right) & =\left(\phi_{3}\left(2^{\alpha_{i}+1}\right)-\phi_{3}\left(2^{\alpha_{i}-1}\right)\right) \phi_{3}\left(n_{i}\right) \\
& = \begin{cases}2(-1)^{\left(\alpha_{i}+1\right) / 2} \phi_{3}\left(n_{i}\right) & \text { if } 2 \nmid \alpha_{i} \\
0 & \text { if } 2 \mid \alpha_{i}\end{cases}
\end{aligned}
$$

From [7, Theorem 4.5(i)] we know that $\phi_{3}\left(n_{i}\right)=0$ for $n_{i} \equiv 0,2(\bmod 3)$. As $n \equiv 1(\bmod 3)$ implies $3 \mid n_{i}$ and so $\phi_{3}\left(n_{i}\right)=0$, and $n \equiv 2(\bmod 3)$ and $2 \nmid \alpha_{i}$ implies $n_{i} \equiv 2(\bmod 3)$ and so $\phi_{3}\left(n_{i}\right)=0$, we see that $\phi_{3}\left(2^{\alpha_{i}+1} n_{i}\right)-$ $\phi_{3}\left(2^{\alpha_{i}-1} n_{i}\right)=0$ for $n \not \equiv 0(\bmod 3)$. Now putting all the above together we deduce the result.

TheOrem 10.3. Suppose $n \in \mathbb{N}$. Then $\phi_{3}(n)=t_{2 n-2}(7,9)-t_{2 n-8}(1,63)$ and so $t_{2 n-2}(7,9)-t_{2 n-8}(1,63)$ is a multiplicative function of n.

Proof. Suppose $2 n=2^{\alpha} n_{0}$ with $2 \nmid n_{0}$. According to the proof of Theorem 10.2, $\phi_{3}(n)$ is a multiplicative function of n and

$$
\phi_{3}(n)=\phi_{3}\left(2^{\alpha-1} n_{0}\right)=\phi_{3}\left(2^{\alpha-1}\right) \phi_{3}\left(n_{0}\right)= \begin{cases}(-1)^{(\alpha-1) / 2} \phi_{3}\left(n_{0}\right) & \text { if } 2 \nmid \alpha \\ 0 & \text { if } 2 \mid \alpha\end{cases}
$$

As $\phi_{3}(1)=1, \phi_{3}(2)=\phi_{3}(3)=0$ and $\phi_{3}(4)=-1$, we see that $\phi_{3}(n)=$ $t_{2 n-2}(7,9)-t_{2 n-8}(1,63)$ for $n=1,2,3,4$. Now suppose $n>4$. From the above and Theorem 10.2 we deduce

$$
\begin{aligned}
& t_{2 n-2}(7,9)-t_{2 n-8}(1,63) \\
& \quad= \begin{cases}(-1)^{(\alpha-1) / 2} \phi_{3}\left(n_{0}\right)=\phi_{3}(n) & \text { if } 3 \mid n-1 \text { and } 2 \nmid \alpha, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

If $3 \mid n-1$ and $2 \mid \alpha$, then $\alpha \geq 2$ and so $\phi_{3}(n)=0$ by the above. From [7, Theorem $4.5(\mathrm{i})$] we also have $\phi_{3}(n)=0$ for $n \equiv 0,2(\bmod 3)$. Thus we always have $\phi_{3}(n)=t_{2 n-2}(7,9)-t_{2 n-8}(1,63)$. So the theorem is proved.

Theorem 10.4. Suppose $n \in \mathbb{N}, m \in\{3,5\}$ and $n+m+2=4^{r} m^{s} A$ with $(A, 2 m)=1$. Then

$$
t_{n}(1, m(16-m))=t_{n+m}(m, 16-m)=\frac{1-\left(\frac{A}{m}\right)}{4} \sum_{k \mid A}\left(\frac{-m(16-m)}{k}\right)
$$

Proof. From Theorem 1.1 we see that

$$
\begin{aligned}
& 4 t_{n}(1,8 m+15) \\
& \quad=R([1,1,2 m+4], 2 n+2 m+4)-R([1,0,8 m+15], 2 n+2 m+4)
\end{aligned}
$$

and

$$
4 t_{n}(m, 16-m)=R([m, m, 4], 2 n+4)-R([m, 0,16-m], 2 n+4)
$$

As $[1,0,8 m+15]=[1,2,4(2 m+4)],[m, 0,16-m]=[m, 2 m, 16]$ and $f(-4(8 m+15))=2$, by [6, Theorem 3.2] we have
$R([1,0,8 m+15], 2 n+2 m+4)= \begin{cases}0 & \text { if } 2 \mid n, \\ R([1,1,2 m+4],(n+m+2) / 2) & \text { if } 2 \nmid n\end{cases}$
and

$$
R([m, 0,16-m], 2 n+4)= \begin{cases}R([m, m, 4],(n+2) / 2) & \text { if } 2 \mid n, \\ 0 & \text { if } 2 \nmid n .\end{cases}
$$

Hence
(10.1) $\quad 4 t_{n}(1,8 m+15)$

$$
= \begin{cases}R([1,1,2 m+4], 2 n+2 m+4) & \text { if } 2 \mid n, \\ R([1,1,2 m+4], 2 n+2 m+4) & \\ \quad-R([1,1,2 m+4],(n+m+2) / 2) & \text { if } 2 \nmid n\end{cases}
$$

and

$$
\begin{align*}
& \quad 4 t_{n+m}(m, 16-m) \tag{10.2}\\
& = \begin{cases}R([m, m, 4], 2 n+2 m+4) & \text { if } 2 \mid n \\
R([m, m, 4], 2 n+2 m+4)-R([m, m, 4],(n+m+2) / 2) & \text { if } 2 \nmid n .\end{cases}
\end{align*}
$$

It is easily seen that

$$
H(-8 m-15)=\{[1,1,2 m+4],[m, m, 4],[2,1, m+2],[2,-1, m+2]\} \cong C_{4}
$$

Thus applying [6, Theorem 7.4(ii)] we see that $F(n)=\frac{1}{2}(R([1,1,2 m+4], n)-$ $R([m, m, 4], n))$ is multiplicative. Hence

$$
F(2 n+2 m+4)=F\left(2^{2 r+1} n_{0}\right)=F\left(2^{2 r+1}\right) F\left(n_{0}\right)
$$

and

$$
F((n+m+2) / 2)=F\left(2^{2 r-1} n_{0}\right)=F\left(2^{2 r-1}\right) F\left(n_{0}\right) \quad \text { for } \quad r \geq 1
$$

Since $f(-8 m-15)=1$ and 2 is represented by $[2,1, m+2]$, using [6, Theorem 8.7] we see that $F\left(2^{t}\right)=0$ for $2 \nmid t$. Thus $F((n+m+2) / 2)=0$ for $r \geq 1$ and $F(2 n+2 m+4)=0$. Hence $R([1,1,2 m+4],(n+m+2) / 2)$ $=R([m, m, 4],(n+m+2) / 2)$ for $r \geq 1$ and $R([1,1,2 m+4], 2 n+2 m+4)$ $=R([m, m, 4], 2 n+2 m+4)$. This together with (10.1) and (10.2) yields $t_{n}(1,8 m+15)=t_{n+m}(m, 16-m)$. From the above, Lemma 2.1 and Theorem 9.1 we deduce

$$
\begin{aligned}
& 2 R([1,1,2 m+4], 2 n+2 m+4) \\
& \quad=R([1,1,2 m+4], 2 n+2 m+4)+R([m, m, 4], 2 n+2 m+4) \\
& \quad=N(2 n+2 m+4,-8 m-15)-2 R([2,1, m+2], 2 n+2 m+4) \\
& \quad=2 \sum_{k \mid 2 n+2 m+4}\left(\frac{-8 m-15}{k}\right)-\left(1-\left(\frac{2^{2 r+1} A}{m}\right)\right) \sum_{k \mid 2 n+2 m+4}\left(\frac{-8 m-15}{k}\right) \\
& \quad=\left(1-\left(\frac{A}{m}\right)\right) \sum_{k \mid 2 n+2 m+4}\left(\frac{-8 m-15}{k}\right) .
\end{aligned}
$$

Similarly, for odd n we have

$$
2 R\left([1,1,2 m+4], \frac{n+m+2}{2}\right)=\left(1-\left(\frac{A}{m}\right)\right) \sum_{k \mid(n+m+2) / 2}\left(\frac{-8 m-15}{k}\right)
$$

If $2 \mid n$, from the above, (10.1) and the fact that $8 m+15=m(16-m)$ we obtain

$$
\begin{aligned}
& t_{n}(1, m(16-m))=t_{n}(1,8 m+15) \\
& \quad=\frac{1}{4} R([1,1,2 m+4], 2 n+2 m+4) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{8} \sum_{k \mid 2 n+2 m+4}\left(\frac{-m(16-m)}{k}\right) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{8} \sum_{k \mid m^{s} A}\left(\left(\frac{-m(16-m)}{k}\right)+\left(\frac{-m(16-m)}{2 k}\right)\right) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{4} \sum_{k \mid m^{s} A}\left(\frac{-m(16-m)}{k}\right)=\frac{1-\left(\frac{A}{m}\right)}{4} \sum_{k \mid A}\left(\frac{-m(16-m)}{k}\right)
\end{aligned}
$$

If $2 \nmid n$, by (10.1) and the above we have

$$
\begin{aligned}
& t_{n}(1, m(16-m))=t_{n}(1,8 m+15) \\
& \quad=\frac{1}{4}(R([1,1,2 m+4], 2 n+2 m+4)-R([1,1,2 m+4],(n+m+2) / 2)) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{8}\left(\sum_{k \mid 2 n+2 m+4}\left(\frac{-m(16-m)}{k}\right)-\sum_{k \mid(n+m+2) / 2}\left(\frac{-m(16-m)}{k}\right)\right) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{8} \sum_{k \mid m^{s} A}\left(\left(\frac{-m(16-m)}{2^{2 r} k}\right)+\left(\frac{-m(16-m)}{2^{2 r+1} k}\right)\right) \\
& \quad=\frac{1-\left(\frac{A}{m}\right)}{4} \sum_{k \mid m^{s} A}\left(\frac{-m(16-m)}{k}\right)=\frac{1-\left(\frac{A}{m}\right)}{4} \sum_{k \mid A}\left(\frac{-m(16-m)}{k}\right) .
\end{aligned}
$$

This completes the proof.

Theorem 10.5. Let $n \in \mathbb{N}, m \in\{3,5\}$ and $f(n)=t_{2 n-2}(m, 16-m)-$ $t_{2 n-2-m}(1, m(16-m))$. Then $f(n)$ is a multiplicative function of n.

Proof. Define $F(n)=\frac{1}{2}(R([1,1,2 m+4], n)-R([m, m, 4], n))$. Since $H(-8 m-15)=\{[1,1,2 m+4],[m, m, 4],[2,1, m+2],[2,-1, m+2]\} \cong C_{4}$, from [6, Theorem 7.4(ii)] we know that $F(n)$ is multiplicative. It is easily seen that $F(1)=1, F(2)=F(3)=0$ and so $f(n)=F(n)$ for $n=1,2,3$. From [6, Theorem 8.7] we see that $F\left(2^{t}\right)=(-1)^{t / 2}$ or 0 according as $2 \mid t$ or $2 \nmid t$. Suppose $n=2^{\alpha} n_{0}$ with $2 \nmid n_{0}$. We then have $F\left(2^{\alpha+2}\right)=-F\left(2^{\alpha}\right)$. For $n>3$, from (10.1), (10.2) and the above we derive

$$
\begin{aligned}
& 4 t_{2 n-2-m}(1, m(16-m))-4 t_{2 n-2}(m, 16-m)=2 F(4 n)-2 F(n) \\
& \quad=2\left(F\left(2^{\alpha+2}\right)-F\left(2^{\alpha}\right)\right) F\left(n_{0}\right)=-4 F\left(2^{\alpha}\right) F\left(n_{0}\right)=-4 F(n)
\end{aligned}
$$

Thus, $f(n)=F(n)$. This proves the theorem.
Acknowledgements. The author is indebted to the referee for his valuable suggestion on simplifying some results in Section 2.

The author is supported by the Natural Sciences Foundation of China (grant No. 10971078).

References

[1] B. C. Berndt, Ramanujan's Notebooks. Part III, Springer, New York, Berlin, 1991.
[2] -, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, 2006.
[3] D. A. Cox, Primes of the Form $x^{2}+n y^{2}$. Fermat, Class Field Theory, and Complex Multiplication, Wiley, New York, 1989.
[4] A.-M. Legendre, Traité des fonctions elliptiques, Vol. 3, Paris, 1832.
[5] Z. H. Sun, On the number of representations of n by $a x(x-1) / 2+b y(y-1) / 2$, J. Number Theory 129 (2009), 971-989.
[6] Z. H. Sun and K. S. Williams, On the number of representations of n by $a x^{2}+b x y$ $+c y^{2}$, Acta Arith. 122 (2006), 101-171.
[7] -, 一, Ramanujan identities and Euler products for a type of Dirichlet series, ibid. 122 (2006), 349-393.
[8] K. S. Williams, Some Lambert series expansions of products of theta functions, Ramanujan J. 3 (1999), 367-384.

Zhi-Hong Sun
School of Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223001, P.R. China
E-mail: szh6174@yahoo.com
http://www.hytc.edu.cn/xsjl/szh

[^0]: 2010 Mathematics Subject Classification: Primary 11E16; Secondary 11E25, 11R29.
 Key words and phrases: triangular numbers, binary quadratic forms, the number of representations.

