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Abstract. Let {Bn(x)} be the Bernoulli polynomials. In the paper we establish some
congruences for Bj(x) (mod pn), where p is an odd prime and x is a rational p-integer.
Such congruences are concerned with the properties of p-regular functions, the congru-
ences for h(−sp) (mod p) (s = 3, 5, 8, 12) and the sum

P
k≡r (mod m)

�p
k

�
, where h(d) is

the class number of the quadratic field Q(
√

d) of discriminant d and p-regular func-
tions are those functions f such that f(k) (k = 0, 1, . . . ) are rational p-integers andPn

k=0

�n
k

�
(−1)kf(k) ≡ 0 (mod pn) for n = 1, 2, 3, . . . We also establish many congru-

ences for Euler numbers.
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1. Introduction.
The Bernoulli numbers {Bn} and Bernoulli polynomials {Bn(x)} are defined by

B0 = 1,

n−1∑

k=0

(
n

k

)
Bk = 0 (n ≥ 2) and Bn(x) =

n∑

k=0

(
n

k

)
Bkxn−k (n ≥ 0).

The Euler numbers {En} and Euler polynomials {En(x)} are defined by

2et

e2t + 1
=

∞∑
n=0

En
tn

n!
(|t| < π

2
) and

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(|t| < π),

which are equivalent to (see [MOS])

E0 = 1, E2n−1 = 0,

n∑
r=0

(
2n

2r

)
E2r = 0 (n ≥ 1)

and

(1.1) En(x) +
n∑

r=0

(
n

r

)
Er(x) = 2xn (n ≥ 0).
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It is well known that([MOS])

(1.2)
En(x) =

1
2n

n∑
r=0

(
n

r

)
(2x− 1)n−rEr

=
2

n + 1

(
Bn+1(x)− 2n+1Bn+1

(x

2

))
.

Let Z and N be the set of integers and the set of positive integers respectively. Let
[x] be the integral part of x and {x} be the fractional part of x. If m, s ∈ N and p is
an odd prime not dividing m, in Section 2 we show that

(−1)s m

p

p−1∑

k=1
k≡sp(mod m)

(
p

k

)

≡
{

Bp−1

({ (s−1)p
m

})−Bp−1

({
sp
m

})
(mod p) if 2 | m,

1
2

(
(−1)[

(s−1)p
m ]Ep−2

({ (s−1)p
m

})− (−1)[
sp
m ]Ep−2

({
sp
m

}))
(mod p) if 2 - m.

For a discriminant d let h(d) be the class number of the quadratic field Q(
√

d) (Q
is the set of rational numbers). If p > 3 is a prime of the form 4m+3, it is well known
that (cf. [IR])

(1.3) h(−p) ≡ −2B p+1
2

(mod p).

If p is a prime of the form 4m + 1, according to [Er] we have

(1.4) 2h(−4p) ≡ E p−1
2

(mod p).

Let ( a
n ) be the Kronecker symbol. For odd primes p, in Section 3 we establish the

following congruences:

h(−8p) ≡ E p−1
2

(1
4

)
(mod p);

h(−3p) ≡ −4
(p

3

)
B p+1

2

(1
3

)
(mod p) for p ≡ 1 (mod 4);

h(−12p) ≡ 8
(p

3

)
B p+1

2

( 1
12

)
(mod p) for p ≡ 7, 11, 23 (mod 24);

h(−5p) ≡ −8B p+1
2

(1
5

)
(mod p) for p ≡ 11, 19 (mod 20).

For m ∈ N let Zm be the set of rational numbers whose denominator is coprime
to m. For a prime p, in [S5] the author introduced the notion of p-regular functions.
If f(k) ∈ Zp for any nonnegative integers k and

∑n
k=0

(
n
k

)
(−1)kf(k) ≡ 0 (mod pn)
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for all n ∈ N, then f is called a p-regular function. If f is a p-regular function and
k, m, n, t ∈ N, in Section 4 we show that

(1.5) f(ktpm−1) ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1) (mod pmn),

which was annouced by the author in [S5, (2.4)]. We also show that

(1.6) f(kpm−1) ≡ (1− kpm−1)f(0) + kpm−1f(1) (mod pm+1) for p > 2.

Let p be a prime, x ∈ Zp and let b be a nonnegative integer. Let 〈t〉p be the
least nonnegative residue of t modulo p and x′ = (x + 〈−x〉p)/p. From [S4, Theorem
3.1] we know that f(k) = p(pBk(p−1)+b(x) − pk(p−1)+bBk(p−1)+b(x′)) is a p−regular
function. If p − 1 - b, in [S5] the author showed that f(k) = (Bk(p−1)+b(x) −
pk(p−1)+b−1Bk(p−1)+b(x′))/(k(p− 1) + b) is also a p−regular function. Using such re-
sults in [S4, S5] and (1.5), in Section 5 we obtain general congruences for pBkϕ(ps)+b(x),
pBkϕ(ps)+b,χ (mod psn), where k, n, s ∈ N, ϕ is Euler’s totient function and χ is a
Dirichlet character modulo a positive integer. As a consequence of (1.6), if 2 | b and
p− 1 - b, we have

Bkϕ(ps)+b

kϕ(ps) + b
≡ (1− kps−1)(1− pb−1)

Bb

b
+ kps−1 Bp−1+b

p− 1 + b
(mod ps+1).

In Section 6 we establish some congruences for
∑n

k=0

(
n
k

)
(−1)kpBk(p−1)+b(x) mod-

ulo pn+1, where p is an odd prime, n ∈ N, x ∈ Zp and b is a nonnegative integer.
Let p be an odd prime and b ∈ {0, 2, 4, . . . }. In Section 7 we show that f(k) =

(1−(−1)
p−1
2 pk(p−1)+b)Ek(p−1)+b is a p−regular function. Using this and (1.5) we give

congruences for Ekϕ(pm)+b (mod pmn), where k,m ∈ N. By (1.6) we have

Ekϕ(pm)+b ≡ (1− kpm−1)(1− (−1)
p−1
2 pb)Eb + kpm−1Ep−1+b (mod pm+1).

We also show that f(k) = E2k+b is a 2−regular function and

E2mkt+b ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b (mod 2mn+n−α),

where k, m, n, t ∈ N and α ∈ N is given by 2α−1 ≤ n < 2α.

2. Congruences for Bk({ (s−1)p
m })−Bk({ sp

m }) (mod p).
We begin with two useful identities concerning Bernoulli and Euler polynomials.

In the case m = 1 the result is well known. See [MOS].
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Theorem 2.1. Let p,m ∈ N and k, r ∈ Z with k ≥ 0. Then

p−1∑
x=0

x≡r(mod m)

xk =
mk

k + 1

(
Bk+1

( p

m
+

{r − p

m

})
−Bk+1

({ r

m

}))

and

p−1∑
x=0

x≡r(mod m)

(−1)
x−r

m xk = −mk

2

(
(−1)[

r−p
m ]Ek

( p

m
+

{r − p

m

})
− (−1)[

r
m ]Ek

({ r

m

}))
.

Proof. For any real number t and nonnegative integer n it is well known that (cf.
[MOS])

(2.1) Bn(t + 1)−Bn(t) = ntn−1 (n 6= 0) and En(t + 1) + En(t) = 2tn.

Hence, for x ∈ Z we have

Bk+1

(x + 1
m

+
{r − x− 1

m

})
−Bk+1

( x

m
+

{r − x

m

})

=

{
Bk+1

(
x+1
m +

{
r−x
m

}− 1
m

)−Bk+1

(
x
m +

{
r−x
m

})
= 0 if m - x− r,

Bk+1

(
x+1
m + m−1

m

)−Bk+1

(
x
m

)
= (k + 1)

(
x
m

)k if m | x− r.

Thus

Bk+1

( p

m
+

{r − p

m

})
−Bk+1

({ r

m

})

=
p−1∑
x=0

(
Bk+1

(x + 1
m

+
{r − x− 1

m

})
−Bk+1

( x

m
+

{r − x

m

}))

=
k + 1
mk

p−1∑
x=0

x≡r(mod m)

xk.

Similarly, if x ∈ Z, by (2.1) we have

(−1)[
r−x−1

m ]Ek

(x + 1
m

+
{r − x− 1

m

})
− (−1)[

r−x
m ]Ek

( x

m
+

{r − x

m

})

=





(−1)[
r−x

m ]
(
Ek

(
x+1
m +

{
r−x
m } − 1

m

)− Ek

(
x
m +

{
r−x
m

}))
= 0

if m - x− r,

(−1)
r−x

m −1Ek

(
x+1
m + m−1

m

)− (−1)
r−x

m Ek

(
x
m

)
= −(−1)

r−x
m · 2( x

m )k

if m | x− r.
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Thus
(−1)[

r−p
m ]Ek

( p

m
+

{r − p

m

})
− (−1)[

r
m ]Ek

({ r

m

})

=
p−1∑
x=0

{
(−1)[

r−x−1
m ]Ek

(x + 1
m

+
{r − x− 1

m

})

− (−1)[
r−x

m ]Ek

( x

m
+

{r − x

m

})}

= − 2
mk

p−1∑
x=0

x≡r(mod m)

(−1)
x−r

m xk.

This completes the proof.

Corollary 2.1. Let p be an odd prime and k ∈ {0, 1, . . . , p − 2}. Let r ∈ Z and
m ∈ N with p - m. Then

p−1∑
x=0

x≡r(mod m)

xk ≡ mk

k + 1

(
Bk+1

({r − p

m

})
−Bk+1

({ r

m

}))
(mod p)

and

p−1∑
x=0

x≡r(mod m)

(−1)
x−r

m xk

≡ −mk

2

(
(−1)[

r−p
m ]Ek

({r − p

m

})
− (−1)[

r
m ]Ek

({ r

m

}))
(mod p).

Proof. If x1, x2 ∈ Zp and x1 ≡ x2 (mod p), by [S5, Lemma 3.1] and [S3, Lemma
3.3] we have

(2.2)
Bk+1(x1)−Bk+1(x2)

k + 1
≡ x1 − x2

p
· pBk ≡ 0 (mod p)

and

(2.3) Ek(x1) ≡ Ek(x2) (mod p).

Thus the result follows from Theorem 2.1.
Remark 2.1 Putting k = p − 2 in Corollary 2.1 and then applying Fermat’s little
theorem we see that if p is an odd prime not dividing m, then

(2.4)
p−1∑
x=1

x≡r(mod m)

1
x
≡ − 1

m

(
Bp−1

({r − p

m

})
−Bp−1

({ r

m

}))
(mod p)
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and

(2.5)

p−1∑
x=1

x≡r(mod m)

(−1)
x−r

m
1
x

≡ − 1
2m

(
(−1)[

r−p
m ]Ep−2

({r − p

m

})
− (−1)[

r
m ]Ep−2

({ r

m

}))
(mod p).

Here (2.4) and (2.5) are due to my brother Z.W. Sun. See [Su2, Theorem 2.1]. Inspired
by his work, the author established Theorem 2.1 and Corollary 2.1 in 1991.

Corollary 2.2. Let p be an odd prime. Let k ∈ {0, 1, . . . , p − 2} and m, s ∈ N with
p - m. Then

(−1)k

k + 1

(
Bk+1

({ (s− 1)p
m

})
−Bk+1

({sp

m

}))
≡

∑
(s−1)p

m <r≤ sp
m

rk (mod p)

and

(−1)[
(s−1)p

m ]Ek

({ (s− 1)p
m

})
− (−1)[

sp
m ]Ek

({sp

m

})

≡ 2(−1)k−1
∑

(s−1)p
m <r≤ sp

m

(−1)rrk (mod p).

Proof. It is clear that (see [S3, Lemma 3.1, Corollaries 3.1 and 3.3])

(2.6)

p−1∑
x=0

x≡sp(mod m)

xk =
∑

r∈Z
0≤sp−rm<p

(sp− rm)k =
∑

(s−1)p
m <r≤ sp

m

(sp− rm)k

≡ (−m)k
∑

(s−1)p
m <r≤ sp

m

rk (mod p)

and

(2.7)

p−1∑
x=0

x≡sp(mod m)

(−1)
x−sp

m xk =
∑

r∈Z
0≤sp−rm<p

(−1)r(sp− rm)k

=
∑

(s−1)p
m <r≤ sp

m

(−1)r(sp− rm)k

≡ (−m)k
∑

(s−1)p
m <r≤ sp

m

(−1)rrk (mod p)

Thus applying Corollary 2.1 we obtain the result.
Remark 2.2 In the case s = 1, the first part of Corollary 2.2 is due to Lehmer ([L,
p. 351]). In the case k = p − 2, the first part of Corollary 2.2 can be deduced from
[GS, p. 126].
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Corollary 2.3. Let p be a prime.

(i) (Karpinski[K, UW]) If p ≡ 3 (mod 8), then
(p−3)/4∑

x=1

(
x
p

)
= 0.

(ii) (Karpinski[K, UW]) If p ≡ 5 (mod 8), then
[p/6]∑
x=1

(
x
p

)
= 0.

(iii) (Berndt[B, UW]) If p ≡ 5 (mod 24), then
(p−5)/12∑

x=1

(
x
p

)
= 0.

Proof. By Corollary 2.2 and the known fact B2n+1 = 0, for m ∈ N with p - m we
have

(2.8)

[p/m]∑
x=1

(x

p

)
≡

[p/m]∑
x=1

x
p−1
2 ≡ (−1)

p−1
2

p+1
2

(
B p+1

2
−B p+1

2

({ p

m

}))

≡
{ −2B p+1

2

({
p
m

})
(mod p) if p ≡ 1 (mod 4),

−2B p+1
2

+ 2B p+1
2

({
p
m

})
(mod p) if p ≡ 3 (mod 4).

It is well known that B2n( 3
4 ) = B2n( 1

4 ) = (1 − 22n−1)B2n/24n−1. Thus, if p ≡
3 (mod 8), by (2.8) we see that

p−3
4∑

x=1

(x

p

)
≡ −2B p+1

2
+ 2B p+1

2

(3
4

)
=

1
2p−1

(
1− 2

p−1
2

)
B p+1

2
− 2B p+1

2

≡
(
1−

(2
p

)
− 2

)
B p+1

2
= 0 (mod p).

As −p−3
4 ≤ ∑ p−3

4
x=1

(
x
p

) ≤ p−3
4 , we must have

∑(p−3)/4
x=1 (x

p ) = 0. This proves (i).
Now we consider (ii). For n ∈ {0, 1, 2, . . . } and m ∈ N it is well known that (cf.

[IR], [MOS])

(2.9) Bn(1− x) = (−1)nBn(x) and
m−1∑

k=0

Bn

(
x +

k

m

)
= m1−nBn(mx).

Thus
B p+1

2

( 1
2n

)
+ B p+1

2

( 1
2n

+
1
2

)
= 2−

p−1
2 B p+1

2

( 1
n

)

and so

(2.10) B p+1
2

( 1
2n

)
≡

(2
p

)
B p+1

2

( 1
n

)
− (−1)

p+1
2 B p+1

2

(n− 1
2n

)
(mod p).

Since p ≡ 5 (mod 8), taking n = 3 in (2.10) we find

(2.11) B p+1
2

(1
6

)
≡ −B p+1

2

(1
3

)
+ B p+1

2

(1
3

)
= 0 (mod p).
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This together with (2.8) and (2.9) yields

[p/6]∑
x=1

(x

p

)
≡ −2B p+1

2

({p

6

})
= −2

(p

3

)
B p+1

2

(1
6

)
≡ 0 (mod p).

As |∑[p/6]
x=1

(
x
p

)| ≤ [p
6 ] we have

∑[p/6]
x=1

(
x
p

)
= 0. This proves (ii).

Finally we consider (iii). Assume p ≡ 5 (mod 24). By (2.10) and (2.11) we have

B p+1
2

( 1
12

)
≡

(2
p

)
B p+1

2

(1
6

)
+ B p+1

2

( 5
12

)
≡ B p+1

2

( 5
12

)
(mod p).

On the other hand, by (2.9) we have

B p+1
2

( 1
12

)
+ B p+1

2

( 5
12

)
= 3−

p−1
2 B p+1

2

(1
4

)
−B p+1

2

( 9
12

)

≡
(3

p

)
B p+1

2

(1
4

)
− (−1)

p+1
2 B p+1

2

(1
4

)

= 0 (mod p).

Thus B p+1
2

(
1
12

) ≡ B p+1
2

(
5
12

) ≡ 0 (mod p). Now applying (2.8) we see that

[p/12]∑
x=1

(x

p

)
≡ −2B p+1

2

({ p

12

})
= −2B p+1

2

( 5
12

)
≡ 0 (mod p).

This yields (iii) and so the corollary is proved.

Corollary 2.4. Suppose p, q, m ∈ N, n ∈ Z, gcd(p,m) = 1 and q ≤ m. For r ∈ Z let
Ar(m, p) be the least positive solution of the congruence px ≡ r (mod m). Then

∣∣{r : Ar(m, p) ≤ q, r ∈ Z, −n ≤ r ≤ p− 1− n
}∣∣ =

[pq + n

m

]
−

[ n

m

]
.

Proof. Using Theorem 2.1 we see that∣∣{r : Ar(m, p) ≤ q, r ∈ Z, −n ≤ r ≤ p− 1− n
}∣∣

=
q∑

x=1

p−1−n∑
r=−n

r≡px (mod m)

1 =
q∑

x=1

p−1∑
s=0

s≡px+n (mod m)

1

=
q∑

x=1

(
B1

( p

m
+

{px + n− p

m

})
−B1

({px + n

m

}))

=
q∑

x=1

( p

m
+

{p(x− 1) + n

m

}
−

{px + n

m

})

=
pq

m
+

{ n

m

}
−

{pq + n

m

}
=

pq + n

m
−

{pq + n

m

}
−

( n

m
−

{ n

m

})

=
[pq + n

m

]
−

[ n

m

]
.

This proves the corollary.
8



Theorem 2.2. Let m, s ∈ N and let p be an odd prime not dividing m. Then

(−1)s m

p

p−1∑

k=1
k≡sp(mod m)

(
p

k

)

≡
∑

(s−1)p
m <k< sp

m

(−1)km

k

≡
{

Bp−1

({ (s−1)p
m

})−Bp−1

({
sp
m

})
(mod p) if 2 | m,

1
2

(
(−1)[

(s−1)p
m ]Ep−2

({ (s−1)p
m

})− (−1)[
sp
m ]Ep−2

({
sp
m

}))
(mod p) if 2 - m.

Proof. Let r ∈ Z. Since
(
p−1

j

) ≡ (−1)j (mod p) for j ∈ {0, 1, . . . , p − 1} we see
that

1
p

p−1∑

k=1
k≡r(mod m)

(
p

k

)
=

p−1∑

k=1
k≡r(mod m)

1
k

(
p− 1
k − 1

)
≡

p−1∑

k=1
k≡r(mod m)

(−1)k−1

k

=





(−1)r−1
p−1∑
k=1

k≡r(mod m)

1
k (mod p) if 2 | m,

(−1)r−1
p−1∑
k=1

k≡r(mod m)

(−1)
k−r

m
1
k (mod p) if 2 - m.

Putting this together with (2.4) and (2.5) we see that

1
p

p−1∑

k=1
k≡r(mod m)

(
p

k

)

≡
{

(−1)r

m

(
Bp−1

({
r−p
m

})−Bp−1

({
r
m

}))
(mod p) if 2 | m,

(−1)r

2m

(
(−1)[

r−p
m ]Ep−2

({
r−p
m

})− (−1)[
r
m ]Ep−2

({
r
m

}))
(mod p) if 2 - m.

Taking r = sp we obtain

(−1)s m

p

p−1∑

k=1
k≡sp(mod m)

(
p

k

)

≡
{

Bp−1

({ (s−1)p
m

})−Bp−1

({
sp
m

})
(mod p) if 2 | m,

1
2

(
(−1)[

(s−1)p
m ]Ep−2

({ (s−1)p
m

})− (−1)[
sp
m ]Ep−2

({
sp
m

}))
(mod p) if 2 - m.

On the other hand, putting k = p− 2 in Corollary 2.2 we see that

Bp−1

({ (s− 1)p
m

})
−Bp−1

({sp

m

})
≡

∑
(s−1)p

m <r< sp
m

1
r

(mod p)

9



and

(−1)[
(s−1)p

m ]Ep−2

({ (s− 1)p
m

})
− (−1)[

sp
m ]Ep−2

({sp

m

})

≡ 2
∑

(s−1)p
m <r< sp

m

(−1)r

r
(mod p).

Now combining the above we prove the theorem.

Corollary 2.5. Let m,n ∈ N and let p be an odd prime not dividing m.
(i) If 2 | m, then

Bp−1

({np

m

})
−Bp−1 ≡ m

p

n∑
s=1

(−1)s−1

p−1∑

k=1
k≡sp(mod m)

(
p

k

)
(mod p).

(ii) If 2 - m, then

(−1)[
np
m ]Ep−2

({np

m

})
+

2p − 2
p

≡ 2m

p

n∑
s=1

(−1)s−1

p−1∑

k=1
k≡sp(mod m)

(
p

k

)
(mod p).

Proof. It is well known that pBp−1 ≡ p − 1 (mod p). Thus, by (1.2) we have
Ep−2(0) = 2(1− 2p−1)Bp−1/(p− 1) ≡ −(2p − 2)/p (mod p). Note that

∑n
s=1(f(s)−

f(s − 1)) = f(n) − f(0). Then the result follows from Theorem 2.2 and the above
immediately.

Combining Theorem 2.2, Corollary 2.5 with the formulae for
∑

k≡r(mod m)

(
p
k

)
in the

cases m = 3, 4, 5, 6, 8, 9, 10, 12 (see [S1,S2,S3,SS,Su1]) we may deduce many useful
results, which had been given in [GS] and [S3].

3. Some congruences for h(−3p), h(−5p), h(−8p), h(−12p) (mod p).
Let {Sn} be defined by

(3.1) S0 = 1 and Sn = 1−
n−1∑

k=0

(
n

k

)
22n−2k−1Sk (n ≥ 1).

Then clearly Sn ∈ Z. The first few Sn are shown below:

S1 = −1, S2 = −3, S3 = 11, S4 = 57, S5 = −361, S6 = −2763.

Theorem 3.1. Let p be an odd prime. Then

h(−8p) ≡ E p−1
2

(1
4

)
≡ S p−1

2
(mod p).

10



Proof. From [UW, p. 58] we know that

(3.2) h(−8p) = 2
p−1∑
a=1

a≡1(mod 4)

(8p

a

)
.

Thus applying Corollary 2.1 in the case r = 1, m = 4 and k = p−1
2 we see that

h(−8p) = 2
p−1∑
a=0

a≡1(mod 4)

(2
a

)(a

p

)
≡ 2

p−1∑
a=0

a≡1(mod 4)

(−1)
a−1
4 a

p−1
2

≡ −4
p−1
2

(
(−1)[

1−p
4 ]E p−1

2

({1− p

4

})
− E p−1

2

(1
4

))
(mod p).

Since E2n(0) = 2
2n+1 (B2n+1 − 22n+1B2n+1) = 0 by (1.2), we see that

E p−1
2

({1− p

4

})
=

{
E2n(0) = 0 if p = 4n + 1,
E2n−1( 1

2 ) = 21−2nE2n−1 = 0 if p = 4n− 1.

Thus
h(−8p) ≡ 4

p−1
2 E p−1

2

(1
4

)
≡ E p−1

2

(1
4

)
(mod p).

Let S′n = 4nEn( 1
4 ). Now we show that Sn = S′n for n ≥ 0. By (1.1) we have

4−nS′n +
n∑

k=0

(
n

k

)
4−kS′k = 2 · 4−n and so S′n +

n∑

k=0

(
n

k

)
4n−kS′k = 2.

That is, S′n = 1 − ∑n−1
k=0

(
n
k

)
22n−2k−1S′k. Since S′0 = S0 = 1 we see that S′n = Sn.

That is,

(3.3) Sn = 4nEn

(1
4

)
.

Hence S p−1
2

= 4
p−1
2 E p−1

2
( 1
4 ) ≡ h(−8p) (mod p). This proves the theorem.

Corollary 3.1. Let p be an odd prime. Then p - S p−1
2

.

Proof. From (3.2) we have 1 < h(−8p) < p. Thus the result follows from Theorem
3.1.

Remark 3.1 Since Sn = 4nEn( 1
4 ), by (1.2) and the binomial inversion formula we

have

(3.4) Sn =
n∑

r=0

(
n

r

)
(−1)n−r2rEr and

n∑
r=0

(
n

r

)
Sr = 2nEn.

11



Theorem 3.2. Let p be a prime greater than 3.
(i) If p ≡ 1 (mod 4), then

h(−3p) ≡
{ −4B p+1

2

(
1
3

)
(mod p) if p ≡ 1 (mod 12),

4B p+1
2

(
1
3

)
(mod p) if p ≡ 5 (mod 12).

(ii) If p ≡ 3 (mod 4), then

h(−12p) ≡





8B p+1
2

(
1
12

)
(mod p) if p ≡ 7 (mod 24),

−8B p+1
2

(
1
12

)
(mod p) if p ≡ 11 (mod 12),

8B p+1
2

(
1
12

)
+ 8B p+1

2
(mod p) if p ≡ 19 (mod 24)

and

h(−5p) ≡
{ −8B p+1

2
( 1
5 ) (mod p) if p ≡ 11, 19 (mod 20),

8B p+1
2

( 1
5 ) + 4B p+1

2
(mod p) if p ≡ 3, 7 (mod 20).

.

Proof. We first assume p ≡ 1 (mod 4). From [UW, p. 40] or [B] we have

h(−3p) = 2
[p/3]∑
x=1

( p

x

)
.

Thus applying (2.8), (2.9) and the quadratic reciprocity law we see that

h(−3p) = 2
[p/3]∑
x=1

(x

p

)
≡ −4B p+1

2

({p

3

})
= −4

(p

3

)
B p+1

2

(1
3

)
(mod p).

This proves (i).
Now let us consider (ii). Assume p ≡ 3 (mod 4). From [UW, pp. 3-5] we have

h(−12p) =





4
∑

p
12 <x< 2p

12

(
x
p

)
if p ≡ 7, 11, 23 (mod 24),

4
∑

4p
12 <x< 5p

12

(
x
p

)
if p ≡ 19 (mod 24).

By Corollary 2.2 and the fact B2n(x) = B2n(1− x) we find

∑
p
12 <x< 2p

12

(x

p

)
≡

∑
p
12 <x≤ 2p

12

x
p−1
2 ≡ −2

(
B p+1

2

({ p

12

})
−B p+1

2

(1
6

))
(mod p)

and
∑

4p
12 <x< 5p

12

(x

p

)
≡

∑
4p
12 <x≤ 5p

12

x
p−1
2 ≡ −2

(
B p+1

2

(1
3

)
−B p+1

2

({5p

12

}))
(mod p).
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Thus

h(−12p) ≡





−8
(
B p+1

2

(
5
12

)−B p+1
2

(
1
6

))
(mod p) if p ≡ 7 (mod 24),

−8
(
B p+1

2

(
1
12

)−B p+1
2

(
1
6

))
(mod p) if p ≡ 11 (mod 12),

−8
(
B p+1

2

(
1
3

)−B p+1
2

(
1
12

))
(mod p) if p ≡ 19 (mod 24).

By (2.10) we have

B p+1
2

( 1
12

)
≡

(2
p

)
B p+1

2

(1
6

)
−B p+1

2

( 5
12

)
(mod p).

Thus, if p ≡ 7 (mod 24), then h(−12p) ≡ 8(B p+1
2

(
1
6

) − B p+1
2

(
5
12

)
) ≡ 8B p+1

2

(
1
12

)

(mod p). It is well known that ([GS])

B2n

(1
3

)
=

31−2n − 1
2

B2n and B2n

(1
6

)
=

(21−2n − 1)(31−2n − 1)
2

B2n.

Thus
B p+1

2

(1
3

)
=

1
2

(
3−

p−1
2 − 1

)
B p+1

2
≡ 1

2

((3
p

)
− 1

)
B p+1

2
(mod p)

and

B p+1
2

(1
6

)
=

(2−
p−1
2 − 1)(3−

p−1
2 − 1)

2
B p+1

2
≡ 1

2

((2
p

)
− 1

)((3
p

)
− 1

)
B p+1

2
(mod p).

If p ≡ 11 (mod 12), then
(

3
p

)
= 1 and so B p+1

2

(
1
6

) ≡ 0 (mod p). Hence h(−12p) ≡
−8B p+1

2

(
1
12

)
(mod p). If p ≡ 19 (mod 24), then

(
3
p

)
= −1 and so B p+1

2

(
1
3

) ≡
−B p+1

2
(mod p). Thus h(−12p) ≡ 8(B p+1

2

(
1
12

)
+ B p+1

2
) (mod p).

Finally we consider h(−5p) (mod p). From [UW, p. 40] or [B] we have

h(−5p) = 2
∑

p
5 <a< 2p

5

(−p

a

)
.

Observe that
(−p

a

)
=

(
a
p

)
by the quadratic reciprocity law. Thus applying Corollary

2.2 and (2.9) we obtain

h(−5p) = 2
∑

p
5 <a< 2p

5

(a

p

)
≡ 2

∑
p
5 <a< 2p

5

a
p−1
2

≡ 2 · (−1)
p−1
2

(p + 1)/2

(
B p+1

2

({p

5

})
−B p+1

2

({2p

5

}))

≡ −4
(p

5

)(
B p+1

2

(1
5

)
−B p+1

2

(2
5

))
(mod p).
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From (2.9) we see that

B p+1
2

+ 2B p+1
2

(1
5

)
+ 2B p+1

2

(2
5

)
=

4∑

k=0

B p+1
2

(k

5

)
= 5−

p−1
2 B p+1

2

and so
B p+1

2

(1
5

)
+ B p+1

2

(2
5

)
≡ 1

2

((p

5

)
− 1

)
B p+1

2
(mod p).

Thus

h(−5p) ≡ −4
(p

5

)(
2B p+1

2

(1
5

)
+

1
2

(
1−

(p

5

))
B p+1

2

)

=

{ −8B p+1
2

(
1
5

)
(mod p) if p ≡ 11, 19 (mod 20),

8B p+1
2

(
1
5

)
+ 4B p+1

2
(mod p) if p ≡ 3, 7 (mod 20).

The proof is now complete.
When d is a negative discriminant, it is known that 1 ≤ h(d) < p. Thus, from

Theorem 3.2 we deduce the following result.

Corollary 3.2. Let p be a prime.
(i) If p ≡ 1 (mod 4), then B p+1

2
(1
3 ) 6≡ 0 (mod p).

(ii) If p ≡ 7, 11, 23 (mod 24), then B p+1
2

( 1
12 ) 6≡ 0 (mod p).

(iii) If p ≡ 11, 19 (mod 20), then B p+1
2

(1
5 ) 6≡ 0 (mod p).

Remark 3.2 For n = 0, 1, . . . it is well known that
∑n

k=0

(
n
k

)
1

n−k+1Bk(x) = xn. From
this we deduce that if m ∈ N and an = mnBn( 1

m ), then
∑n

k=0

(
n+1

k

)
mn−kak = n + 1.

4. p-regular functions.
For a prime p, in [S5] the author introduced the notion of p-regular functions. If

f(k) is a complex number congruent to an algebraic integer modulo p for any given
nonnegative integer k and

∑n
k=0

(
n
k

)
(−1)kf(k) ≡ 0 (mod pn) for all n ∈ N, then f

is called a p-regular function. If f and g are p-regular functions, in [S5] the author
showed that f · g is also a p-regular function. Thus we see that p-regular functions
form a ring. In the section we discuss further properties of p-regular functions.

Suppose n ∈ N and k ∈ {0, 1, . . . , n}. Let s(n, k) be the unsigned Stirling number
of the first kind and S(n, k) be the Stirling number of the second kind defined by

x(x− 1) · · · (x− n + 1) =
n∑

k=0

(−1)n−ks(n, k)xk

and

xn =
n∑

k=0

S(n, k)x(x− 1) · · · (x− k + 1).

14



For our convenience we also define s(n, k) = S(n, k) = 0 for k > n. For m ∈ N it is
well known that

(4.1)
n∑

r=0

(
n

r

)
(−1)n−rrm = n!S(m,n)

In particular, taking m = n we have the following Euler’s identity

(4.2)
n∑

r=0

(
n

r

)
(−1)n−rrn = n! .

Lemma 4.1. Let x, d be variables, m,n ∈ N and i ∈ Z with i ≥ 0. Then

n∑
r=0

(
n

r

)
(−1)n−r

(
rx + d

m

)
ri

=
n!
m!

m∑

j=n−i

( m∑

k=j

(
k

j

)
(−1)m−ks(m, k)dk−j

)
S(i + j, n)xj .

In particular we have

n∑
r=0

(
n

r

)
(−1)n−r

(
rx

m

)
ri =

n!
m!

m∑

j=n−i

(−1)m−js(m, j)S(i + j, n)xj .

Proof. Since

m!
(

rx + d

m

)
= (rx + d)(rx + d− 1) · · · (rx + d−m + 1)

=
m∑

k=0

(−1)m−ks(m, k)(rx + d)k

=
m∑

k=0

(−1)m−ks(m, k)
k∑

j=0

(
k

j

)
(rx)jdk−j

=
m∑

j=0

( m∑

k=j

(
k

j

)
(−1)m−ks(m, k)dk−j

)
rjxj ,

we have
n∑

r=0

(
n

r

)
(−1)n−r

(
rx + d

m

)
ri

=
1
m!

m∑

j=0

( m∑

k=j

(
k

j

)
(−1)m−ks(m, k)dk−j

)
xj ·

n∑
r=0

(
n

r

)
(−1)n−rri+j .

Now applying (4.1) we obtain the result.
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Lemma 4.2. Let p be a prime and m, n ∈ N. Then

m!s(n,m)
n!

pn−m ∈ Zp and
m!S(n, m)

n!
pn−m ∈ Zp.

Moreover, if m < n, we have

m!s(n, m)
n!

pn−m ≡ m!S(n,m)
n!

pn−m ≡ 0 (mod p) for p > 2

and
m!s(n, m)

n!
2n−m ≡

(
m

n−m

)
(mod 2).

Proof. It is well known that

(ex − 1)m

m!
=

∞∑
n=m

S(n,m)
xn

n!
.

Thus, applying the multinomial theorem we see that

(ex − 1)m =
( ∞∑

k=1

xk

k!

)m

=
∞∑

n=m

( ∑

k1+k2+···+kn=m
k1+2k2+···+nkn=n

m!
k1!k2! · · · kn!

n∏
r=1

1
r!kr

)
xn

and so

(4.3) S(n,m) =
∑

k1+k2+···+kn=m
k1+2k2+···+nkn=n

n!
1!k1k1!2!k2k2! · · ·n!knkn!

.

Hence

m!S(n,m)
n!

pn−m =
∑

k1+k2+···+kn=m
k1+2k2+···+nkn=n

(k1 + k2 + · · ·+ kn)!
k1!k2! · · · kn!

n∏
r=1

(pr−1

r!

)kr

.

From [S5, pp. 196-197] we also have

(4.4) s(n,m) =
∑

k1+k2+···+kn=m
k1+2k2+···+nkn=n

n!
1k1k1!2k2k2! · · ·nknkn!

and

m!s(n, m)
n!

pn−m =
∑

k1+k2+···+kn=m
k1+2k2+···+nkn=n

(k1 + k2 + · · ·+ kn)!
k1!k2! · · · kn!

n∏
r=1

(pr−1

r

)kr

.
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It is known that (k1+· · ·+kn)!/(k1! · · · kn!) ∈ Z. For r ∈ N we know that if pα ‖ r!(that
is pα | r! but pα+1 - r!), then α =

∑∞
i=1

[
r
pi

] ≤ [
r
p

]
. Thus pr−1/r, pr−1/r! ∈ Zp. For

p > 2 we see that pr−1/r ≡ pr−1/r! ≡ 0 (mod p) for r > 1. Hence the result follows
from the above. For p = 2 we see that 2r−1/r ≡ 0 (mod 2) for r > 2. Thus

m!s(n, m)
n!

2n−m ≡
∑

k1+k2=m
k1+2k2=n

(k1 + k2)!
k1!k2!

=
(

m

n−m

)
(mod 2).

Summarizing the above we prove the lemma.
From Lemma 4.1 we have the following identities, which are generalizations of

Euler’s identity.

Theorem 4.1. Let x, d be variables and m,n ∈ N.
(i) If m ≤ n, then

n∑
r=0

(
n

r

)
(−1)n−r

(
rx + d

m

)
rn−m =

n!
m!

xm.

In particular, when m = n we have
n∑

r=0

(
n

r

)
(−1)n−r

(
rx + d

n

)
= xn.

(ii) If m ≤ n + 1, then
n∑

r=0

(
n

r

)
(−1)n−r

(
rx + d

m

)
rn+1−m =

n!
m!

(n(n + 1)
2

xm − m(m− 1− 2d)
2

xm−1
)
.

In particular, when m = n + 1 we have
n∑

r=0

(
n

r

)
(−1)n−r

(
rx + d

n + 1

)
=

(
d +

n(x− 1)
2

)
xn.

Proof. Observe that s(m,m) = 1 and S(n, n) = 1. Putting i = n −m in Lemma
4.1 we obtain (i). By (4.3) and (4.4) we have

s(n, n− 1) = S(n, n− 1) = n(n− 1)/2 for n = 2, 3, 4, . . .

Thus applying Lemma 4.1 we see that if m ≤ n + 1, then
n∑

r=0

(
n

r

)
(−1)n−r

(
rx + d

m

)
rn+1−m

=
n!
m!

m∑

j=m−1

( m∑

k=j

(
k

j

)
(−1)m−ks(m, k)dk−j

)
S(n + 1−m + j, n)xj

=
n!
m!

(
S(n + 1, n)xm +

m∑

k=m−1

(
k

m− 1

)
(−1)m−ks(m, k)dk−(m−1)xm−1

)

=
n!
m!

(n(n + 1)
2

xm +
(
dm− m(m− 1)

2

)
xm−1

)
.

This yields (ii) and so the theorem is proved.
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Corollary 4.1. Let p be an odd prime, m ∈ Z and d ∈ {0, 1, . . . , p − 1}. Then
mp ≡ m (mod p) and

mp −m

p
≡

p−1∑

k=1

1
k

[km + d

p

]
+ m

d∑

k=1

1
k

(mod p).

Proof. From Theorem 4.1(i) we have

mp =
p∑

k=0

(
p

k

)
(−1)p−k

(
km + d

p

)

=
(

mp + d

p

)
+

p−1∑

k=1

(
p

k

)
(−1)p−k

(
km + d

p

)
.

As
∑p−1

k=1
1
k ≡ 0 (mod p), we see that(

mp + d

p

)
=

(mp + d)(mp + d− 1) · · · (mp + d− p + 1)
p!

=
mp

p
· (mp + 1) · · · (mp + d)((m− 1)p + d + 1) · · · ((m− 1)p + p− 1)

(p− 1)!

≡ m
(
1 + mp

d∑

k=1

1
k

+ (m− 1)p
p−1∑

k=d+1

1
k

)

≡ m
(
1 + mp

d∑

k=1

1
k
− (m− 1)p

d∑

k=1

1
k

)

= m
(
1 + p

d∑

k=1

1
k

)
(mod p2).

Let rk be the least nonnegative residue of km+d modulo p. For k ∈ {1, 2, . . . , p−1}
we see that (

p

k

)
=

p(p− 1) · · · (p− k + 1)
k!

≡ (−1)k−1

k
p (mod p2).

Thus,
p−1∑

k=1

(
p

k

)
(−1)p−k

(
km + d

p

)

≡
p−1∑

k=1

p

k
· (km + d)(km + d− 1) · · · (km + d− p + 1)

p!

= p

p−1∑

k=1

1
k
· km + d− rk

p
· 1
(p− 1)!

p−1∏

i=0
i 6=rk

(km + d− i)

≡ p

p−1∑

k=1

1
k
· km + d− rk

p
= p

p−1∑

k=1

1
k

[km + d

p

]
(mod p2).
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Now putting all the above together we obtain the result.
Remark 4.1 In the case d = 0, Corollary 4.1 was first found by Lerch [Ler]. For a
different proof of Lerch’s result, see [S5].

Theorem 4.2. Let p be a prime. Let f be a p-regular function. Suppose m,n ∈ N
and d, t ∈ Z with d, t ≥ 0. Then

n∑
r=0

(
n

r

)
(−1)rf(pm−1rt + d) ≡ 0 (mod pmn).

Moreover, if Ak = p−k
∑k

r=0

(
k
r

)
(−1)rf(r), then

n∑
r=0

(
n

r

)
(−1)rf(pm−1rt + d)

≡
{

pmntnAn (mod pmn+1) if p > 2 or m = 1,
2mntn

∑n
r=0

(
n
r

)
Ar+n (mod 2mn+1) if p = 2 and m ≥ 2.

Proof. Since f is a p-regular function, we have Ak ∈ Zp for k ≥ 0. Set

a0 = A0 and ai = (−1)i
n∑

r=i

s(r, i)
pr

r!
Ar for i = 1, 2, . . . , n.

As pr/r! ∈ Zp and Ar ∈ Zp we have a0, . . . , an ∈ Zp. From [S5, p. 197] we have

f(k) ≡
n∑

i=0

aik
i (mod pn+1) for k = 0, 1, 2, . . . .

Thus applying (4.1) and (4.2) we see that

n∑
r=0

(
n

r

)
(−1)rf(rt + d) ≡

n∑
r=0

(
n

r

)
(−1)r

n∑

i=0

ai(rt + d)i

=
n∑

r=0

(
n

r

)
(−1)r(antnrn + bn−1r

n−1 + · · ·+ b1r + b0)

= an(−t)nn! = (−1)ns(n, n)
pn

n!
An · (−t)nn!

= pntnAn (mod pn+1),

where b0, b1, . . . , bn−1 ∈ Zp. Thus the result is true for m = 1.
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Now assume m ≥ 2. By the binomial inversion formula we have f(k) =
∑k

s=0

(
k
s

)
(−p)sAs. Thus

n∑
r=0

(
n

r

)
(−1)rf(pm−1rt)

=
n∑

r=0

(
n

r

)
(−1)r

pm−1rt∑

k=0

(
pm−1rt

k

)
(−p)kAk

=
pm−1nt∑

k=0

(−p)kAk

n∑
r=0

(
n

r

)
(−1)r

(
pm−1rt

k

)

=
pm−1nt∑

k=n

(−p)kAk · (−1)n n!
k!

k∑

j=n

(−1)k−js(k, j)S(j, n)
(
pm−1t

)j (by Lemma 4.1)

=
pm−1nt∑

k=n

(−p)n(−1)kAk

k∑

j=n

(−1)k−j s(k, j)j!
k!

pk−j · S(j, n)n!
j!

pj−n · (pm−1t
)j

= Antnpmn +
pm−1nt∑

k=n+1

(−p)n(−1)kAk

( (−1)k−ns(k, n)n!
k!

pk−n · p(m−1)ntn

+
k∑

j=n+1

(−1)k−js(k, j)j!
k!

pk−j · S(j, n)n!
j!

pj−n · (pm−1t)j
)
.

By Lemma 4.2, for j, k, n ∈ N we have

s(k, j)j!
k!

pk−j ∈ Zp and
S(j, n)n!

j!
pj−n ∈ Zp.

Hence, by the above, Lemma 4.2 and the fact (m− 1)(n + 1) + n ≥ mn + 1 we obtain
n∑

r=0

(
n

r

)
(−1)rf(pm−1rt)

≡ pmntn
(
An +

pm−1nt∑

k=n+1

s(k, n)n!
k!

pk−nAk

)

≡




pmntnAn (mod pmn+1) if p > 2,

2mntn
2m−1nt∑

k=n

(
n

k−n

)
Ak = 2mntn

n∑
r=0

(
n
r

)
Ar+n (mod 2mn+1) if p = 2.

Thus the result holds for d = 0.
Now suppose g(r) = f(r + d). By the previous argument,

n∑
r=0

(
n

r

)
(−1)rg(r) ≡ pnAn (mod pn+1).
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Thus g is also a p-regular function. Note that
n∑

r=0

(
n

r

)
(−1)rf(pm−1rt + d) =

n∑
r=0

(
n

r

)
(−1)rg(pm−1rt).

By the above we see that the result is also true for d > 0. The proof is now complete.

Theorem 4.3. Let p be a prime, k,m, n, t ∈ N and d ∈ {0, 1, 2, . . . }. Let f be a
p-regular function. Then

f(ktpm−1 + d) ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1 + d) (mod pmn).

Moreover, setting As = p−s
∑s

r=0

(
s
r

)
(−1)rf(r) we then have

f(ktpm−1 + d)−
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1 + d)

≡
{

pmn
(

k
n

)
(−t)nAn (mod pmn+1) if p > 2 or m = 1,

2mn
(

k
n

)
(−t)n

∑n
r=0

(
n
r

)
Ar+n (mod 2mn+1) if p = 2 and m ≥ 2.

Proof. From [S4, Lemma 2.1] we know that for any function F ,

(4.5)

F (k) =
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
F (r)

+
k∑

r=n

(
k

r

)
(−1)r

r∑
s=0

(
r

s

)
(−1)sF (s),

where the second sum vanishes when k < n.
Now taking F (k) = f(ktpm−1 + d) we obtain

f(ktpm−1 + d) =
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1 + d)

+
k∑

r=n

(
k

r

)
(−1)r

r∑
s=0

(
r

s

)
(−1)sf(stpm−1 + d).

By Theorem 4.2 we have
k∑

r=n

(
k

r

)
(−1)r

r∑
s=0

(
r

s

)
(−1)sf(stpm−1 + d)

≡ (−1)n

(
k

n

) n∑
s=0

(
n

s

)
(−1)sf(stpm−1 + d)

≡
{ (

k
n

)
pmn(−t)nAn (mod pmn+1) if p > 2 or m = 1,

(
k
n

)
2mn(−t)n

∑n
r=0

(
n
r

)
Ar+n (mod 2mn+1) if p = 2 and m ≥ 2.

Now combining the above we prove the theorem.
Putting n = 1, 2, 3 and d = 0 in Theorem 4.3 we deduce the following result.
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Corollary 4.2. Let p be a prime, k, m, t ∈ N. Let f be a p-regular function. Then
(i) ([S5, Corollary 2.1]) f(kpm−1) ≡ f(0) (mod pm).
(ii) f(ktpm−1) ≡ kf(tpm−1)− (k − 1)f(0) (mod p2m).
(iii) We have

f(ktpm−1) ≡ k(k − 1)
2

f(2tpm−1)− k(k − 2)f(tpm−1)

+
(k − 1)(k − 2)

2
f(0) (mod p3m).

(iv) We have

f(kpm−1)

≡
{

f(0)− k(f(0)− f(1))pm−1 (mod pm+1) if p > 2 or m = 1,
f(0)− 2m−2k(f(2)− 4f(1) + 3f(0)) (mod 2m+1) if p = 2 and m ≥ 2.

Theorem 4.4. Let p be a prime and let f be a p-regular function. Let n ∈ N.
(i) For d, x ∈ Zp and m ∈ {0, 1, . . . , n− 1} we have

n∑

k=0

(
n

k

)
(−1)k

(
kx + d

m

)
f(k) ≡ 0 (mod pn−m).

(ii) We have

n∑

k=1

(
n

k

)
(−1)kf(k − 1) ≡ −f(pn−1 − 1) (mod pn).

Proof. From [S5, Theorem 2.1] we know that there are a0, a1, . . . , an−m−1 ∈ Z
such that

f(k) ≡ an−m−1k
n−m−1 + · · ·+ a1k + a0 (mod pn−m) for k = 0, 1, 2, . . .

Thus applying Lemma 4.1 and (4.1) we have

n∑

k=0

(
n

k

)
(−1)k

(
kx + d

m

)
f(k)

≡
n∑

k=0

(
n

k

)
(−1)k

(
kx + d

m

) n−m−1∑

i=0

aik
i

=
n−m−1∑

i=0

ai

n∑

k=0

(
n

k

)
(−1)k

(
kx + d

m

)
ki = 0 (mod pn−m).

This proves (i).
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Now we consider (ii). By [S5, Theorem 2.1] there are a0, a1, . . . , an−1 ∈ Zp such
that s!as/ps ∈ Zp (s = 0, 1, . . . , n− 1) and

f(k) ≡ an−1k
n−1 + · · ·+ a1k + a0 (mod pn) for k = 0, 1, 2, . . .

Note that ps−1/s! ∈ Zp for s ∈ N. We then have a1 ≡ · · · ≡ an−1 ≡ 0 (mod p). Let

an−1(k − 1)n−1 + · · ·+ a1(k − 1) + a0 = bn−1k
n−1 + · · ·+ b1k + b0.

Then clearly b1 ≡ · · · ≡ bn−1 ≡ 0 (mod p) and

f(k − 1) ≡ bn−1k
n−1 + · · ·+ b1k + b0 (mod pn) for k = 1, 2, 3, . . .

Thus
f(pn−1 − 1) ≡ bn−1(pn−1)n−1 + · · ·+ b1p

n−1 + b0 ≡ b0 (mod pn).

Hence, applying (4.1) we have

n∑

k=1

(
n

k

)
(−1)kf(k − 1) ≡

n∑

k=1

(
n

k

)
(−1)k(bn−1k

n−1 + · · ·+ b1k + b0)

=
n−1∑

i=1

bi

n∑

k=0

(
n

k

)
(−1)kki + b0

n∑

k=1

(
n

k

)
(−1)k

= −b0 ≡ −f(pn−1 − 1) (mod pn).

So the theorem is proved.

5. Congruences for pBkϕ(pm)+b(x) and pBkϕ(pm)+b,χ (mod pmn).
For given prime p and t ∈ Zp we recall that 〈t〉p denotes the least nonnegative

residue of t modulo p.

Theorem 5.1. Let p be a prime, and k, m, n, t, b ∈ Z with m,n ≥ 1 and k, b, t ≥ 0.
Let x ∈ Zp and x′ = (x + 〈−x〉p)/p. Then

pBktϕ(pm)+b(x)− pktϕ(pm)+bBktϕ(pm)+b(x′)

−
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)(
pBrtϕ(pm)+b(x)− prtϕ(pm)+bBrtϕ(pm)+b(x′)

)

≡
{

δ(b, n, p)
(

k
n

)
(−t)npmn−1 (mod pmn) if p > 2 or m = 1,

0 (mod 2mn) if p = 2 and m ≥ 2,

where

δ(b, n, p) =





1 if p = 2 and n ∈ {1, 2, 4, 6, . . . }
or if p > 2, p− 1 | b and p− 1 | n,

0 otherwise.
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Proof. From [S4, Theorem 3.1] we know that

n∑

k=0

(
n

k

)
(−1)k

(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b(x′)

)
≡ pn−1δ(b, n, p) (mod pn).

Set f(k) = p
(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b(x′)

)
. Then

∑n
k=0

(
n
k

)
(−1)kf(k) ≡

δ(b, n, p)pn (mod pn+1). Thus f is a p-regular function. Hence appealing to Theorem
4.3 we have

f(ktpm−1)−
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1)

≡
{

pmn
(

k
n

)
(−t)nδ(b, n, p) (mod pmn+1) if p > 2 or m = 1,

2mn
(

k
n

)
(−t)n

∑n
r=0

(
n
r

)
δ(b, n + r, 2) (mod 2mn+1) if p = 2 and m ≥ 2.

Note that

δ(b, n + r, 2) =
{

1 if n + r ∈ {1, 2, 4, 6, . . . },
0 if n + r ∈ {3, 5, 7, . . . }.

We then have

n∑
r=0

(
n

r

)
δ(b, n + r, 2)

=





δ(b, 1, 2) + δ(b, 2, 2) = 1 + 1 ≡ 0 (mod 2) if n = 1,
n∑

r=0
2|n+r

(
n
r

)
= 2n−1 ≡ 0 (mod 2) if n > 1.

Thus
f(ktpm−1)

p
−

n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(rtpm−1)

p

≡
{

pmn−1
(

k
n

)
(−t)nδ(b, n, p) (mod pmn) if p > 2 or m = 1,

0 (mod 2mn) if p = 2 and m ≥ 2.

This is the result.

Corollary 5.1. Let p be a prime, and k, m, b ∈ Z with k,m ≥ 1 and b ≥ 0. Let
x ∈ Zp and x′ = (x + 〈−x〉p)/p. Suppose p > 2 or m > 1. Then

pBkϕ(pm)+b(x) ≡
{

3 (mod 4) if p = m = 2, k = 1 and b = 0,
pBb(x)− pbBb(x′) (mod pm) otherwise.

Proof. Putting n = t = 1 in Theorem 5.1 we see that

pBkϕ(pm)+b(x)− pkϕ(pm)+bBkϕ(pm)+b(x′) ≡ pBb(x)− pbBb(x′) (mod pm).
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If p = m = 2, k = 1 and b = 0, then pBkϕ(pm)+b(x) = 2B2(x) = 2(x2 − x + 1
6 ) ≡

3 (mod 4). Otherwise, we have kϕ(pm)+ b ≥ m+1 and so pkϕ(pm)+bBkϕ(pm)+b(x′) ≡
0 (mod pm). Thus the result follows from the above.

In the case p > 2, Corollary 5.1 has been proved by the author in [S4].
Let χ be a primitive Dirichlet character of conductor m. The generalized Bernoulli

number Bn,χ is defined by
m∑

r=1

χ(r)tert

emt − 1
=

∞∑
n=0

Bn,χ
tn

n!
.

Let χ0 be the trivial character. It is well known that (see [W])

B1,χ0 =
1
2
, Bn,χ0 = Bn (n 6= 1) and Bn,χ = mn−1

m∑
r=1

χ(r)Bn

( r

m

)
.

If χ is nontrivial and n ∈ N, then clearly
∑m

r=1 χ(r) = 0 and so

Bn,χ

n
= mn−1

m∑
r=1

χ(r)
(Bn( r

m )−Bn

n
+

Bn

n

)
= mn−1

m∑
r=1

χ(r)
Bn( r

m )−Bn

n
.

When p is a prime with p - m, by [S4, Lemma 2.3] we have (Bn( r
m ) − Bn)/n ∈ Zp.

Thus Bn,χ/n is congruent to an algebraic integer modulo p.

Lemma 5.1. Let p be a prime and let b be a nonnegative integer.
(i) ([S5, Theorem 3.2], [Y2]) If p−1 - b, x ∈ Zp and x′ = (x+〈−x〉p)/p, then f(k) =

(Bk(p−1)+b(x)− pk(p−1)+b−1Bk(p−1)+b(x′))/(k(p− 1) + b) is a p−regular function.
(ii) ([S5, (3.1), Theorem 3.1 and Remark 3.1]) If a, b ∈ N and p - a, then f(k) =

(1− pk(p−1)+b−1)(ak(p−1)+b − 1)Bk(p−1)+b/(k(p− 1) + b) is a p-regular function.
(iii) ([Y3, Theorem 4.2], [Y1, p. 216], [F], [S5, Lemma 8.1(a)]) If b, m ∈ N, p - m

and χ is a nontrivial primitive Dirichlet character of conductor m, then f(k) =
(1− χ(p) pk(p−1)+b−1)Bk(p−1)+b,χ/(k(p− 1) + b) is a p−regular function.

(iv) ([S5, Lemma 8.1(b)]) If m ∈ N, p - m and χ is a nontrivial Dirichlet char-
acter of conductor m, then f(k) = (1− χ(p)pk(p−1)+b−1)pBk(p−1)+b,χ is a p−regular
function.

From Lemma 5.1 and Theorem 4.3 we deduce the following theorem.

Theorem 5.2. Let p be a prime, k, n, s, t ∈ N and b ∈ {0, 1, 2, . . . }.
(i) If p− 1 - b, x ∈ Zp and x′ = (x + 〈−x〉p)/p, then

Bktps−1(p−1)+b(x)− pktps−1(p−1)+b−1Bktps−1(p−1)+b(x′)
ktps−1(p− 1) + b

≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)

× Brtps−1(p−1)+b(x)− prtps−1(p−1)+b−1Brtps−1(p−1)+b(x′)
rtps−1(p− 1) + b

(mod psn).
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(ii) If a, b ∈ N and p - a, then

(
1− pktps−1(p−1)+b−1

)(
aktps−1(p−1)+b − 1

) Bktps−1(p−1)+b

ktps−1(p− 1) + b

≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)(
1− prtps−1(p−1)+b−1

)

× (
artps−1(p−1)+b − 1

) Brtps−1(p−1)+b

rtps−1(p− 1) + b
(mod psn).

(iii) If b,m ∈ N, p - m and χ is a nontrivial primitive Dirichlet character of
conductor m, then

(1− χ(p)pktps−1(p−1)+b−1)Bktps−1(p−1)+b,χ

ktps−1(p− 1) + b

≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)

× (1− χ(p)prtps−1(p−1)+b−1)Brtps−1(p−1)+b,χ

rtps−1(p− 1) + b
(mod psn).

(iv) If m ∈ N, p - m and χ is a nontrivial Dirichlet character of conductor m, then

(
1− χ(p)pktps−1(p−1)+b−1

)
pBktps−1(p−1)+b,χ

≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)

× (
1− χ(p)prtps−1(p−1)+b−1

)
pBrtps−1(p−1)+b,χ (mod psn).

Remark 5.1 Theorem 5.2 can be viewed as generalizations of some congruences
in [S5]. In the case n = 1, Theorem 5.2(i) was given by Eie and Ong [EO], and
independently by the author in [S5, p. 204]. In the case s = t = 1, Theorem 5.2(i)
was announced by the author in [S4] and proved in [S5], and Theorem 5.2(iii) (in the
case p − 1 - b) and Theorem 5.2(iv) were also given in [S5]. When n = 1, Theorem
5.2(iii) was given in [W, p. 141].

Combining Lemma 5.1 and Corollary 4.2(iv) we obtain the following result.

Theorem 5.3. Let p be an odd prime, k, s ∈ N and b ∈ {0, 1, 2, . . . }.
(i) If p− 1 - b, x ∈ Zp and x′ = (x + 〈−x〉p)/p, then

Bkϕ(ps)+b(x)
kϕ(ps) + b

≡ (1− kps−1)
Bb(x)− pb−1Bb(x′)

b
+ kps−1 Bp−1+b(x)

p− 1 + b
(mod ps+1).
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(ii) If b,m ∈ N, p - m and χ is a nontrivial primitive Dirichlet character of
conductor m, then

Bkϕ(ps)+b,χ

kϕ(ps) + b
≡ (1− kps−1)

(
1− χ(p)pb−1

)Bb,χ

b
+ kps−1 Bp−1+b, χ

p− 1 + b
(mod ps+1).

(iii) If m ∈ N, p - m and χ is a nontrivial Dirichlet character of conductor m, then

(1− χ(p)pkϕ(ps)+b−1)pBkϕ(ps)+b,χ

≡ (1− kps−1)
(
1− χ(p)pb−1

)
pBb,χ

+ kps−1
(
1− χ(p)pp−2+b

)
pBp−1+b,χ (mod ps+1).

Corollary 5.2. Let p be an odd prime and k, s, b ∈ N with 2 | b and p− 1 - b. Then

Bkϕ(ps)+b

kϕ(ps) + b
≡ (1− kps−1)(1− pb−1)

Bb

b
+ kps−1 Bp−1+b

p− 1 + b
(mod ps+1).

Theorem 5.4. Let p be a prime, a, n ∈ N and p - a.
(i) There are integers b0, b1, · · · , bn−1 such that

(
1− pk(p−1)−1

)(
ak(p−1) − 1

) Bk(p−1)

k(p− 1)
≡ bn−1k

n−1 + · · ·+ b1k + b0 (mod pn) for k = 1, 2, 3, . . .

(ii) If p > 2 or n > 2, then

n∑

k=1

(
n

k

)
(−1)k(1− pk(p−1)−1)(ak(p−1) − 1)

Bk(p−1)

k(p− 1)
≡ 1− aϕ(pn)

pn
(mod pn).

Proof. Suppose b ∈ N. From Lemma 5.1(ii) we know that

f(k) =
(
1− pk(p−1)+b−1

)(
ak(p−1)+b − 1

) Bk(p−1)+b

k(p− 1) + b

is a p-regular function. Hence taking b = p − 1 and applying [S5, Theorem 2.1] we
know that there exist integers a0, a1, . . . , an−1 such that

(
1− p(k+1)(p−1)−1

)(
a(k+1)(p−1) − 1

) B(k+1)(p−1)

(k + 1)(p− 1)
≡ an−1k

n−1 + · · ·+ a1k + a0 (mod pn) for k = 0, 1, 2, . . .

That is,

(
1− pk(p−1)−1

)(
ak(p−1) − 1

) Bk(p−1)

k(p− 1)
≡ an−1(k − 1)n−1 + · · ·+ a1(k − 1) + a0 (mod pn) for k = 1, 2, 3, . . .
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On setting

an−1(k − 1)n−1 + · · ·+ a1(k − 1) + a0 = bn−1k
n−1 + · · ·+ b1k + b0

we obtain (i).
Now we consider (ii). Suppose p > 2 or n > 2. Since f(k) is a p-regular function,

by Theorem 4.4(ii) we have

n∑

k=1

(
n

k

)
(−1)k(1− p(k−1)(p−1)+b−1)(a(k−1)(p−1)+b − 1)

B(k−1)(p−1)+b

(k − 1)(p− 1) + b

≡ −(1− p(pn−1−1)(p−1)+b−1)(a(pn−1−1)(p−1)+b − 1)
B(pn−1−1)(p−1)+b

(pn−1 − 1)(p− 1) + b
(mod pn).

Substituting b by p− 1 + b we see that for b ≥ 0,

(5.1)

n∑

k=1

(
n

k

)
(−1)k(1− pk(p−1)+b−1)(ak(p−1)+b − 1)

Bk(p−1)+b

k(p− 1) + b

≡ −(1− pϕ(pn)+b−1)(aϕ(pn)+b − 1)
Bϕ(pn)+b

ϕ(pn) + b
(mod pn).

By Corollary 5.1 we have pBϕ(pn) ≡ p− 1 (mod pn). Thus taking b = 0 in (5.1) and
noting that ϕ(pn) ≥ n + 1 we obtain

n∑

k=1

(
n

k

)
(−1)k(1− pk(p−1)−1)(ak(p−1) − 1)

Bk(p−1)

k(p− 1)

≡ −(1− pϕ(pn)−1)(aϕ(pn) − 1)
Bϕ(pn)

ϕ(pn)

= −(1− pϕ(pn)−1)
aϕ(pn) − 1

pn
· pBϕ(pn)

p− 1
≡ −aϕ(pn) − 1

pn
(mod pn).

This completes the proof of the theorem.

6. Congruences for
∑n

k=0

(
n
k

)
(−1)kpBk(p−1)+b(x) (mod pn+1).

For a ∈ N and b ∈ Z we define χ(a | b) = 1 or 0 according as a | b or a - b.

Lemma 6.1. Let p be an odd prime and n ∈ N. Then
n∑

s=1
s≡n+1 (mod p−1)

(
n

s

)
≡ −χ(p− 1 | n) (mod p).

Proof. Let n0 ∈ {1, 2, . . . , p− 1} be such that n ≡ n0 (mod p− 1). Since Glaisher
(see [D]) it is well known that

n∑
s=0

s≡r (mod p−1)

(
n

s

)
≡

n0∑
s=0

s≡r (mod p−1)

(
n0

s

)
(mod p) for r ∈ Z.
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From [S1] we know that

n∑
s=0

s≡r (mod p−1)

(
n

s

)
=

n∑
s=0

s≡n−r (mod p−1)

(
n

s

)
.

Thus
n∑

s=0
s≡n+1 (mod p−1)

(
n

s

)
=

n∑
s=0

s≡−1 (mod p−1)

(
n

s

)
≡

n0∑
s=0

s≡p−2 (mod p−1)

(
n0

s

)

=





p− 1 ≡ −1 (mod p) if n0 = p− 1,
1 (mod p) if n0 = p− 2,
0 (mod p) if n0 < p− 2.

Hence
n∑

s=1
s≡n+1 (mod p−1)

(
n

s

)
=

n∑
s=0

s≡n+1 (mod p−1)

(
n

s

)
−χ(p−1 | n+1) ≡ −χ(p−1 | n) (mod p).

This proves the lemma.

Proposition 6.1. Let p be an odd prime, n ∈ N and x ∈ Zp. Let b be a nonnegative
integer. Then

n∑

k=0

(
n

k

)
(−1)k

(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b

(x + 〈−x〉p
p

))

≡
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−npnBn

( (x + j)p − (x + j)
p(p− 1)

)
+ pn∆(b, n, p) (mod pn+1),

where

∆(b, n, p) =





(n− b)T − n if p− 1 | b and p− 1 | n,
(n− b)T if p− 1 - b and p− 1 | n,
b− n if p− 1 | b and p− 1 | n + 1,
0 otherwise

and

T =
p−1∑

j=0
j 6=〈−x〉p

(x + j)p−1+b − (x + j)b

p
.

Proof. Let

Sn =
n∑

k=0

(
n

k

)
(−1)k

(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b

(x + 〈−x〉p
p

))
.
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From [S4, p.157] we know that

Sn =
n(p−1)+b∑

r=0

prBr

p−1∑

j=0
j 6=〈−x〉p

n∑

k=0

(
n

k

)
(−1)k

(
k(p− 1) + b

r

)
(x + j)k(p−1)+b−r.

By [S5, p.199] we know that for any functions f and g we have

(6.1)

n∑

k=0

(
n

k

)
(−1)kf(k)g(k)

=
n∑

s=0

(
n

s

)( n−s∑

i=0

(
n− s

i

)
(−1)if(i + s)

) s∑

j=0

(
s

j

)
(−1)jg(j).

Now taking f(k) =
(
k(p−1)+b

r

)
and g(k) = ak(p−1)+b−r (a 6= 0) in (6.1) we obtain

n∑

k=0

(
n

k

)
(−1)k

(
k(p− 1) + b

r

)
ak(p−1)+b−r

=
n∑

s=0

(
n

s

)( n−s∑

i=0

(
n− s

i

)
(−1)i

(
(i + s)(p− 1) + b

r

)) s∑

j=0

(
s

j

)
(−1)jaj(p−1)+b−r

=
n∑

s=0

(
n

s

)
ab−r(1− ap−1)s

n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

r

)
.

Thus applying the above and Lemma 4.1 we have

Sn =
n(p−1)+b∑

r=0

prBr

p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

(
n

s

)
(x + j)b−r

(
1− (x + j)p−1

)s

×
n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

r

)

=
p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

(
n

s

)(1− (x + j)p−1

p

)s
n(p−1)+b∑

r=n−s

pr+sBr · (x + j)b−r

×
n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

r

)
.

Since pBr ∈ Zp and so pr+sBr ≡ 0 (mod pn+1) for r ≥ n− s + 2, by Theorem 4.1 we
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have

n(p−1)+b∑
r=n−s

(x + j)b−rpr+sBr

n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

r

)

≡ (x + j)b−(n−s)pnBn−s

n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

n− s

)

+ (x + j)b−(n−s+1)pn+1Bn−s+1

n−s∑

i=0

(
n− s

i

)
(−1)i

(
i(p− 1) + s(p− 1) + b

n− s + 1

)

= (x + j)b−(n−s)pnBn−s · (1− p)n−s + (x + j)b−(n−s+1)pn+1Bn−s+1

× (s(p− 1) + b + (n− s)(p− 2)/2)(1− p)n−s

≡ (x + j)b−(n−s)(1− p)n−spnBn−s

+ (x + j)b−(n−s+1)(b− n)pn+1Bn−s+1 (mod pn+1).

Thus,

Sn ≡
p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

(
n

s

)(1− (x + j)p−1

p

)s(
(x + j)b−n+s(1− p)n−spnBn−s

+ (x + j)b−n+s−1(b− n)pn+1Bn−s+1

)

=
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n(1− p)npn
n∑

s=0

(
n

s

)(1− (x + j)p−1

p
· x + j

1− p

)s

Bn−s

+
p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

(
n

s

)(1− (x + j)p−1

p

)s

(x + j)b−n+s−1(b− n)pn+1Bn−s+1

≡
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n(1− p)npnBn(xj) +
p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

p−1|n−s+1

(
n

s

)

×
(1− (x + j)p−1

p

)s

(x + j)b−n+s−1(n− b)pn (mod pn+1),

where

xj =
(x + j)p − (x + j)

p(p− 1)
.

In the last step we use the facts

Bn(t) =
n∑

s=0

(
n

s

)
tsBn−s and pBk ≡ −χ(p− 1 | k) (mod p) (k ≥ 1).
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For a ∈ Z, using Lemma 6.1 and Fermat’s little theorem we see that

n∑
s=0

s≡n+1 (mod p−1)

(
n

s

)
as =

n∑
s=1

s≡n+1 (mod p−1)

(
n

s

)
as + χ(p− 1 | n + 1)

≡ an+1
n∑

s=1
s≡n+1 (mod p−1)

(
n

s

)
+ χ(p− 1 | n + 1)

≡ −χ(p− 1 | n)an+1 + χ(p− 1 | n + 1)

=





−an+1 ≡ −a (mod p) if p− 1 | n,
1 (mod p) if p− 1 | n + 1,
0 (mod p) if p− 1 - n and p− 1 - n + 1.

We also note that (see [S5, (5.1)])

(6.2)
p−1∑

j=0
j 6=〈−x〉p

(x + j)b ≡
p−1∑
r=1

rb ≡ −χ(p− 1 | b) (mod p).

Thus

p−1∑

j=0
j 6=〈−x〉p

n∑
s=0

p−1|n−s+1

(
n

s

)(1− (x + j)p−1

p

)s

(x + j)b−n+s−1(n− b)pn

≡ pn(n− b)
p−1∑

j=0
j 6=〈−x〉p

(x + j)b
n∑

s=0
s≡n+1 (mod p−1)

(
n

s

)(1− (x + j)p−1

p

)s

≡





pn(n− b)
p−1∑
j=0

j 6=〈−x〉p

(x + j)b((x + j)p−1 − 1)/p (mod pn+1)

if p− 1 | n,

pn(n− b)
p−1∑
j=0

j 6=〈−x〉p

(x + j)b ≡ −χ(p− 1 | b)(n− b)pn (mod pn+1)

if p− 1 | n + 1,
0 (mod pn+1) if p− 1 - n and p− 1 - n + 1.

On the other hand, for t ∈ Zp we have Bn(t)−Bn ∈ Zp (cf. [S4, Lemma 2.3]) and so

(−np)pnBn(xj) ≡ −npn+1Bn ≡
{

npn (mod pn+1) if p− 1 | n,
0 (mod pn+1) if p− 1 - n.
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Thus applying (6.2) we get

p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n · (−np)pnBn(xj)

≡





p−1∑
j=0

j 6=〈−x〉p

(x + j)b · npn ≡ −npnχ(p− 1 | b) (mod pn+1) if p− 1 | n,

0 (mod pn+1) if p− 1 - n.

Hence, by the above and the fact (1− p)n ≡ 1− np (mod p2) we obtain

p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n(1− p)npnBn(xj)−
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−npnBn(xj)

≡
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n · (−np)pnBn(xj)

≡
{ −npn (mod pn+1) if p− 1 | b and p− 1 | n,

0 (mod pn+1) if p− 1 - b or p− 1 - n.

Now combining the above we see that

Sn −
p−1∑

j=0
j 6=〈−x〉p

(x + j)b−npnBn(xj)

≡





−npn + (n− b)pnT (mod pn+1) if p− 1 | b and p− 1 | n,
pn(n− b)T (mod pn+1) if p− 1 - b and p− 1 | n,
pn(b− n) (mod pn+1) if p− 1 | b and p− 1 | n + 1,
0 (mod pn+1) otherwise.

This is the result.
Remark 6.1 When p = 2, b ≥ 1 and n ≥ 2, setting ∆(b, n, p) = b − n we can show
that the result of Proposition 6.1 is also true.

Theorem 6.1. Let p be a prime greater than 3, x ∈ Zp, n ∈ N, n 6≡ 0, 1 (mod p− 1)
and b ∈ {0, 1, 2, . . . }. Let n0 be given by n ≡ n0 (mod p−1) and n0 ∈ {2, 3, . . . , p−2}.
Set

Sn =
n∑

k=0

(
n

k

)
(−1)k

(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b

(x + 〈−x〉p
p

))
.
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Then

Sn ≡
{ (

n
n0
· Sn0

pn0 + (n+2)b
2

)
pn (mod pn+1) if p− 1 | b and p− 1 | n + 1,

n
n0
· Sn0

pn0 · pn (mod pn+1) if p− 1 - b or p− 1 - n + 1.

Proof. Since p − 1 - n we know that Bn/n ∈ Zp. For t ∈ Zp, by [S4, Lemma 2.3]
we have (Bn(t)−Bn)/n ∈ Zp. Thus

Bn(t)
n

=
Bn(t)−Bn

n
+

Bn

n
∈ Zp.

As n 6≡ 0, 1 (mod p− 1), by [S5, Corollary 3.1] we have

Bn(t)
n

≡ Bn0(t)− pn0−1Bn0

(
(t + 〈−t〉p)/p

)

n0
≡ Bn0(t)

n0
(mod p).

Set xj = ((x + j)p − (x + j))/(p(p − 1)). Then xj ∈ Zp. Thus Bn(xj)/n ∈ Zp and
Bn(xj)/n ≡ Bn0(xj)/n0 (mod p). From Proposition 6.1 and the above we see that

Sn

pn
≡

p−1∑

j=0
j 6=〈−x〉p

(x + j)b−nBn(xj) + (b− n)χ(p− 1 | b)χ(p− 1 | n + 1)

≡ n

p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n0
Bn0(xj)

n0
+ (b− n)χ(p− 1 | b)χ(p− 1 | n + 1) (mod p)

and so

Sn0

pn0
≡ n0

p−1∑

j=0
j 6=〈−x〉p

(x + j)b−n0
Bn0(xj)

n0
+ (b− n0)χ(p− 1 | b)χ(p− 1 | n + 1) (mod p).

Thus

Sn

pn
≡ n

n0

(Sn0

pn0
− (b− n0)χ(p− 1 | b)χ(p− 1 | n + 1)

)

+ (b− n)χ(p− 1 | b)χ(p− 1 | n + 1)

=
n

n0
· Sn0

pn0
+ b

(
1− n

n0

)
χ(p− 1 | b)χ(p− 1 | n + 1)

≡ n

n0
· Sn0

pn0
+ b

(
1 +

n

2

)
χ(p− 1 | b)χ(p− 1 | n + 1) (mod p).

This proves the theorem.
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Theorem 6.2. Let p be an odd prime, x ∈ Zp, b, n ∈ Z with n ≥ 1 and b ≥ 0. If
p | n and p− 1 - n, then

n∑

k=0

(
n

k

)
(−1)k

(
pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b

(x + 〈−x〉p
p

))

≡
{

bpn (mod pn+1) if p− 1 | b and p− 1 | n + 1,
0 (mod pn+1) if p− 1 - b or p− 1 - n + 1.

Proof. As p − 1 - n and p | n, for t ∈ Zp we see that Bn(t)/n ∈ Zp and so
Bn(t) = nBn(t)/n ≡ 0 (mod p). Thus the result follows from Proposition 6.1.

Theorem 6.3. Let p be an odd prime, n ∈ N and b ∈ {0, 2, 4, . . . }. If p(p − 1) | n,
then

n∑

k=0

(
n

k

)
(−1)k(1− pk(p−1)+b−1)pBk(p−1)+b

≡
{

pn−1 − 2pn (mod pn+1) if p− 1 | b,
0 (mod pn+1) if p− 1 - b.

Proof. From Proposition 6.1 we see that
n∑

k=0

(
n

k

)
(−1)k(1− pk(p−1)+b−1)pBk(p−1)+b

≡
p−1∑

j=1

jb−npnBn

( jp − j

p(p− 1)

)
− bTpn (mod pn+1),

where

T =
p−1∑

j=1

jp−1+b − jb

p
.

For p > 3 and m ∈ N, from [S5, (5.1)] we have

p−1∑

j=1

jm ≡ pBm +
p2

2
mBm−1 +

p3

6
m(m− 1)Bm−2 (mod p3).

If m ≥ 4 is even, then Bm−1 = 0 and pBm−2 ∈ Zp. Thus

(6.3)
p−1∑

j=1

jm ≡ pBm (mod p2) for m = 2, 4, 6, . . .

Hence

T ≡





pBp−1+b−pBb

p (mod p) if p > 3 and b > 0,
pBp−1−(p−1)

p (mod p) if p > 3 and b = 0,

22+b−2b

3 = 2b ≡ (−1)b = 1 ≡ 3B2−2
3 (mod 3) if p = 3.
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If p > 3 and b = k(p− 1) for some k ∈ N, by [S4, Corollary 4.2] we have

(6.4) pBb = pBk(p−1) ≡ kpBp−1 − (k − 1)(p− 1) (mod p2)

and
pBp−1+b = pB(k+1)(p−1) ≡ (k + 1)pBp−1 − k(p− 1) (mod p2).

Thus

T ≡ pBp−1+b − pBb

p
≡ pBp−1 − (p− 1)

p
(mod p).

If p > 3 and p− 1 - b, by Kummer’s congruences we have

Bp−1+b

p− 1 + b
≡ Bb

b
(mod p) and so Bp−1+b ≡ (b− 1)

Bb

b
(mod p).

Thus
T ≡ pBp−1+b − pBb

p
≡ b− 1

b
Bb −Bb = −Bb

b
(mod p).

Summarizing the above we have

(6.5) T ≡
{

pBp−1−(p−1)
p (mod p) if p− 1 | b,

−Bb

b (mod p) if p− 1 - b.

As p(p − 1) | n, from Corollary 5.1 we have pBn(x) ≡ p − 1 (mod p2) for x ∈ Zp.
Note that jn ≡ 1 (mod p2) for j = 1, 2, . . . , p− 1. Combining the above we obtain

n∑

k=0

(
n

k

)
(−1)k(1− pk(p−1)+b−1)pBk(p−1)+b

≡
p−1∑

j=1

jb−npn−1 · pBn

( jp − j

p(p− 1)

)
− bTpn

≡
p−1∑

j=1

jbpn−1(p− 1)− bTpn (mod pn+1).

From (6.3) and (6.4) we see that

p−1∑

j=1

jb ≡





pBb ≡ b
p−1 · pBp−1 − ( b

p−1 − 1)(p− 1) (mod p2)

if p > 3, b > 0 and p− 1 | b,
pBb (mod p2) if p > 3 and p− 1 - b,
p− 1 (mod p2) if p > 3 and b = 0,

1 + (1 + 3)
b
2 ≡ 2 + 3b

2 ≡ 2 + 6b (mod 9) if p = 3.
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That is,

p−1∑

j=1

jb ≡
{

b
p−1 (pBp−1 − (p− 1)) + p− 1 (mod p2) if p− 1 | b,
pBb (mod p2) if p− 1 - b.

Hence

n∑

k=0

(
n

k

)
(−1)k(1− pk(p−1)+b−1)pBk(p−1)+b

≡ pn−1(p− 1)
p−1∑

j=1

jb − bTpn

≡





pn−1(b(pBp−1 − (p− 1)) + (p− 1)2)− pn−1b(pBp−1 − (p− 1))
= pn−1(p− 1)2 ≡ pn−1 − 2pn (mod pn+1) if p− 1 | b,

pn−1(p− 1) · pBb − bpn · (−Bb

b ) = pn+1Bb ≡ 0 (mod pn+1) if p− 1 - b.

This completes the proof.

Theorem 6.4. Let p be a prime greater than 3, x ∈ Zp, n ∈ N, n 6≡ 0, 1 (mod p− 1)
and b ∈ {0, 1, 2, . . . }. Let n0 be given by n ≡ n0 (mod p−1) and n0 ∈ {2, 3, . . . , p−2}.
Let

f(k) = pBk(p−1)+b(x)− pk(p−1)+bBk(p−1)+b

(x + 〈−x〉p
p

)
.

Then for k = 0, 1, 2, . . . we have

f(k) ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(r) +

n

n0
·
∑n0

s=0

(
n0
s

)
(−1)sf(s)

pn0

(
k

n

)
(−p)n

+ χ(p− 1 | n + 1)χ(p− 1 | b)
(

(n + 2)b
2

(
k

n

)
−

(
k

n + 1

))
(−p)n (mod pn+1).

Proof. From [S4, Theorem 3.1] we have

m∑

k=0

(
m

k

)
(−1)kf(k) ≡ pm−1χ(p− 1 | m)χ(p− 1 | b) (mod pm) for m ∈ N.

37



Thus applying [S4, Lemma 2.1], Theorem 6.1 and the above we see that

f(k)−
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
f(r)

=
k∑

r=n

(
k

r

)
(−1)r

r∑
s=0

(
r

s

)
(−1)sf(s)

≡
(

k

n

)
(−1)n

n∑
s=0

(
n

s

)
(−1)sf(s) +

(
k

n + 1

)
(−1)n+1

n+1∑
s=0

(
n + 1

s

)
(−1)sf(s)

≡
(

k

n

)
(−1)npn

( n

n0
·
∑n0

s=0

(
n0
s

)
(−1)sf(s)

pn0
+

(n + 2)b
2

χ(p− 1 | n + 1)χ(p− 1 | b)
)

+
(

k

n + 1

)
(−1)n+1pnχ(p− 1 | n + 1)χ(p− 1 | b) (mod pn+1).

This yields the result.

Corollary 6.1. Let k, n ∈ N.
(i) If n ≡ 2 (mod 4), then

(5− 54k)B4k ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
(5− 54r)B4r

+ 3n

(
k

n

)
5n (mod 5n+1)

and

(5− 54k+2)B4k+2 ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
(5− 54r+2)B4r+2

− n

(
k

n

)
5n (mod 5n+1).

(ii) If n ≡ 3 (mod 4), then

(5− 54k)B4k ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
(5− 54r)B4r

+
(

k

n + 1

)
5n (mod 5n+1)

and

(5− 54k+2)B4k+2 ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
(5− 54r+2)B4r+2

+ n

(
k

n

)
5n (mod 5n+1).
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7. Congruences for Euler numbers.
We recall that the Euler numbers {En} are given by

E0 = 1, E2n−1 = 0 and
n∑

r=0

(
2n

2r

)
E2r = 0 (n ≥ 1).

The first few Euler numbers are shown below:

E0 = 1, E2 = −1, E4 = 5, E6 = −61, E8 = 1385, E10 = −50521,

E12 = 2702765, E14 = −199360981, E16 = 19391512145.

By (1.2) and (2.9) we have

E2n = 22nE2n

(1
2

)
= 22n · 22n+1

2n + 1

(
B2n+1

(3
4

)
−B2n+1

(1
4

))

=
24n+1

2n + 1

(
−B2n+1

(1
4

)
−B2n+1

(1
4

))
.

That is,

(7.1) E2n = −42n+1 B2n+1( 1
4 )

2n + 1
.

Lemma 7.1. Let p be an odd prime and b ∈ {0, 2, 4, . . . }. Then f(k) = (1 −
(−1)

p−1
2 pk(p−1)+b)Ek(p−1)+b is a p−regular function.

Proof. As p > 2 and 2 | b we see that p− 1 - b + 1. For x ∈ Zp, from Lemma 5.1(i)
we know that F (k) = (Bk(p−1)+b+1(x)− pk(p−1)+bBk(p−1)+b+1(x′))/(k(p− 1) + b + 1)
is a p−regular function, where x′ = (x + 〈−x〉p)/p. It is clear that

1
4 + 〈−1

4 〉p
p

=

{
1
p ( 1

4 + p−1
4 ) = 1

4 if p ≡ 1 (mod 4),
1
p ( 1

4 + 3p−1
4 ) = 3

4 if p ≡ 3 (mod 4).

Thus, using (2.9) we see that

Bk(p−1)+b+1

( 1
4 + 〈−1

4 〉p
p

)
= Bk(p−1)+b+1

({p

4

})
= (−1)

p−1
2 Bk(p−1)+b+1

(1
4

)
.

Hence

g(k) =
(
1− (−1)

p−1
2 pk(p−1)+b

) Bk(p−1)+b+1( 1
4 )

k(p− 1) + b + 1

= −4−(k(p−1)+b+1)
(
1− (−1)

p−1
2 pk(p−1)+b

)
Ek(p−1)+b

is a p−regular function. For n ∈ N we see that
n∑

k=0

(
n

k

)
(−1)k

(− 4k(p−1)+b+1
)

= −4b+1(1− 4p−1)n ≡ 0 (mod pn).

Namely, −4k(p−1)+b+1 is a p−regular function. Hence, using [S5, Theorem 2.3] we see
that f(k) = −4k(p−1)+b+1g(k) is also a p−regular function. This proves the lemma.

From Lemma 7.1 and Theorem 4.3 we have:
39



Theorem 7.1. Let p be an odd prime, k, m, n, t ∈ N and b ∈ {0, 2, 4, . . . }. Then

(
1− (−1)

p−1
2 pktpm−1(p−1)+b

)
Ektpm−1(p−1)+b

≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)(
1− (−1)

p−1
2 prtpm−1(p−1)+b

)

× Ertpm−1(p−1)+b (mod pmn).

Putting n = 1, 2, 3 and t = 1 in Theorem 7.1 we obtain the following result.

Corollary 7.1. Let p be an odd prime, k, m ∈ N and b ∈ {0, 2, 4, . . . }. Then
(i) ([C, p. 131]) Ekϕ(pm)+b ≡

(
1− (−1)

p−1
2 pb

)
Eb (mod pm).

(ii) Ekϕ(pm)+b ≡ kEϕ(pm)+b − (k − 1)
(
1− (−1)

p−1
2 pb

)
Eb (mod p2m).

(iii) We have

Ekϕ(pm)+b ≡
k(k − 1)

2
E2ϕ(pm)+b − k(k − 2)

(
1− (−1)

p−1
2 pϕ(pm)+b

)
Eϕ(pm)+b

+
(k − 1)(k − 2)

2
(
1− (−1)

p−1
2 pb

)
Eb (mod p3m).

From Lemma 7.1 and Corollary 4.2(iv) we have:

Theorem 7.2. Let p be an odd prime, k, m ∈ N and b ∈ {0, 2, 4, . . . }. Then

Ekϕ(pm)+b ≡ (1− kpm−1)(1− (−1)
p−1
2 pb)Eb + kpm−1Ep−1+b (mod pm+1).

Corollary 7.2. Let p be an odd prime and k, m ∈ N. Then

Ekϕ(pm) ≡
{

kpm−1Ep−1 (mod pm+1) if p ≡ 1 (mod 4),
2 + kpm−1(Ep−1 − 2) (mod pm+1) if p ≡ 3 (mod 4).

From [S5, Theorem 2.1] and Lemma 7.1 we have:

Theorem 7.3. Let p be an odd prime, n ∈ N and b ∈ {0, 2, 4, . . . }. Then there are
integers a0, a1, . . . , an−1 such that

(1− (−1)
p−1
2 pk(p−1)+b)Ek(p−1)+b ≡ an−1k

n−1 + · · ·+ a1k + a0 (mod pn)

for every k = 0, 1, 2, . . . Moreover, if p ≥ n, then a0, a1, . . . , an−1 (mod pn) are
uniquely determined.

As examples, we have

(1 + 32k)E2k ≡ −12k + 2 (mod 33),(7.2)

(1− 54k)E4k ≡ −750k3 + 1375k2 − 620k (mod 55),(7.3)

(1− 54k+2)E4k+2 ≡ 1000k3 + 1500k2 + 540k + 24 (mod 55).(7.4)
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Theorem 7.4. Let n ∈ N and b ∈ {0, 2, 4, . . . }. Suppose αn ∈ N and 2αn−1 ≤ n <
2αn . Then

n∑

k=0

(
n

k

)
(−1)kE2k+b ≡ 0 (mod 22n−αn).

Proof. We first prove the result in the case b = 0. Taking x = 0 in (1.2) we find

n∑
r=0

(
n

r

)
(−1)n−rEr =

2n+1

n + 1
(
Bn+1 − 2n+1Bn+1

)
.

Thus applying the binomial inversion formula we have

En =
n∑

m=0

(
n

m

)
2m+1(1− 2m+1)

m + 1
Bm+1.

Using this we see that

n∑

k=0

(
n

k

)
(−1)n−kE2k =

n∑

k=0

2k∑
m=0

(
n

k

)
(−1)n−k

(
2k

m

)
2m+1(1− 2m+1)

m + 1
Bm+1

=
2n∑

m=0

2m+1(1− 2m+1)
m + 1

Bm+1

∑
m
2 ≤k≤n

(
n

k

)
(−1)n−k

(
2k

m

)

=
2n∑

m=1

2m+1(1− 2m+1)
m + 1

Bm+1

n∑

k=0

(
n

k

)
(−1)n−k

(
2k

m

)
.

By Lemma 4.1 we have

n∑

k=0

(
n

k

)
(−1)n−k

(
2k

m

)
=

n!
m!

m∑

j=n

(−1)m−js(m, j)S(j, n) · 2j

=
m∑

j=n

(−1)m−j j!s(m, j)
m!

2m−j · n!S(j, n)
j!

2j−n · 2j+n−m.

Thus,

n∑

k=0

(
n

k

)
(−1)n−kE2k

=
2n∑

m=1

2m+1(1− 2m+1)
m + 1

Bm+1

m∑

j=n

(−1)m−j j!s(m, j)
m!

2m−j · n!S(j, n)
j!

2j−n · 2j+n−m

=
2n∑

m=n

2m+1(1− 2m+1)
m + 1

Bm+1

m∑

j=n

(−1)m−j j!s(m, j)
m!

2m−j · n!S(j, n)
j!

2j−n · 2j+n−m.
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It is well known that 2Bk ∈ Z2. Suppose 2ord2(m+1) ‖ m + 1. We then have

1
2m−ord2(m+1)

· 2m+1Bm+1

m + 1
=

2Bm+1

2−ord2(m+1)(m + 1)
∈ Z2.

On the other hand, by Lemma 4.2 we have j!s(m,j)
m! 2m−j ∈ Z2 and n!S(j,n)

j! 2j−n ∈ Z2.
Hence, if n ≤ j ≤ m ≤ 2n, then

2m+1(1− 2m+1)
m + 1

Bm+1 · (−1)m−j j!s(m, j)
m!

2m−j · n!S(j, n)
j!

2j−n · 2j+n−m

≡ 0 (mod 2j+n−ord2(m+1)).

When n ≤ j ≤ m ≤ 2n, we also have m+1 < 2(n+1) ≤ 2αn+1 and so ord2(m+1) ≤
αn, thus j + n − ord2(m + 1) ≥ j + n − αn ≥ 2n − αn. Therefore, by the above we
obtain

∑n
k=0

(
n
k

)
(−1)kE2k ≡ 0 (mod 22n−αn). So the result holds for b = 0.

From [S5, (2.5)] we know that for any function f ,

(7.5)
n∑

k=0

(
n

k

)
(−1)kf(k + m) =

m∑

k=0

(
m

k

)
(−1)k

k+n∑
r=0

(
k + n

r

)
(−1)rf(r).

Thus,

(7.6)
n∑

k=0

(
n

k

)
(−1)kE2k+b =

b/2∑

k=0

( b
2

k

)
(−1)k

k+n∑
r=0

(
k + n

r

)
(−1)rE2r.

As αs+1 = αs or αs+1, we see that 2(s+1)−αs+1 ≥ 2s−αs and hence 2r−αr ≥ 2s−αs

for r ≥ s. As the result holds for b = 0 we have

k+n∑
r=0

(
k + n

r

)
(−1)rE2r ≡ 0 (mod 22(k+n)−αk+n).

Since 2(k+n)−αk+n ≥ 2n−αn, we must have
k+n∑
r=0

(
k+n

r

)
(−1)rE2r ≡ 0 (mod 22n−αn).

Hence applying (7.6) we obtain

n∑

k=0

(
n

k

)
(−1)kE2k+b ≡ 0 (mod 22n−αn).

This proves the theorem.
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Corollary 7.3. Let n ∈ N and b ∈ {0, 2, 4, . . . }. Then

n∑

k=0

(
n

k

)
(−1)kE2k+b ≡

{
2 (mod 4) if n = 1,
0 (mod 2n+1) if n > 1

and thus f(k) = E2k+b is a 2−regular function.

Proof. Suppose αn ∈ N and 2αn−1 ≤ n < 2αn . By Theorem 7.4 we have

n∑

k=0

(
n

k

)
(−1)kE2k+b ≡ 0 (mod 22n−αn).

If αn ≥ n, then 2n−1 ≤ 2αn−1 ≤ n. For n ≥ 3 we have 2n−1 > n, thus αn < n
and hence 2n − αn ≥ n + 1. Therefore, for n ≥ 3 we have

∑n
k=0

(
n
k

)
(−1)kE2k+b ≡

0 (mod 2n+1). As E0 − E2 = 1− (−1) = 2 and E0 − 2E2 + E4 = 1− 2(−1) + 5 = 8,
applying (7.6) and the above we see that Eb − Eb+2 ≡ E0 − E2 = 2 (mod 8) and
Eb − 2Eb+2 + Eb+4 ≡ 0 (mod 8). So the result follows.

Theorem 7.5. Suppose k, m, n, t ∈ N and b ∈ {0, 2, 4, . . . }. For s ∈ N let αs ∈ N be
given by 2αs−1 ≤ s < 2αs and let es = 2−s

∑s
r=0

(
s
r

)
(−1)rE2r. Then

E2mkt+b ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b

+ 2mn

(
k

n

)
(−t)nen (mod 2mn+n+1−αn+1).

Moreover, for m ≥ 2 we have

E2mkt+b ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b

+ 2mn

(
k

n

)
(−t)n

(
en + nen+1 +

n(n− 1)
2

en+2

)
(mod 2mn+n+2−αn+1).

Proof. For s ∈ N set As = 2−s
∑s

r=0

(
s
r

)
(−1)rE2r+b. Since αs ≤ s, by Theorem 7.4

we have As ∈ Z2 and 2s−αs | As. As αs+1 ≤ αs +1 we have s+1−αs+1 ≥ s−αs and
hence r−αr ≥ s−αs for r ≥ s. Therefore 2s−αs | Ar for r ≥ s. As 1+αn+1 ≥ αn+3

we see that n + 3− αn+3 ≥ n + 2− αn+1 and thus 2n+2−αn+1 | Ar for r ≥ n + 3. By
(7.6) we have

An =
b/2∑

k=0

( b
2

k

)
(−1)k2kek+n.

Since 2n+2−αn+1 | er for r ≥ n+3, 2n+2−αn+1 | 2en+1 and 2n+2−αn+1 | 22en+2, we see
that An ≡ en (mod 2n+2−αn+1).
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From Corollary 7.3 and the proof of Theorem 4.2 we know that
n∑

r=0

(
n

r

)
(−1)rE2·2m−1rt+b

= Antn · 2mn +
2m−1nt∑
r=n+1

(−2)n(−1)rAr

( (−1)r−ns(r, n)n!
r!

2r−n · 2(m−1)ntn

+
r∑

j=n+1

(−1)r−js(r, j)j!
r!

2r−j · S(j, n)n!
j!

2j−n · (2m−1t)j
)
.

By Lemma 4.2, for n + 1 ≤ j ≤ r we have

s(r, j)j!
r!

2r−j ,
S(j, n)n!

j!
2j−n ∈ Z2 and

s(r, n)n!
r!

2r−n ≡
(

n

r − n

)
(mod 2).

As 2n+1−αn+1 | Ar for r ≥ n + 1, by the above we obtain

(7.7)
n∑

r=0

(
n

r

)
(−1)rE2mrt+b ≡ 2mnAntn ≡ 2mntnen (mod 2mn+n+1−αn+1)

and so

(7.8)
n∑

r=0

(
n

r

)
(−1)rE2mrt+b ≡ 0 (mod 2mn+n−αn).

For r ≥ n + 1 we have mr + r−αr ≥ m(n + 1) + n + 1−αn+1 ≥ mn + n + 2−αn+1.
Thus, if r ≥ n + 1, by (7.8) we have

(7.9)
r∑

s=0

(
r

s

)
(−1)sE2mst+b ≡ 0 (mod 2mn+n+2−αn+1).

By (4.5) we have

E2mkt+b =
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b

+
k∑

r=n

(
k

r

)
(−1)r

r∑
s=0

(
r

s

)
(−1)sE2mst+b.

Hence, applying (7.9) we obtain

(7.10)

E2mkt+b −
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b

≡
(

k

n

)
(−1)n

n∑
s=0

(
n

s

)
(−1)sE2mst+b (mod 2mn+n+2−αn+1).
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In view of (7.7), we get

E2mkt+b ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b

+
(

k

n

)
(−1)n · 2mntnen (mod 2mn+n+1−αn+1).

Now assume m ≥ 2. Then (m − 1)(n + 1) + n ≥ mn + 1. From the above we see
that

n∑
r=0

(
n

r

)
(−1)rE2mrt+b

≡ 2mnAntn +
2m−1nt∑
r=n+1

(−2)n(−1)rAr · (−1)r−ns(r, n)n!
r!

2r−n · 2(m−1)ntn

≡ 2mntn
(
An +

2m−1nt∑
r=n+1

(
n

r − n

)
Ar

)
≡ 2mntn

n+2∑
r=n

(
n

r − n

)
Ar

≡ 2mntn
(
en + nen+1 +

(
n

2

)
en+2

)
(mod 2mn+n+2−αn+1).

This together with (7.10) yields the remaining result. Hence the proof is complete.
As 2n−αn | en and n + 1− αn+1 ≥ n− αn, by Theorem 7.5 we have:

Corollary 7.4. Let k, m, n, t ∈ N and b ∈ {0, 2, 4, . . . }. Let α ∈ N be given by
2α−1 ≤ n < 2α. Then

E2mkt+b ≡
n−1∑
r=0

(−1)n−1−r

(
k − 1− r

n− 1− r

)(
k

r

)
E2mrt+b (mod 2mn+n−α).

Corollary 7.5. Let k, m ∈ N and b ∈ {0, 2, 4, . . . }. Then

E2mk+b ≡ 2mk + Eb (mod 2m+1).

Proof. Observe that e1 = 1 and e2 = 2. For m ≥ 2, taking n = t = 1 in Theorem
7.5 we obtain

E2mk+b ≡ Eb + 2m(−k)(e1 + e2) ≡ 2mk + Eb (mod 2m+1).

So the result holds for m ≥ 2. Now taking m = 2 and b = 0, 2 in the congruence we see
that E4k ≡ 1+4k (mod 8) and E4k+2 ≡ −1+4k (mod 8). Hence E2k ≡ (−1)k (mod 4)
and so E2k+b ≡ (−1)k+b/2 ≡ (−1)b/2 + 2k ≡ Eb + 2k (mod 4). So the result is also
true for m = 1. This completes the proof.
Remark 7.1 Corollary 7.5 is equivalent to the following Stern’s result (see [St]):

2m ‖ En1 − En2 ⇐⇒ 2m ‖ n1 − n2.

Putting n = 2, t = 1 in Theorem 7.5 and noting that e2 = 2, e3 = 10, e4 = 104 we
obtain the following result.
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Corollary 7.6. Let k, m ∈ N, m ≥ 2 and b ∈ {0, 2, 4, . . . }. Then

E2mk+b ≡ kE2m+b − (k − 1)Eb + 22mk(k − 1) (mod 22m+2).

Taking m = 2 and b = 0, 2 in Corollary 7.6 we get:

Corollary 7.7. For k ∈ N we have

E4k ≡
{

4k + 1 (mod 64) if k ≡ 0, 1 (mod 4),
4k + 33 (mod 64) if k ≡ 2, 3 (mod 4)

and

E4k+2 ≡
{

4k − 1 (mod 64) if k ≡ 0, 1 (mod 4),
4k − 33 (mod 64) if k ≡ 2, 3 (mod 4).

Corollary 7.8. Let k,m ∈ N, m ≥ 2 and b ∈ {0, 2, 4, . . . }. Let δk = 0 or 1 according
as 4 - k − 3 or 4 | k − 3. Then

E2mk+b ≡
(

k

2

)
E2m+1+b − k(k − 2)E2m+b +

(
k − 1

2

)
Eb + 23m+1δk (mod 23m+2).

Proof. Observe that e3 = 10, e4 = 104, e5 = 1816 and
(
k
3

) ≡ δk (mod 2). Taking
n = 3 and t = 1 in Theorem 7.5 we obtain the result.

Taking m = 2, b = 0, 2 in Corollary 7.8 and noting that E8 ≡ 105 (mod 256),
E10 ≡ −89 (mod 256) we deduce:

Corollary 7.9. Let k ∈ N and δk = 0 or 1 according as 4 - k − 3 or 4 | k − 3. Then

E4k ≡ 48k2−44k+1+128δk (mod 256) and E4k+2 ≡ 16k2−76k−1+128δk (mod 256).

Remark 7.2 Let {Sn} be given by (3.1). From Remark 3.1 we know that (−1)kSk

is a 2-regular function and hence f(k) = (−1)k+bSk+b is also a 2-regular function,
where b ∈ {0, 1, 2, . . . }. Thus, by Corollary 4.2, for m > 2, k > 1 and b > 0 we have
S2m−1k+b ≡ Sb (mod 2m) and S2m−1k+b ≡ Sb−2m−2k(Sb+2+4Sb+1+3Sb) (mod 2m+1).
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