J. Nanjing Univ. Math. Biquarterly 8(1991), no.1, 87-98

List of the results in the paper

 A CLASS OF PROBLEMS OF TURÁN TYPE

 A CLASS OF PROBLEMS OF TURÁN TYPE}Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China
E-mail: hyzhsun@public.hy.js.cn

For real number x let $[x]$ be the greatest integer not exceeding x.
For graph G let $e(G)$ be the size of G, and $\delta(G)$ be the minimal degree of G.
Let $e(n, m, p)$ be the maximal size of a graph of order p in which every subgraph with n vertices has at most m edges.

Let L be the set of some graphs, and let $e x(p ; L)$ be the maximal size of a graph of order p not containing any graph in L.

For positive integers m and p let

$$
t_{m}(p)=\frac{m-1}{m} \cdot \frac{p^{2}-r^{2}}{2}+\frac{r(r-1)}{2}
$$

where r is the least nonnegative residue of $p(\bmod m)$.
It is well known that $t_{m}(p)$ is the number of edges in Turán's graph $T_{m, p}$. So Turán's theorem is equivalent to the following result:

$$
e\left(k,\binom{k}{2}-1 ; p\right)=t_{k-1}(p)
$$

Lemma 1. If $p>k \geq 3$, then

$$
t_{k-1}(p)=\left[\frac{p t_{k-1}(p-1)}{p-2}\right]
$$

Lemma 2. If $p>n>1$, then

$$
e(n, m ; p) \leq\left[\frac{e(n, m ; p-1) p}{p-2}\right]
$$

Theorem 1 (The generalization of Turán's theorem). If $p \geq n \geq k \geq 3$, then

$$
e\left(n, t_{k-1}(n) ; p\right)=t_{k-1}(p)
$$

Corollary 1. For positive integer p we have

$$
e x\left(p ; K_{4}-x\right)=e x\left(p ; K_{3}\right)=\left[\frac{p^{2}}{4}\right]
$$

Corollary 2. If $p \geq n \geq 2 m$, then

$$
e\left(n,\binom{n}{2}-m ; p\right)=t_{n-m}(p)
$$

Corollary 3. If $p \geq k \geq 2$, then

$$
\binom{p}{2}-t_{k}(p)=\min \left\{\sum_{i=1}^{k}\binom{n_{i}}{2}: n_{1}+\ldots+n_{k}=p\right\} .
$$

Lemma 3 (Erdös, Simonovits). Let L be the set of some graphs and $\chi(L)=$ $\min \{\chi(G)-1: G \in L\}$, where $\chi(G)$ is the chromatic number of G. Then

$$
e x(p ; L)=\left(1-\frac{1}{\chi(L)}\right)\binom{p}{2}+o\left(p^{2}\right)
$$

Theorem 2. If $k, n>1, m \geq 1$ and $t_{k-1}(n) \leq m<t_{k}(n)$, and if $\delta_{p}(n, m)$ is the minimal degree of a graph of order p with $e(n, m ; p)$ edges in which every subgraph with n vertices has at most m edges, then

$$
e(n, m ; p) \sim \frac{k-2}{2(k-1)} p^{2} ; \quad \delta_{p}(n, m) \sim \frac{k-2}{k-1} p \quad(p \rightarrow+\infty)
$$

Conjecture 1. If $p>n \geq 3$, then there is a graph G of order p in which every subgraph with n vertices has at most m edges such that

$$
e(G)=e(n, m ; p) \quad \text { and } \quad \delta(G)=e(n, m ; p)-e(n, m ; p-1)
$$

Theorem 3. If $p \geq n \geq 3$ and $n \neq 4$, then

$$
e\left(n,\left[\frac{n}{2}\right] ; p\right)= \begin{cases}{\left[\frac{p}{2}\right]} & \text { if } n \text { is odd } \\ {\left[\frac{p+1}{2}\right]} & \text { if } n \text { is even }\end{cases}
$$

Theorem 4. If $p \geq n \geq 3$, then

$$
e(n, n-2 ; p)=\left[\frac{(n-2) p}{n-1}\right]
$$

Theorem 5. If $p \geq g-1 \geq 2$ and $e_{g}(p)$ is the maximal size of a praph of order p with girth at least g, then

$$
e_{g}(p)=e(g-1, g-2 ; p)
$$

