Int. J. Number Theory 15(2019), 969-989.

Ramanujan’s theta functions and sums of triangular numbers

Zhi-Hong Sun

School of Mathematical Sciences

Huaiyin Normal University
Huaian, Jiangsu 223300, P.R. China
zhsun@hytc.edu.cn

Received 12 July 2018
Accepted 13 November 2018
Published 11 January 2019

Abstract

Let Z and Z™ be the set of integers and the set of positive integers, respectively. For
a,b,c,n € Z* let N(a,b,c;n) be the number of representations of n by az?+by?+cz?, and
let t(a, b, ¢; n) be the number of representations of n by ax(z+1)/2+by(y+1)/2+cz(2+1)/2
(z,y,z € Z). In this paper, by using Ramanujan’s theta functions ¢(q) and ¥ (q) we reveal
some general relations between t(a, b, c;n) and N(a,b,c;8n 4+ a+ b+ c).
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1. Introduction

Let Z, Z" and N be the set of integers, the set of positive integers and the set of nonnega-
tive integers, respectively. The numbers z(z+1)/2 (x € Z) are called triangular numbers.
For k,n € Z* let r4(n) be the number of integral solutions to n = x? + - - - + xi, and let

tr(n) be the number of integral solutions to n = W +-F w In 1828 Jacobi

showed that
ra(n) =8 Z d.
d|n,44d

In 1801 Gauss (see [9, p.262]) proved that if n > 4 is squarefree, then

24h(—n) ifn=3 (mod ),
rs(n) = ¢ 12h(—4n) ifn=1,2,5,6 (mod 8),
0 ifn=7 (mod 8),

where h(d) is the number of classes consisting of primitive binary quadratic forms of

discriminant d. Suppose n = 2% [[7_, pi**, where pi,...,ps are distinct odd primes and



ap, o, ..., as € N. In 1907 Hurwitz (see [9, p.271]) proved that

() = 6 [T (P =yt B
r3(n®) = < — (- .
’ s pi—l pi—1

In 1998 Bateman and Knopp [3] showed that

tp(n) = ~Te(8n+ k) for k <T.
2+ (y)
Let Z¥ =Z x7Z x ---xZ and NN = Nx N x --- x N. For ay,as,...,a; € ZT (k > 2)
— ~~
k times k times
and n € N set
N(al,ag,...,ak;n):|{(x1,...,xk)EZk|n:a1$%+a2$%+---+akxi}’,
Har, az, .., ax;n)
T1(x1 +1 To(x2 + 1 Tp(xr + 1
:H(azl,...,xk)EZk‘n:al 1z )-1—(12 2(22 )+-'-+akMH.
2 2 2
Note that ac(;z2+1) = (_1_2)(_@. We see that
t(al,ag,...,ak;n)
z1(x1 +1 To(xo + 1 Tp(xr + 1
:2k’{(x1,...,xk)€Nk|n:a1 1(12 )+a2 2(22 )—l—---—l—akk(’;)}’.

In 1862 Liouville ([9, p.23]) proved that for a,b,c € Z*, t(a,b,c;n) > 1 for all n € Z*
if and only if (a,b,¢) = (1,1,1),(1,1,2),(1,1,4), (1,1,5),(1,2,2),(1,2,3) or (1,2,4). In
1924, Bell [4] gave transformation relations between N (a,b,c;n) and r3(n) for (a,b,c) =
(1,1,2),(1,1,4), (1, 1,8), (1,2,2), (1,2,4), (1,2,8), (1,4,4), (1,4,8), (1,8,8). Hiirlimann[11]
gave similar results for (a,b,c) = (1,2,16),(1,8,16). For the formulas for N(a,b,c;n?)
similar to Hurwitz’s formula for r3(n?) see [4,8,10-13,19].

Let a,b,c,d,n € Z*. From 1859 to 1866 Liouville made about 90 conjectures on
N(a,b,c,d;n) in a series of papers. Most conjectures of Liouville have been proved. See
Cooper’s survey paper [7], Dickson’s historical comments [9] and Williams’ book [21].
In 2011, the author [15, Theorem 2.3] found two general relations between ¢(a,b;n) and
N(a,b;8n+a+b). Recently, the author and Wang (see [16,20]) revealed new connections
between t(a,b,c,d;n) and N(a,b,c,d;8n + a + b+ c+ d). They do not need assuming
a+b+c+d <8 More recently Yao [18] and Xia and Zhong [17] confirmed some
conjectures posed by the author in [16].

For ay,as,...,a; € ZT (k > 2) define

C(al,...,ak) = (2) + (Z21)i2 +i1i3,

where i; denotes the number of elements in {a1,...,a;} which are equal to j. In 2005
Adiga, Cooper and Han [1] showed that for n € N,

t(al,CLQ, .- '7ak;n)
(1.1) B 2
N 24+ C(ay,...,a)

N(ay,...,a;8n~+ay + -+ ag) foray + -+ ap < 7.



In 2008 Baruah, Cooper and Hirschhorn [2] proved that for n € N,

t(al,ag,...,ak;n)

B 2

N 2+C(a1,...,ak)
fora; +---+ar=8.

(1.2)

(N(ay,...,ax;8n+8) — N(ay,...,ar;2n + 2))

In Section 2 we list some useful identities involving Ramanujan’s theta functions. Let
m,n € ZT. In Section 3, using Ramanujan’s theta functions we prove that

1 m
=r3(4n+5) + 2(—1) > m if dn + 5 = m? for some m € Z*,
(13) #1,1,870) =14 3

§r3(4n +5) otherwise.

Let m = 1,4,5 (mod 8). Suppose that there is an odd prime divisor p of m such that

(%) = —1, where (%) is the Legendre symbol. Using (1.3) we deduce that
1
(1.4) t(1,1,8,m;n) = §N(1,1,8,m;8n+10+m),

which confirms [16, Conjectures 2.6 and 2.8]. We also show that for any n € Z¥,
1
(1.5) €(1,3,9n) = SN (1,3,9; 8n + 13).

Let a,b,n € Z* with 2 a. In Section 4, using Ramanujan’s theta functions we prove
that

2
(1.6) t(a,3a,2b;n) = gN(m 3a,2b; 8n + 4a + 2b) for odd b.

When b is even, similar results are given in Theorems 4.2 and 4.3. Such formulas are
better than (1.1) and (1.2) since they provide infinite families of identities.

Let a,c,n € ZT with 2 { a. In Section 5 we obtain formulas for t(a,27a,c;n) and
t(3a,25a,c;n) under certain conditions. For instance, if ¢ = £2 (mod 12) and n = —¢
(mod 3), then

2
(1.7) t(a,27a,c;n) = gN(a, 27a,¢;8n + 28a + ¢).

Let a,b,c,n € ZT. In Section 6 we reveal three general relations between t(a, b, c;n)
and N(a, b, c;8n+a+b+c), and show that ¢(1,1,9;n) > 1 if and only if n # 5,8 (mod 9).
Based on calculations with Maple we pose four challenging conjectures.

2. Ramanujan’s theta functions

Ramanujan’s theta functions ¢(q) and 1 (q) are defined by

o0 o0

pla)= > ¢ =1+2> ¢ and y(g) =Y ¢" "2 (g <1).
n=1 n=0

n=—oo



For ay,...,ar € Z1 and |q| < 1, it is easy to see that

(2.1) ZN(CLL...,ak;n)q”:go(qal)_..so(qak),
n=0

(2.2) Zt(al,...,ak;n)q" = 2%(q™) - - - (™).
n=0

There are many identities involving ¢(q) and ¥(q). Suppose |¢| < 1. From [2, Lemma
4.1] or [5] we know that

(2.3) U(9)* = p(Q)¥ (),

(2.4) o(q) = o(q*) + 2qv(q®),

(2.5) e(q)? = o(a®)* + 4qv(q*)?,

(2.6) P(@)(d®) = e(@®)v (") + qo(d®)Y(¢"?).

By (2.4),

(2.7) o(q) = o(q") + 2q0(¢®) = v(q'%) + 24" (¢°%) + 2q1(¢®).

By [16, Lemma 2.4],

2.8) (@) =¢(¢®)? +4¢"Y(¢'%)? + 4¢*%(¢®)? + 490(a"%) ¥ (¢®) + 8¢ ¥ (¢®) v (¢*?).
y [16, Lemma 2.3],

e(@)e(q®) = 0(a")p(q") + 44" %(*) (™) + 2a0(¢*®)v(¢%) + 26° (") (¢**)
+ 64" (q®) v (d*) + 4439 (d*) ¥ (¢°°) + 44" Y (¢**) ¥ (™).

It is also known that (see [14, pp.113-114] and [6, p.71])

(2.9)

o0

(1-¢™)? M
(2100 wl@)=]] = o and e(—0) = o) — dav(g H
n=1 n=1

71

Using theta function identities we may establish some relations between t(a, b, c;n)
and N(a,b,c;n), where a,b,c,n € Z*. As two examples, for later use we deduce the
relation between ¢(1,1,2;n) and r3(n), and the relation between N(1,1,8;n) and r3(n).
By (2.1), (2.3) and (2.4), for |¢| < 1,

ng n)q" = (@)’ = (p(g") +2q(¢"))’

= 0(q*)? + 6ap(q*)*Y(¢®) + 12¢%0(q*)y(
= 0(q")® + 6qp(g" ) (g")* + 12¢*¢(¢")*y

Collecting the terms of the form ¢*"*+2 in (2.11) yields

@11 ¢*)? + 8¢°¢(¢%)*
(¢®) + 8¢*Y(¢%)*.

> raldn +2)¢"*? = 12¢*0 (¢! (d")

n=0



and so

S rsldn +2)q" = 120(0)%0(e) = 3 D112 m)g"
n=0 n=0

Hence
2
(2.12) t(1,1,2;n) = §r3(4n + 2).

By (2.11), we also have

(2.13) ng 4n + 1)¢*" 1 = 6qp (¢ (¢*)? and so Z r3(4n + 1)¢" = 6p(q)¥(q)>.
n=0 n=0

Using (2.8) we see that

> N(1,1,8:n)q" = ¢(9)*0(q")
n=0
= (¢(¢)? + 4¢" ("% + 4¢*9¥(¢®)* + 4ap(a") ¥ (¢®) + 8¢°¥(¢®)¥(d*®)) w(a®).

8n+2

Collecting the terms of the form g in the above expansion yields

oo
3TN, 1,880+ 2)¢% 2 = 4¢%0(®) 20(¢)
n=0

and hence

(2.14) D ON(1,1,8;8n 4 2)¢" = 4p(q)1(q)*.
n=0

Comparing (2.14) with (2.13) yields

2
(2.15) N(1,1,8:8n +2) = Sra(dn + 1),

which was first obtained by Bell [4].

3. Formulas for ¢(1,1,8;n) and ¢(1,3,9;n)

Based on calculations on Maple, in this section we present the relation between (1,1, 8;n)
and N(1,1,8;8n + 10), and the relation between ¢(1,3,9;n) and N(1,3,9;8n + 13).
Theorem 3.1. Forn € N we have

1
#(1,1,8;n) = SN (1,1,8;8n + 10)

m+1
1 2(—1 if 4 5= 2 Z+
:t(17178§n)—37”3(4n+5):{0( ) 2 m ifdn+5=m" for somem € Z",

otherwise.

Proof. By (2.15), N(1,1,8;8n+10) = 2r3(4n+5). Set s(n) = t(1,1,8;n) — 2r3(4n+5).
0)

By (2.2),(2.10),(2.13) and the fact r3(1) = 6, for 0 < |g| < 1 we have
o o 1 o0
Z s(n)q" = Zt(l, 1,8;n)q" — 3 Zr3(4n +5)q"
n=0 n=0 n=0



= 8()*0(e") - 30 3 raldn + 1)g”
n=1

= 8u(q)*(q®) — 31q(6¢(Q)290(Q) —r3(1))

_ 20(0)°(g¥(a®) —9(9) +2 _ 1 = e(=a)v(9)?
q q
Thus, appealing to (2.10) and Jacobi’s identity (see [14, p.8])

(3.1) [0 =S (0r@n+ D5 (gl < 1)
we get, - -
is g = 27 @(—qQW(Q)Z _ Z (1- ﬁ (1 :322 10 ((11—_ f:))j)
n=0 n=1 n=1
= (1- ﬁ(l —) == (1- kf;(—l)k(% +1)g- D)
=2 i(—l)k“(% + 1) =9 i(—l)k“(% + l)q%
k=1 k=1

Now comparing the coefficients of ¢ on both sides yields
(n) 2(—1)mT+1m if 4n + 5 = m? for some m € N,
s(n) =
0 otherwise.

This proves the theorem.

Corollary 3.1. Supposen € Z*. Ifn =0 (mod 2), n =0 (mod 3), n = 2,3 (mod 5)
orn=0,2,3 (mod 7), then

1
t(1,1,8;n) = §N(1, 1,8;8n + 10).

Proof. If 2 | n, then 4n +5 = 5 (mod 8). If 3 | n, then 4n +5 = 2 (mod 3). If
n=2,3 (mod 5), then 4n+5 = 2,3 (mod 5). If n =0,2,3 (mod 7), then 4n+5 = 3,5,6
(mod 7). Thus, if n satisfies one of the assumed conditions, then 4n + 5 is not a square
and so t(1,1,8;n) = $N(1,1,8;8n + 10) by Theorem 3.1.

Theorem 3.2. Let m,n € Z" with m =1 (mod 4) or m =4 (mod 8). Suppose that

there is an odd prime divisor p of m such that (4";5 = —1. Then

1
t(1,1,8,m;n) = §N(1, 1,8,m;8n + 10 + m).

Proof. Suppose that p is an odd prime divisor of m with (%) = —1. For w € Z we
see that

(4(n—mu;ué_1))+5) _ (4n;—5) _ 1

6



Hence 4(n — m%) + 5 is not a square. Now, from Theorem 3.1 we derive that

t(1,1,8,m;n) = Y t(1,1,8;n — mw(w +1)/2)
wWEZ
1
=3 > N(1,1,8;8n+ 10 — m - dw(w + 1))
WEZL
1
=3 > N(1,1,8;8n + 10+ m — m(2w + 1)),
wWEZL
Since a? = 0,1 (mod 4) and a? = 0,1,4 (mod 8) for any a € Z, we see that 22 + 3% # 3
(mod 4) and 22 +y? # 6 (mod 8) for any z,y € Z. If m =1 (mod 4) and 8n + 10 +m —
m(2w)? = 2?2 + y? + 822 for some z,y, z,w € Z, then 22 +3? = 10+m = 3 (mod 4). This
is impossible. If m = 4 (mod 8) and 8n + 10 +m — m(2w)? = 22 + y? + 822 for some
z,y,z,w € Z, then 22 + 32 = 10 +m = 6 (mod 8). This is also impossible. Hence, for
m=1 (mod 4) or m =4 (mod 8),

1
t(1,1,8,m;n) = 5 Z N(1,1,8;8n 4 10 + m — m(2w + 1)?)
WEZL

1
- 5Z]\f(1,1,8;8n+10+m—7mu2)
wWEZ

1
= §N(1,1,8,m;8n—|— 10 +m).

This proves the theorem.
Corollary 3.2 ([16, Conjectures 2.6 and 2.8]). Let n € Z*. Then
t(1,1,5,8;n) = %N(l, 1,5,8;8n+15) for m=2,3 (mod 5)
and
t(1,1,8,13;n) = %N(l, 1,8,13;8n+23) for n=0,4,7,8,9,10 (mod 13).

Proof. If n = 2,3 (mod 5), then (¥42) = —1. If n = 0,4,7,8,9,10 (mod 13), then

(4’g5) = —1. Now putting m = 5,13 in Theorem 3.2 yields the result.

Remark 3.1 By Theorem 3.2, for n = 0 (mod 3) we have (4”%5) = —1 and so
t(1,1,8,9;n) = $N(1,1,8,9;8n + 19) and #(1,1,8,12;n) = $N(1,1,8,12;8n + 22), which
were conjectured by the author in [16, Conjectures 2.2 and 2.7] and first confirmed by
Yao in [18].

For a,b,c,n € Z* it is clear that

neotEtD oy tl)  wz+1)
2 2 2
— Sn+ta+btc=al2r+1)?+b2y+1)*+c(22+1)%




Thus,
(3.2) t(a,b,c;n) = H(:U,y,z) €Z®|8n+a+b+c=ar+ by + ¢ QTxyz}‘.

Theorem 3.3. Forn € ZT we have
1
t(1,3,9;n) = §N(1,3,9; 8n + 13).

Proof. By (2.1), (2.7) and (2.9),
> N(1,3,9:n)q" = o(q)¢(q®)e(q”)

(3.3) = (¢(d")0(d*®) + 46"V (¢**) (7)) + 2q0(¢**) Y (¢®) + 2¢° 0 (") (¢**)
+6q"(¢*)0(q*) + 440 (q®) v (") + 44" (¢*) ¥ (¢*?))
< (o(a"*) + 2¢%°0(¢**®°) + 2¢°¥(¢™)).

Collecting the terms of the form ¢5"™!3 in (3.3) and then applying (2.2) and (2.6) we
deduce that

D
Z N(1,3,9;8n + 13)¢> 13
n=0

= 4¢3 (¢*)¥(q”) - o(¢") + 2qu( $)9(a®) - 26°9(¢*®) + 64 (¢*)v(d**) - 2679 (d™)
= 4¢"0(¢%) (0(a" )Y (¢”) + o (¢**)(¢*)) + 12¢"2¢(¢*) v (¢*) ¥ (¢™)

= 16¢"*9(¢*)e(¢*)¥(q™) = 2¢" Y 1(1,3,9;n)¢°

Now comparing the coefficients of ¢®7+13

N(1,3,9;8n + 13) = 2¢(1,3,9; n).

on both sides yields

Remark 3.2 One can similarly prove that
1 1
t(1,1,3;n) = §N(1,1,3;8n+5) and ¢(1,3,3;n) = §N(1,3, 3;8n+7),

which can be deduced from (1.1).

4. Formulas for t(a, 3a,2b;n)

For a,b,n € Z* with 2 { a, in this section we establish general formulas for t(a, 3a, 2b; n),
which yield infinite families of identities.
By (2.1), (2.7) and (2.9), for a,b € Z* with 21 a and |q| < 1 we have

> N(a,3a,2b;n)q" = o(¢")p(¢* ) (™)
n=0

A1) = (o™ )ela™) + D) + 2l )
20 (q" YD) + 60 () + 40 () p(a”)
+4¢" D) (%)) (0(a*) + 2¢°°0(¢")).

8



Theorem 4.1. Let a,b € {1,3,5,...}. Forn € Z* we have
2
t(a,3a,2b;n) = gN(a, 3a, 2b; 8n + 4a + 2b).

Proof. Since 4a + 2b = 2 (mod 4), collecting the terms of the form ¢8"+49+20 in (4.1)
yields

[e.e]
Y N(a,3a,20;8n + da + 2b)¢™ 2 = 66"y (%) p(¢*') - 2479 (¢").
n=0
Replacing g with qL/3 gives
o
Z N(a,3a,2b;8n + 4a + 2b)q"
n=0

= 12¢)(¢")(¢**) Z (a,3a,2b;n)

Now comparing the coefficients of ¢” on both sides yields the result.

Theorem 4.2. Let a € {1,3,5,...} and m € Z*. For n € Z* we have
2
t(a,3a,8m;n) = gN(a, 3a,8m;8n + 4a + 8m) — 2N (a, 3a,8m;2n + a + 2m).

Proof. Set b = 4m. Collecting the terms of the form ¢®"*4¢ in (4.1) we deduce that

> N(a,3a,20;8n + 4a)g™ = 6¢"p (™) (a* ) (9 (d™) +2¢70(¢")).
n=0

Replacing g with q'/® we obtain

(4.2) > N(a,3a,8m;8n + 4a)q" = 61(q")¢(q**) (2(q*™) + 2¢™ ¢ (¢*™)).
n=0

On the other hand, using (2.1) and (2.4) we see that

Z N(a,3a,8m;n)q"
n=0

= 0(q")e(*e(¢®™) = (0(a") + 2¢"¥(q*)) (p(q"**) + 26°*b(¢***))p(¢°™).

2n+a

Collecting the terms of the form ¢ and then applying (2.6) we get

oo
Z N(a,3a,8m;2n + a)g®" ™
n=0

= (2¢°¢Y(¢*)e(q"*) + 26°*(¢***)0(¢*)) 0 (¢*™)
= 2¢"P(¢*)Y (") (d™™)



and so

> N(a,3a,8m; 2n + a)q” = 2¢(q")b(¢*)p(q™™).
n=0

This together with (4.2) yields

[e.o]

Z(N(a, 3a,8m;8n + 4a) — 3N (a, 3a,8m;2n + a))q"
n=0

12, —
=12¢"(¢") (@) (a™™) = Sa™ ) t(a,3a,8min)q".
n=0
Now comparing the coefficients of ¢™*™ on both sides gives the result.

Theorem 4.3. Let a € {1,3,5,...} and m € N. Forn € Z* we have
t(a,3a,8m + 4;n)
2 -1
§N(a,3a,8m+4;8n+4a+8m+4) if n= % +m (mod 2),

3(N(a,3a,8m—|—4;8n+4a+8m—|—4)—N(a,3a,8m+4;2n+a+2m+1))

z'fn;é%—l—m (mod 2).

Proof. Set b = 4m + 2. Collecting the terms of the form ¢®" in (4.1) we deduce that

o
Z N(a, 3a,2b; 8n)¢®"
n=0

(0(a")p(g*™*) + 4" (g*2*)1(¢7%)) p(¢*) + 64 ¥V (q**) b (¢***) - 24*°4(¢"").
Replacing ¢ with ¢'/® we obtain

(4.3)

> N(a,3a,8m +4;8n)q" = ((¢*)(¢*) + 4¢°"P(q* )b (¢"*")) ("™ )
n=0

+ 12qm+(a+l)/2w(qa)¢(q3a)¢(q8m+4>.
On the other hand, using (2.4) we see that

o]
Z N(a,3a,8m + 4;n)q"
n=0

= 0(g)e(@®)e(@®™ ) = ((¢*) + 20" () ((q"**) + 26°P () (g*™ ).
Collecting the even powers of g we get

> N(a,3a,8m +4;2n)¢”" = (p(¢*)p(¢"*) + 4¢" % (¢*)(¢***))p(¢* ™)
n=0

and so

> Nla,3a,8m+4;2n)q" = (p(¢**)p(d°) + 44> $(¢")(q"*)) (g™ ?).
n=0

10



This together with (4.3) yields

oo
Z(N(a, 3a,8m + 4;8n) — N(a, 3a,8m + 4;2n))q¢"

n=0

= 12¢" D2y (") (¢* (g

3 et RN
=54 Zt(a,Ba,8m+4,n)q i

n=0
Comparing the coefficients of ¢”+(@+1)/24+7 on both sides yields

t(a,3a,8m + 4;n)
2
:§(N(a,3a,8m—|—4;8n+4a+8m—|—4)—N(a,Sa,8m+4;2n+a+2m—i—1)).

Now assume n = 252 +m (mod 2). Then 2n+2m+a+1=a—1+2m+2m+a+1=2a
(mod 4). If 2n+2m +a+ 1 = az® + 3ay® + (8m +4)2? for some .y, 2 € Z, we must have
a(z? +3y?) =2n+2m+a+1=2a (mod 4) and so 22 + 3y?> =2 (mod 4). If 2 | x — y,
then 4 | 22 4 3y%. If 24z — y, then 22 4 3y? is odd. Thus, 22 + 3y? # 2 (mod 4) and we
get a contradiction. Therefore N(a,3a,8m +4;2n+a+ 2m+ 1) = 0. This completes the
proof.

5. Formulas for t(a,27a,c;n) and t(3a, 25a, ¢;n)

The purpose of this section is to present some formulas for ¢(a, 27a, ¢; n) and t(3a, 25a, ¢;n)
by using Theorems 4.1-4.3, where a,c,n € Z* and 2 { a. For later convenience we define
t(a,b,c;m) =0 for a,b,c € ZT and m ¢ N. Now let us begin with two lemmas.

Lemma 5.1. Let a,b,c,n € Z* with 31 a and n = a (mod 3). Then

t(a,3b,3c;n) = t(Sa, b, c; %)

Proof. If 8n + a + 3b + 3¢ = ax? + 3by? + 3cz? for some odd integers x,y and z, then
clearly 3 |  and so 8n + a + 3b + 3¢ = a(3x)% + 3by? + 3c2? for some odd integers z,y
and z. That is, %M = 3ax? + by? + cz? for some odd integers x,y and z. Thus,
applying (3.2) we obtain

t(a,3b,3c;n)

= {(2,y,2) € Z® | 8n+ a+ 3b+ 3c = az® + 3by* + 3cz*, 2{ ayz}|

= [{(2,y,2) €Z° | 8n+ a+ 3b+3c = a(3z)* + 3by® + 3cz?, 2{ xyz}|
= [{(z,y,2) e7? | 8n+a4:;3b+3c = 3ax? + by® + ¢z, 2t ayz}|

= t(3a, b, c; %)

This proves the lemma.
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Lemma 5.2. Let a,b,c,n € Z* with 31 a, a =b (mod 3) and n = 2a (mod 3). Then

n—a—=ot
— )

0 otherwose.

t(a,b,c ifn=a+b (mod9),

t(a,b,9¢;n) = {

Proof. Since n = a+ b (mod 3) we see that 8n +a+b+9c =0 (mod 3). If 8n+a +
b+ 9c = ax?® + by? + 9cz? for some x,y, z € Z, we must have 22 + y?> =0 (mod 3) and so
=y =0 (mod 3). Thus 8+ a+ b+ 9c = a(3x)? + b(3y)? + 9cz? for some .y, z € Z.
This implies 9 | 8n + a + b. Hence, applying (3.2) we see that

t(a,b,9¢;n)
={(z,y,2) € Z° | 8n+a+b+9c = az® + by* + 9cz®, 2{zyz}|
={(z,y,2) € Z° | 8n+a+ b+ 9c = 9az® + 9by”® + 9cz*, 2{ wyz}|

= (o, 2) € 2 R

={(z,y,2) € Z* | 8%H+a+b+c:ax2+by2+022, 2t wyz}|

n—a—>o

B {t(a,b,c;g) ifn=a+0b (mod?9),

az® + by? + 22, 2¢ :Uyz}‘

0 otherwose.

This proves the lemma.
Theorem 5.1. Let n € Z*.
(i) Ifn =0 (mod 3), then t(1,2,9;n) = 2N(1,2,9;8n + 12).
(ii) If n =1 (mod 3), then
£(1,3,27;n) = %N(l, 3,27;8n + 31),
#(1,9,27;n) = %N(l, 9,27; 8n + 37),
#(1,27,27:n) = %N(l, 27,27 8n + 55),
41,9, 18:n) = %N(l, 9,18:8n + 28).
(iii) If n =2 (mod 3), then
#(1,1,18;n) = §N(1, 1,18;8n + 20),
£2,9,9:n) = %N(Q, 9,9: 8n + 20),
{(1,1,27;n) = %N(L 1,27;8n + 29).
Proof. We first prove (i). Suppose 3 | n. For 2 € Z we have 22 = 0,1 (mod 3).
Thus, if 8n + 12 = 22 + 2y? + 22 for 2,9,z € Z, we must have 3 | x or 3 | 2. Hence

8n + 12 = 22 + 2y + (32)? for some =, y,z € Z. Applying (1.1), (3.2) and the above we
deduce that

t(1,2,9n) = |{(z,y,2) € 73 | 2% 4 2y + (32)% = 8n + 12, 2t zyz}|
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= |{(z,y,2) € 73| 2% 4 2y + 2% = 8n + 12, 2t wyz}|
=t(1,1,2;n+1) = %N(1,1,2;8(n+ 1) +4)
= %H(x,y,z) €7 | 2* +2y° + 2° = 8n + 12}
= §|{(x,y, z) € Z% | 2® + 2y% + (32)® = 8n + 12}
= §N(1, 2,9;8n +12).
Now we consider (ii). Suppose n = 3m + 1. By Lemma 5.1 and Theorem 3.3,
1(1,3,27:n) = £(3,1,9: m) — %N(1,3,9;8m +13)
_ %H(gg,y,z) € 7% | 2%+ 3% + 92% = 8m + 13}
= %H(m,y, z) € Z* | 32 + (3y)® + 272% = 24m + 39}
— %H(m,y,z) € Z° | 32 + y* + 272 = 24m + 39}
- %N(l, 3,27: 24m + 39) = %N(l, 3,27:8n + 31).
The remaining results in part (ii) can be proved similarly.
Finally we consider (iii). Suppose n = 3m + 2. If 22 + y? + 1822 = 24m + 36 for
r,y,z € Z, then 22 +y? =0 (mod 3). This yields z =y = 0 (mod 3) and so 3 | m. Thus,

when 3 1 m we have N(1,1,18;8n+20) = N(1,1,18;24m+36) = 0 and so ¢(1,1,18;n) = 0
by (3.2). Now assume 3 | m. Using Lemma 5.2 and (1.1) we see that

2
H(1,1,18:n) = (1,1, 2:m/3) = 2N (1,1,2:8m/3 + 4)

2
25‘{@’%2)6%} | 2?4 y? + 22 = 8m/3 + 4}

2
= S{(@y.2) € Z° | (32)° + (3y)* + 1827 = 24m + 36}

2
= sH@y.2) € Z° | 2 +4° +182° = 8(3m + 2) + 20}
2
= SV(1,1,18:8n + 20).
The remaining results in part (iii) can be proved similarly.

Lemma 5.3. Let a,b,c € Z" with 31 c.

(i) If m € ZT and m = a — ¢ (mod 3), then N(a,3b,c;m) = N(9a,3b,c;m).

(i) If n € Z* and n = —c (mod 3), then t(a,3b,c;n) = t(9a,3b,c;n — a).

Proof. We first prove (i). Supposem € Z*, m = a—c (mod 3) and m = ax?+3by>+cz?
for z,y,2 € Z. If 34 x, then m = az? + 3by?> + c2> = a+cz?> = a + c or a (mod 3).
But m = a — ¢ # a+ c¢,a (mod 3). This is a contradiction. Thus 3 | z and so m =
9ax? + 3by? + cz? for some x,v, 2 € Z. Hence

N(a,3b,c;m) = |{(z,y,2) € 73 | ax® + 3by* + c2? = m}’

13



= |{(z,y,2) € 73| 9ax® 4 3by? + c2? = m}|
= N(9a, 3b,c;m).
This proves (i).
Now we consider (ii). Supposen € Z* and n = —c (mod 3). Then 8n+a+3b+c = a—c
(mod 3). Thus, applying (3.2) and the proof of (i) we deduce that
t(a,3b,¢c;n) = |{(9:7y,z) €7 | ax® + 3by* + ¢z =8n+a +3b+c, QJ[xyz}’

= !{(az,y,z) € 7% | 9ax® +3by* +cz> =8n+a+3b+ec, 21 xyz}!
= {(z,y,2) € Z° | 9az® + 3by® + cz*> = 8(n —a) + 9a + 3b+ ¢, 2{xyz}|
= t(9a,3b,c;n — a),

which proves the lemma.

Theorem 5.2. Let a,c € Z* with 2 a and ¢ = 2,4 (mod 6). For n € Z* with
n = —c (mod 3) we have
t(a,27a,c;n)
2
gN(a, 27a,c;8n + 28a + ¢) if c=2,10 (mod 12),

2
=\ 5(N(@.27a,¢;8n + 28a + ¢) — N(a,27a,c;2n + Ta + z)) ife=4,20 (mod 24),

2
gN(a, 27a, c;8n + 28a + ¢) — 2N (a, 27a, ¢; 2n + Ta + Z) if c=8,16 (mod 24).
Proof. By Lemma 5.3(ii) and Theorems 4.1-4.3,
t(a,27a,c;n) = t(9a,27a,c;n — a)

2
gN(Qa, 27a,¢;8(n — a) + 36a + ¢) if c=2,10 (mod 12),

2
g(N(9a, 27a,¢;8(n — a) + 36a + ¢) — N(9a,27a, c;2(n — a) + 9a + Z))

- if c=4,20 (mod 24),

2

gN(Qa, 27a, c;8(n — a) + 36a + ¢) — 2N (9a, 27a, ¢;2(n — a) + 9a + z)
L if c=8,16 (mod 24).

By Lemma 5.3(i),
N(a,27a,c;8n + 28a + ¢) = N(9a,27a, c;8(n — a) + 36a + ¢)
and for ¢ =0 (mod 4),
N(a,27a,¢;2n + Ta + ¢/4) = N(9a,27a, ¢;2(n — a) + 9a + ¢/4).

Thus the result follows.

Corollary 5.1. Let a,c € ZT with 2t a and ¢ = 4,20 (mod 24). For n € Z* with
n=1322 4 % (mod 6) we have

2
t(a,27a,c;n) = §N(a, 27a, c;8n + 28a + ¢).
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Proof. For x € Z we have 22> = 0,1 (mod 4). Thus, 22 + 3y? # 2 (mod 4). Hence,
if 2m 4+ 7a + § = az® + 27Tay® + cz* = a(2® + 3(3y)?) + cz* for some z,y,z € Z, then
2m + Ta+ £ # 2a (mod 4). This yields m # 3(a+ £) (mod 2). Thus, for m = 2(a + <)
(mod 2) we have N(a,27a,c;2m + Ta + c¢/4) = 0. Since n = 52 4 & 4 (mod 6) we see
that n = ¢ + % = 1(a+£) (mod 2) and so N(a,27a,c;2n + Ta + 0/4) = 0. Clearly
n=-—c (mod 3). Thus the result follows from Theorem 5.2.

Theorem 5.3. Let a,c € ZT with2{ a, 3t a and 6 | c. Forn € ZT withn = a
(mod 3) we have

t(a,27a,c;n)
2
gN(a, 27a, c; 8n + 28a + ¢) if c=6,18 (mod 24),

2
= § 5 (NV(a,27a,c;8n + 280+ ) — N(a,27a,c;2n + Ta + Z)) ife=12 (mod 24),
—N(a,27a,c;8n + 28a + ¢) — 2N(a, 27a,¢;2n + Ta + Z) ifc=0 (mod 24).

Proof. By Lemma 5.1 and Theorems 4.1-4.3,

t(a,27a,c;n) = t(3a, 9a, g; %)
2 _
=N (34,90, §;8” . ¢ 120+ g) if c=6,18 (mod 24),

2 c _n—a c € on— c
g(J\r(:)>a,9a,§,ézT+12a+§) —N(3a,9a,,§ 5 24 3a 12))
- if c=12 (mod 24),

2 —
SN (3,90, 5585 + 120+ 5) — 2N (3a, 9, ;27— +3a +

'3 3 12)
ifc=0 (mod 24).

Note that N(3a,9a,c/3;m) = N(9a,27a,c;3m) = N(a,27a,c;3m) for m € Z*. We then
obtain the result.

Theorem 5.4. Suppose n € 7.

(i) Forn =1 (mod 5) we have t(

(i) Suppose a,c € ZT, a = 1,3,
(mod 5). Then

9,25;n) = 1N(3,9,25;8n + 37).

7,9 (mole) ¢ =2 (mod4) and n = a = —c
2

t(3a,25a,c;n) = gN(?,a, 25a, ¢; 8n + 28a + ¢).

Proof. We first prove (i). Suppose 8n + 37 = 322 + 9y? + 2522 for some z,y, 2z € Z.
Since 8n 4+ 37 = 84+ 37 = 0 (mod 5) and 22 = 0,£1 (mod 5) we see that z? + 3y? =
(mod 5) and so x = y = 0 (mod 5). Thus, 8n + 37 = 3(5z)? + 9(5y)? + 2522 for some
x,y,z € Z. This yields 25 | 8n + 37 and 8"27237 = 322+ 9y% + 22. Hence, when 25 { 8n + 37
we have N(3,9,25;8n+37) = 0 and so ¢(3,9,25;n) = 0 by (3.2). Now assume 25 | 8n+37.
From the above, (3.2) and Theorem 3.3 we deduce that for n =1 (mod 5),

t(3,9,25;n) = ‘{(az,y, 2) € 73| 32% + 9y® + 252% = 8n + 37, 2¢ xyzH
= |{(z,y,2) € Z° | 3(52)* + 9(5y)* + 252% = 8n + 37, 2{ zyz}|
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8 37
= {(z,y,2) € Z° | 32® + 9y* + 2* = nt , 21 xyz}|

25

n — 36 1 8n + 37 1

Z ) = SN(1.3,9: 1) = ZN(25,75,225:8n + 37
25)2(”’25)2(”’n+)

1 1
= 5N (3-25,9-25,25;8n + 37) = _ N(3,9,25:8n + 37).

=(1,3,9;

This proves (i).

Now we consider (ii). Suppose a,¢ € Z*, 5t a, ¢ = 2 (mod 4) and n = a = —c¢
(mod 5). Then 8n + 28a +c =0 (mod 5). If 8n + 28a + ¢ = 3az? + 25ay? + c2? for some
z,y,2 € Z, we see that a(3z% — 22) = 3az? + 25ay* + ¢z = 8n + 28a + ¢ = 0 (mod 5).
This yields 5 | «, 5 | z and so 25 | 8n + 28a + ¢. Hence, when 25 1 8n + 28a + ¢ we
have N (3a,25a,c¢;8n + 28a + ¢) = 0 and so t(3a,25a,c;n) = 0 by (3.2). Now assume
25 | 8n 4+ 28a + ¢. Applying (3.2) and Theorem 4.1 we see that

t(3a,25a,c;n)
= |{(z,y,2) € Z? | 3az® + 25ay” + cz* = 8n + 28a + ¢, 2fwyz}|
= ‘{(x, y,2) € Z3 | 3a(5x)? + 25ay”* + ¢(52)? = 8n + 28a + ¢, 214 myz}‘

2
= |{(z,y,2) € Z° | 3az® + ay® + c2* = 8n—|—27§a—l—c? 2t zyz}|
n — 9a — 3¢ 2 8n + 28a + ¢
:t 3 — sz 3 D —
(a, a, C; 25 ) 3 (a7 a, ¢ 25 )

2 2
= gN(25a, 75a,25¢; 8n + 28a + ¢) = gN(25a, 3a, c;8n + 28a + ¢).
This completes the proof.
Using the method in the proof of Theorem 5.4(i) one can similarly prove the following
theorem.
Theorem 5.5. Let n € Z*. Then
2
t(2,25,25;n) = gN(2,25,25;8n +52) forn=1 (mod5),
2
t(1,25,50;n) = gN(l, 25,50;8n 4+ 76) forn=3 (mod 5),
1
t(3,3,49;n) = §N(3, 3,49;8n 4+ 55) form=1 (mod7),

2
t(3,10,49;n) = §N(3’ 10,49;8n +62) forn=1 (mod 7).

6. Three relations between t(a, b, c;n) and N(a, b, ¢; 8n+
a+b+c)

For a,b,c,n € Z*, in this section we establish three general relations between t(a, b, ¢;n)
and N(a,b,c;8n + a + b+ ¢) under certain conditions.
Theorem 6.1. Let a,b,c,n € ZT with2{ab, 4 |a—b and 4| ¢ —2. Then

t(a,b,c;n) = N(a,b,¢;8n+a+b+c¢) — N(a,b,c;2n+ (a+b+c)/4).
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Proof. Suppose 8n+a+b+c = ax? +by? + cz? for some z,y,z € Z. Since a = b = +1
(mod 4) and ¢ = 2 (mod 4), we see that a +b+c =0 (mod 4) and so a(x? + y?) + 222 =
ar? +by? +cz> =8n+a+b+c=0 (mod 4). Therefore, either r =y = 2 =0 (mod 2)
orz=y=z=1 (mod 2). Hence appealing to (3.2) we deduce that

t(a,b,c;n)
= H(x,y,z) VA ‘ 8n+4a+b+c=ax®+by* + cz?, QfxyzH
= N(a,b,c;8n+a+b+c)
—{(z,y,2) €Z° | 8n+a+b+c=az®+by’ +c2®, r=y=2=0 (mod2)}|
= N(a,b,c;8n+a+b+c)
—{(z,y,2) € Z° | 8n+ a+ b+ c = a(22)* + b(2y)* + ¢(22)* }|
= N(a,b,¢;8n+a+b+c)— N(a,b,¢;2n+ (a+b+c)/4).

This proves the theorem.

Theorem 6.2. Suppose that a,b,c,n € Z* with 24 ab and 4| a—0b. If c = a (mod 4)
or ¢ =4 (mod 8), then

t(a,b,c;n) = N(a,b,c;8n +a+ b+ c).

Proof. Assume ¢ = a (mod 4) and 8n+a+b+c = azx?+by? + cz? for some x,y, z € Z.
If 2| 2, then 3a = 8n +a+ b+ c = az? + by? = a(z? + y?) (mod 4) and so 22 +y% =3
(mod 4). Since z2,y?> = 0,1 (mod 4), we must have 22 + y> # 3 (mod 4) and get a
contradiction. Hence 21 z and a(z? +4?) = ax? + by’  =8n+a+b+c—cz> =a+b=2a
(mod 4). That is, 22 + y? = 2 (mod 4). This implies that 2 { zy.

Now assume ¢ =4 (mod 8) and 8n + a + b + ¢ = az? + by? + cz? for some z,y,2 € Z.
Then a(z? +y?) = ax®> + by?> =8n+a+b+c—cz? =a+b =2 (mod 4). This implies
2tayandsocz? =8n+a+b+c—ar?—by>=a+b+c—a—b=c (mod 8). Since c = 4
(mod 8) we get 21 z.

By the above and (3.2), for ¢ = a (mod 4) or ¢ =4 (mod 8),

t(a,b,c;n) = [{(z,y,2) €Z° | 8n+a+b+c=az®+ by’ +c2*, 2tazyz}]|
= N(a,b,c;8n+a+b+c).

This proves the theorem.

Theorem 6.3. Let a,b,c,n € Z* with2ta, 2|b, 2| c, 8tb, 8tc and 8t b+c. Then
t(a,b,c;n) = N(a,b,¢;8n+a+b+c).

Proof. Suppose 8n + a + b+ ¢ = ax? + by? + cz? for some z,y,z € Z. Then clearly
2tz andsoby? +cz2=8n+a+b+c—ar’?=b+c (mod8). If 2 | g, since 81 b+ c we
have 2 1 z and so ¢ = ¢2? = by? + c2? = b+ ¢ (mod 8). This contradicts the assumption
8 1b. Hence 2 ty. Similarly, 21 z. Now applying (3.2) yields the result.

. (z+1) (y+1) (z+1)
Theorem 6.4. Suppose n € Z+. Then n is represented by =5~ + L5 4 925

if and only if n 5,8 (mod 9).
Proof. By Theorem 6.2, ¢(1,1,9;n) = N(1,1,9;8n+ 11). By Three Squares Theorem,
8n + 11 = 22 + y? + 22 for some z,y,z € Z. Assume n = 0,1 (mod 3). Then 31 8n + 11.
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Since m? = 0,1 (mod 3) for m € Z we must have 3 | zyz and so 8n + 11 is represented
by 22+ y? + 922 Hence t(1,1,9;n) = N(1,1,9;8n+11) > 1. For n =2 (mod 9) we have
9| 8n+ 11 and % = 3 (mod 8). Hence % = 2?2 +y% + 22 for some z,y,z € Z.
This yields 8n + 11 = (3z)% + (3y)% + 922. Therefore t(1,1,9;n) = N(1,1,9;8n+11) > 1.
Finally we assume n = 5,8 (mod 9). If 8n + 11 = 22 + 32 + 922 for some integers z,y
and z, since m? = 0,1,4,7 (mod 9) for m € Z we see that 22 +y?> = 0,1,2,4,5,7,8
(mod 9) and so 8n + 11 = x2 + y? + 922 # 3,6 (mod 9). This yields n # 5,8 (mod 9),
which contradicts the assumption. Hence t(1,1,9;n) = N(1,1,9;8n+11) =0 for n = 5,8
(mod 9). Putting the above together proves the theorem.

Let a,b,c,n € Z*. By (3.2), t(a,b,c;n) < N(a,b,c;8n + a + b+ c¢). As stated in
Theorems 6.2 and 6.3, under some certain conditions we have ¢(a, b, c;n) = N(a,b, c;8n+
a+b+c). We have more interest in the non-trivial case t(a, b, c;n) < N(a,b, c; 8n+a+b+c).
Assume t(a, b, c;n) < N(a,b, c;8n+a+b+c). Based on calculations with a < 7, a < b < 30
and b < ¢ < 50 on Maple, we pose the following challenging conjectures.

Conjecture 6.1. Letn € Z*. For(a,b,c) = (1,1,3),(1,1,4),(1,1,6),(1,1,7), (1, 1,15),
(1,2,2),(1,2,5), (1,3,3),(1,3,9), (1,5,10), (1,6,9), (1,7,7), (1,7, 15), (1,9, 15), (1, 15, 15),
(1,15,25),(2,3,3) we have

1
t(a,b,c;m) = 5(N(a,b,c;4(8n+a+b+c)) —N(a,b,c;8n+a—|—b—|—c)).

Conjecture 6.2. Letn € ZT.
(i) For even n and (a,b,c) = (1,2,15), (1,15,18), (1,15, 30), (3, 10,45) we have

1
t(a,b,c;n) = 5(N(a,b,c;4(8n+a+b+c)) —N(a,b,c;8n+a+b+c)>.

(i) For odd n and (a,b,¢) = (1,6,7),(1,7,42),(2,3,21),(2,9,15), (3,5,6), (3,5, 10),
(5,21,35) we have

1
t(a,b,c;n) = 5(N(a,b,c;4(8n+a+b+c)) —N(a,b,c;8n+a—|—b+c)).

Conjecture 6.3. Let n € ZT. For (a,b,c) = (1,3,5),(1,3,7),(1,3,15), (1,3,21),
(1,5,15), (1,7,21), (3,5,9), (3,5,15), (3,7,21) we have

1
t(a,b,c;n):5(3N(a,b,c;8n+a+b+c)—N(a,b,c;4(8n+a+b+c))).

Conjecture 6.4. Letn € ZT.
(i) For even n and (a,b,c) = (1,6,15), (1,10, 15) we have

t(a,b,c;n) = %<3N(a,b,c;8n+a+b+c) —N(a,b,c;4(8n+a+b+c))).
(ii) For odd n and (a,b,c) = (1,2,7),(1,7,14),(2,3,5),(3,5,30) we have

t(a,b,c;n) = %<3N(a,b,c;8n+a+b+c) —N(a,b,c;4(8n+a+b—|—c))).
Conjectures 6.1-6.4 have been checked for n < 150 with Maple.
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