Ramanujan's theta functions and sums of triangular numbers

Zhi-Hong Sun

School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu 223300, P.R. China zhsun@hytc.edu.cn

> Received 12 July 2018 Accepted 13 November 2018 Published 11 January 2019

Abstract

Let \mathbb{Z} and \mathbb{Z}^+ be the set of integers and the set of positive integers, respectively. For $a,b,c,n\in\mathbb{Z}^+$ let N(a,b,c;n) be the number of representations of n by $ax^2+by^2+cz^2$, and let t(a,b,c;n) be the number of representations of n by ax(x+1)/2+by(y+1)/2+cz(z+1)/2 $(x,y,z\in\mathbb{Z})$. In this paper, by using Ramanujan's theta functions $\varphi(q)$ and $\psi(q)$ we reveal some general relations between t(a,b,c;n) and N(a,b,c;8n+a+b+c).

Keywords: theta function; triangular number; ternary form Mathematics Subject Classification 2010: 11D85, 11E25, 30B10, 33E20

1. Introduction

Let \mathbb{Z} , \mathbb{Z}^+ and \mathbb{N} be the set of integers, the set of positive integers and the set of nonnegative integers, respectively. The numbers x(x+1)/2 $(x \in \mathbb{Z})$ are called triangular numbers. For $k, n \in \mathbb{Z}^+$ let $r_k(n)$ be the number of integral solutions to $n = x_1^2 + \cdots + x_k^2$, and let $t_k(n)$ be the number of integral solutions to $n = \frac{x_1(x_1+1)}{2} + \cdots + \frac{x_k(x_k+1)}{2}$. In 1828 Jacobi showed that

$$r_4(n) = 8 \sum_{d|n,4\nmid d} d.$$

In 1801 Gauss (see [9, p.262]) proved that if n > 4 is squarefree, then

$$r_3(n) = \begin{cases} 24h(-n) & \text{if } n \equiv 3 \pmod{8}, \\ 12h(-4n) & \text{if } n \equiv 1, 2, 5, 6 \pmod{8}, \\ 0 & \text{if } n \equiv 7 \pmod{8}, \end{cases}$$

where h(d) is the number of classes consisting of primitive binary quadratic forms of discriminant d. Suppose $n = 2^{\alpha_0} \prod_{i=1}^s p_i^{\alpha_i}$, where p_1, \ldots, p_s are distinct odd primes and

 $\alpha_0, \alpha_1, \ldots, \alpha_s \in \mathbb{N}$. In 1907 Hurwitz (see [9, p.271]) proved that

$$r_3(n^2) = 6 \prod_{i=1}^{s} \left(\frac{p_i^{\alpha_i+1} - 1}{p_i - 1} - (-1)^{\frac{p_i - 1}{2}} \frac{p_i^{\alpha_i} - 1}{p_i - 1} \right).$$

In 1998 Bateman and Knopp [3] showed that

$$t_k(n) = \frac{2}{2 + \binom{k}{4}} r_k(8n + k)$$
 for $k \le 7$.

Let
$$\mathbb{Z}^k = \underbrace{\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}}_{k \text{ times}}$$
 and $\mathbb{N}^k = \underbrace{\mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}}_{k \text{ times}}$. For $a_1, a_2, \dots, a_k \in \mathbb{Z}^+$ $(k \ge 2)$

and $n \in \mathbb{N}$ set

$$N(a_1, a_2, \dots, a_k; n) = \left| \left\{ (x_1, \dots, x_k) \in \mathbb{Z}^k \mid n = a_1 x_1^2 + a_2 x_2^2 + \dots + a_k x_k^2 \right\} \right|,$$

$$t(a_1, a_2, \dots, a_k; n)$$

$$= \left| \left\{ (x_1, \dots, x_k) \in \mathbb{Z}^k \mid n = a_1 \frac{x_1(x_1 + 1)}{2} + a_2 \frac{x_2(x_2 + 1)}{2} + \dots + a_k \frac{x_k(x_k + 1)}{2} \right\} \right|.$$

Note that $\frac{x(x+1)}{2} = \frac{(-1-x)(-x)}{2}$. We see that

$$t(a_1, a_2, \dots, a_k; n) = 2^k \Big| \Big\{ (x_1, \dots, x_k) \in \mathbb{N}^k \mid n = a_1 \frac{x_1(x_1 + 1)}{2} + a_2 \frac{x_2(x_2 + 1)}{2} + \dots + a_k \frac{x_k(x_k + 1)}{2} \Big\} \Big|.$$

In 1862 Liouville ([9, p.23]) proved that for $a, b, c \in \mathbb{Z}^+$, $t(a, b, c; n) \ge 1$ for all $n \in \mathbb{Z}^+$ if and only if (a, b, c) = (1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 5), (1, 2, 2), (1, 2, 3) or (1, 2, 4). In 1924, Bell [4] gave transformation relations between N(a, b, c; n) and $r_3(n)$ for (a, b, c) = (1, 1, 2), (1, 1, 4), (1, 1, 8), (1, 2, 2), (1, 2, 4), (1, 2, 8), (1, 4, 4), (1, 4, 8), (1, 8, 8). Hürlimann[11] gave similar results for (a, b, c) = (1, 2, 16), (1, 8, 16). For the formulas for $N(a, b, c; n^2)$ similar to Hurwitz's formula for $r_3(n^2)$ see [4,8,10-13,19].

Let $a, b, c, d, n \in \mathbb{Z}^+$. From 1859 to 1866 Liouville made about 90 conjectures on N(a, b, c, d; n) in a series of papers. Most conjectures of Liouville have been proved. See Cooper's survey paper [7], Dickson's historical comments [9] and Williams' book [21]. In 2011, the author [15, Theorem 2.3] found two general relations between t(a, b; n) and N(a, b; 8n + a + b). Recently, the author and Wang (see [16,20]) revealed new connections between t(a, b, c, d; n) and N(a, b, c, d; 8n + a + b + c + d). They do not need assuming $a + b + c + d \leq 8$. More recently Yao [18] and Xia and Zhong [17] confirmed some conjectures posed by the author in [16].

For $a_1, a_2, \ldots, a_k \in \mathbb{Z}^+$ $(k \ge 2)$ define

$$C(a_1, \dots, a_k) = \binom{i_1}{4} + \binom{i_1}{2} i_2 + i_1 i_3,$$

where i_j denotes the number of elements in $\{a_1, \ldots, a_k\}$ which are equal to j. In 2005 Adiga, Cooper and Han [1] showed that for $n \in \mathbb{N}$,

(1.1)
$$t(a_1, a_2, \dots, a_k; n) = \frac{2}{2 + C(a_1, \dots, a_k)} N(a_1, \dots, a_k; 8n + a_1 + \dots + a_k) \text{ for } a_1 + \dots + a_k \le 7.$$

In 2008 Baruah, Cooper and Hirschhorn [2] proved that for $n \in \mathbb{N}$,

(1.2)
$$t(a_1, a_2, \dots, a_k; n) = \frac{2}{2 + C(a_1, \dots, a_k)} (N(a_1, \dots, a_k; 8n + 8) - N(a_1, \dots, a_k; 2n + 2))$$
for $a_1 + \dots + a_k = 8$.

In Section 2 we list some useful identities involving Ramanujan's theta functions. Let $m, n \in \mathbb{Z}^+$. In Section 3, using Ramanujan's theta functions we prove that

$$(1.3) t(1,1,8;n) = \begin{cases} \frac{1}{3}r_3(4n+5) + 2(-1)^{\frac{m+1}{2}}m & \text{if } 4n+5 = m^2 \text{ for some } m \in \mathbb{Z}^+, \\ \frac{1}{3}r_3(4n+5) & \text{otherwise.} \end{cases}$$

Let $m \equiv 1, 4, 5 \pmod{8}$. Suppose that there is an odd prime divisor p of m such that $\left(\frac{4n+5}{p}\right) = -1$, where $\left(\frac{a}{p}\right)$ is the Legendre symbol. Using (1.3) we deduce that

(1.4)
$$t(1,1,8,m;n) = \frac{1}{2}N(1,1,8,m;8n+10+m),$$

which confirms [16, Conjectures 2.6 and 2.8]. We also show that for any $n \in \mathbb{Z}^+$,

(1.5)
$$t(1,3,9;n) = \frac{1}{2}N(1,3,9;8n+13).$$

Let $a,b,n\in\mathbb{Z}^+$ with $2\nmid a.$ In Section 4, using Ramanujan's theta functions we prove that

(1.6)
$$t(a,3a,2b;n) = \frac{2}{3}N(a,3a,2b;8n+4a+2b) \text{ for odd } b.$$

When b is even, similar results are given in Theorems 4.2 and 4.3. Such formulas are better than (1.1) and (1.2) since they provide infinite families of identities.

Let $a, c, n \in \mathbb{Z}^+$ with $2 \nmid a$. In Section 5 we obtain formulas for t(a, 27a, c; n) and t(3a, 25a, c; n) under certain conditions. For instance, if $c \equiv \pm 2 \pmod{12}$ and $n \equiv -c \pmod{3}$, then

(1.7)
$$t(a, 27a, c; n) = \frac{2}{3}N(a, 27a, c; 8n + 28a + c).$$

Let $a, b, c, n \in \mathbb{Z}^+$. In Section 6 we reveal three general relations between t(a, b, c; n) and N(a, b, c; 8n + a + b + c), and show that $t(1, 1, 9; n) \ge 1$ if and only if $n \not\equiv 5, 8 \pmod{9}$. Based on calculations with Maple we pose four challenging conjectures.

2. Ramanujan's theta functions

Ramanujan's theta functions $\varphi(q)$ and $\psi(q)$ are defined by

$$\varphi(q) = \sum_{n=-\infty}^{\infty} q^{n^2} = 1 + 2\sum_{n=1}^{\infty} q^{n^2}$$
 and $\psi(q) = \sum_{n=0}^{\infty} q^{n(n+1)/2}$ ($|q| < 1$).

For $a_1, \ldots, a_k \in \mathbb{Z}^+$ and |q| < 1, it is easy to see that

(2.1)
$$\sum_{n=0}^{\infty} N(a_1, \dots, a_k; n) q^n = \varphi(q^{a_1}) \cdots \varphi(q^{a_k}),$$

(2.2)
$$\sum_{n=0}^{\infty} t(a_1, \dots, a_k; n) q^n = 2^k \psi(q^{a_1}) \cdots \psi(q^{a_k}).$$

There are many identities involving $\varphi(q)$ and $\psi(q)$. Suppose |q| < 1. From [2, Lemma 4.1] or [5] we know that

(2.3)
$$\psi(q)^2 = \varphi(q)\psi(q^2),$$

$$(2.4) \varphi(q) = \varphi(q^4) + 2q\psi(q^8),$$

(2.5)
$$\varphi(q)^2 = \varphi(q^2)^2 + 4q\psi(q^4)^2$$

(2.6)
$$\psi(q)\psi(q^3) = \varphi(q^6)\psi(q^4) + q\varphi(q^2)\psi(q^{12}).$$

By (2.4),

(2.7)
$$\varphi(q) = \varphi(q^4) + 2q\psi(q^8) = \varphi(q^{16}) + 2q^4\psi(q^{32}) + 2q\psi(q^8).$$

By [16, Lemma 2.4],

$$(2.8) \qquad \varphi(q)^2 = \varphi(q^8)^2 + 4q^4\psi(q^{16})^2 + 4q^2\psi(q^8)^2 + 4q\varphi(q^{16})\psi(q^8) + 8q^5\psi(q^8)\psi(q^{32}).$$

By [16, Lemma 2.3],

$$(2.9) \qquad \varphi(q)\varphi(q^3) = \varphi(q^{16})\varphi(q^{48}) + 4q^{16}\psi(q^{32})\psi(q^{96}) + 2q\varphi(q^{48})\psi(q^8) + 2q^3\varphi(q^{16})\psi(q^{24}) + 6q^4\psi(q^8)\psi(q^{24}) + 4q^{13}\psi(q^8)\psi(q^{96}) + 4q^7\psi(q^{24})\psi(q^{32}).$$

It is also known that (see [14, pp.113-114] and [6, p.71])

(2.10)
$$\psi(q) = \prod_{n=1}^{\infty} \frac{(1 - q^{2n})^2}{1 - q^n} \quad \text{and} \quad \varphi(-q) = \varphi(q) - 4q\psi(q^8) = \prod_{n=1}^{\infty} \frac{(1 - q^n)^2}{1 - q^{2n}}.$$

Using theta function identities we may establish some relations between t(a, b, c; n) and N(a, b, c; n), where $a, b, c, n \in \mathbb{Z}^+$. As two examples, for later use we deduce the relation between t(1, 1, 2; n) and $r_3(n)$, and the relation between N(1, 1, 8; n) and $r_3(n)$. By (2.1), (2.3) and (2.4), for |q| < 1,

(2.11)
$$\sum_{n=0}^{\infty} r_3(n)q^n = \varphi(q)^3 = (\varphi(q^4) + 2q\psi(q^8))^3$$
$$= \varphi(q^4)^3 + 6q\varphi(q^4)^2\psi(q^8) + 12q^2\varphi(q^4)\psi(q^8)^2 + 8q^3\psi(q^8)^3$$
$$= \varphi(q^4)^3 + 6q\varphi(q^4)\psi(q^4)^2 + 12q^2\psi(q^4)^2\psi(q^8) + 8q^3\psi(q^8)^3.$$

Collecting the terms of the form q^{4n+2} in (2.11) yields

$$\sum_{n=0}^{\infty} r_3(4n+2)q^{4n+2} = 12q^2\psi(q^4)^2\psi(q^8)$$

and so

$$\sum_{n=0}^{\infty} r_3(4n+2)q^n = 12\psi(q)^2\psi(q^2) = \frac{3}{2}\sum_{n=0}^{\infty} t(1,1,2;n)q^n.$$

Hence

(2.12)
$$t(1,1,2;n) = \frac{2}{3}r_3(4n+2).$$

By (2.11), we also have

(2.13)
$$\sum_{n=0}^{\infty} r_3(4n+1)q^{4n+1} = 6q\varphi(q^4)\psi(q^4)^2 \text{ and so } \sum_{n=0}^{\infty} r_3(4n+1)q^n = 6\varphi(q)\psi(q)^2.$$

Using (2.8) we see that

$$\begin{split} &\sum_{n=0}^{\infty} N(1,1,8;n)q^n = \varphi(q)^2 \varphi(q^8) \\ &= \left(\varphi(q^8)^2 + 4q^4 \psi(q^{16})^2 + 4q^2 \psi(q^8)^2 + 4q \varphi(q^{16}) \psi(q^8) + 8q^5 \psi(q^8) \psi(q^{32}) \right) \varphi(q^8). \end{split}$$

Collecting the terms of the form q^{8n+2} in the above expansion yields

$$\sum_{n=0}^{\infty} N(1, 1, 8; 8n + 2)q^{8n+2} = 4q^2\psi(q^8)^2\varphi(q^8)$$

and hence

(2.14)
$$\sum_{n=0}^{\infty} N(1, 1, 8; 8n + 2)q^n = 4\varphi(q)\psi(q)^2.$$

Comparing (2.14) with (2.13) yields

(2.15)
$$N(1,1,8;8n+2) = \frac{2}{3}r_3(4n+1),$$

which was first obtained by Bell [4].

3. Formulas for t(1, 1, 8; n) **and** t(1, 3, 9; n)

Based on calculations on Maple, in this section we present the relation between t(1, 1, 8; n) and N(1, 1, 8; 8n + 10), and the relation between t(1, 3, 9; n) and N(1, 3, 9; 8n + 13).

Theorem 3.1. For $n \in \mathbb{N}$ we have

$$t(1,1,8;n) - \frac{1}{2}N(1,1,8;8n+10)$$

$$= t(1,1,8;n) - \frac{1}{3}r_3(4n+5) = \begin{cases} 2(-1)^{\frac{m+1}{2}}m & \text{if } 4n+5 = m^2 \text{ for some } m \in \mathbb{Z}^+, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. By (2.15), $N(1, 1, 8; 8n+10) = \frac{2}{3}r_3(4n+5)$. Set $s(n) = t(1, 1, 8; n) - \frac{1}{3}r_3(4n+5)$. By (2.2),(2.10),(2.13) and the fact $r_3(1) = 6$, for 0 < |q| < 1 we have

$$\sum_{n=0}^{\infty} s(n)q^n = \sum_{n=0}^{\infty} t(1,1,8;n)q^n - \frac{1}{3} \sum_{n=0}^{\infty} r_3(4n+5)q^n$$

$$= 8\psi(q)^{2}\psi(q^{8}) - \frac{1}{3q} \sum_{n=1}^{\infty} r_{3}(4n+1)q^{n}$$

$$= 8\psi(q)^{2}\psi(q^{8}) - \frac{1}{3q} \left(6\psi(q)^{2}\varphi(q) - r_{3}(1)\right)$$

$$= \frac{2\psi(q)^{2}(4q\psi(q^{8}) - \varphi(q)) + 2}{q} = 2\frac{1 - \varphi(-q)\psi(q)^{2}}{q}.$$

Thus, appealing to (2.10) and Jacobi's identity (see [14, p.8])

(3.1)
$$\prod_{n=1}^{\infty} (1-q^n)^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1) q^{\frac{n(n+1)}{2}} \quad (|q| < 1)$$

we get

$$\begin{split} \sum_{n=0}^{\infty} s(n)q^n &= 2\frac{1-\varphi(-q)\psi(q)^2}{q} = \frac{2}{q}\Big(1-\prod_{n=1}^{\infty}\frac{(1-q^n)^2}{1-q^{2n}}\cdot\prod_{n=1}^{\infty}\frac{(1-q^{2n})^4}{(1-q^n)^2}\Big) \\ &= \frac{2}{q}\Big(1-\prod_{n=1}^{\infty}(1-q^{2n})^3\Big) = \frac{2}{q}\Big(1-\sum_{k=0}^{\infty}(-1)^k(2k+1)q^{k(k+1)}\Big) \\ &= 2\sum_{k=1}^{\infty}(-1)^{k+1}(2k+1)q^{k^2+k-1} = 2\sum_{k=1}^{\infty}(-1)^{k+1}(2k+1)q^{\frac{(2k+1)^2-5}{4}}. \end{split}$$

Now comparing the coefficients of q^n on both sides yields

$$s(n) = \begin{cases} 2(-1)^{\frac{m+1}{2}}m & \text{if } 4n+5 = m^2 \text{ for some } m \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

This proves the theorem.

Corollary 3.1. Suppose $n \in \mathbb{Z}^+$. If $n \equiv 0 \pmod{2}$, $n \equiv 0 \pmod{3}$, $n \equiv 2, 3 \pmod{5}$ or $n \equiv 0, 2, 3 \pmod{7}$, then

$$t(1, 1, 8; n) = \frac{1}{2}N(1, 1, 8; 8n + 10).$$

Proof. If $2 \mid n$, then $4n + 5 \equiv 5 \pmod 8$. If $3 \mid n$, then $4n + 5 \equiv 2 \pmod 3$. If $n \equiv 2, 3 \pmod 5$, then $4n + 5 \equiv 2, 3 \pmod 5$. If $n \equiv 0, 2, 3 \pmod 7$, then $4n + 5 \equiv 3, 5, 6 \pmod 7$. Thus, if n satisfies one of the assumed conditions, then 4n + 5 is not a square and so $t(1, 1, 8; n) = \frac{1}{2}N(1, 1, 8; 8n + 10)$ by Theorem 3.1.

Theorem 3.2. Let $m, n \in \mathbb{Z}^+$ with $m \equiv 1 \pmod{4}$ or $m \equiv 4 \pmod{8}$. Suppose that there is an odd prime divisor p of m such that $\left(\frac{4n+5}{p}\right) = -1$. Then

$$t(1, 1, 8, m; n) = \frac{1}{2}N(1, 1, 8, m; 8n + 10 + m).$$

Proof. Suppose that p is an odd prime divisor of m with $\left(\frac{4n+5}{p}\right) = -1$. For $w \in \mathbb{Z}$ we see that

$$\left(\frac{4(n-m\frac{w(w-1)}{2})+5}{p}\right) = \left(\frac{4n+5}{p}\right) = -1.$$

Hence $4(n-m\frac{w(w-1)}{2})+5$ is not a square. Now, from Theorem 3.1 we derive that

$$\begin{split} t(1,1,8,m;n) &= \sum_{w \in \mathbb{Z}} t \left(1,1,8; n - mw(w+1)/2 \right) \\ &= \frac{1}{2} \sum_{w \in \mathbb{Z}} N(1,1,8; 8n + 10 - m \cdot 4w(w+1)) \\ &= \frac{1}{2} \sum_{w \in \mathbb{Z}} N(1,1,8; 8n + 10 + m - m(2w+1)^2). \end{split}$$

Since $a^2 \equiv 0, 1 \pmod 4$ and $a^2 \equiv 0, 1, 4 \pmod 8$ for any $a \in \mathbb{Z}$, we see that $x^2 + y^2 \not\equiv 3 \pmod 4$ and $x^2 + y^2 \not\equiv 6 \pmod 8$ for any $x, y \in \mathbb{Z}$. If $m \equiv 1 \pmod 4$ and $8n + 10 + m - m(2w)^2 = x^2 + y^2 + 8z^2$ for some $x, y, z, w \in \mathbb{Z}$, then $x^2 + y^2 \equiv 10 + m \equiv 3 \pmod 4$. This is impossible. If $m \equiv 4 \pmod 8$ and $8n + 10 + m - m(2w)^2 = x^2 + y^2 + 8z^2$ for some $x, y, z, w \in \mathbb{Z}$, then $x^2 + y^2 \equiv 10 + m \equiv 6 \pmod 8$. This is also impossible. Hence, for $m \equiv 1 \pmod 4$ or $m \equiv 4 \pmod 8$,

$$t(1, 1, 8, m; n) = \frac{1}{2} \sum_{w \in \mathbb{Z}} N(1, 1, 8; 8n + 10 + m - m(2w + 1)^2)$$
$$= \frac{1}{2} \sum_{w \in \mathbb{Z}} N(1, 1, 8; 8n + 10 + m - mw^2)$$
$$= \frac{1}{2} N(1, 1, 8, m; 8n + 10 + m).$$

This proves the theorem.

Corollary 3.2 ([16, Conjectures 2.6 and 2.8]). Let $n \in \mathbb{Z}^+$. Then

$$t(1, 1, 5, 8; n) = \frac{1}{2}N(1, 1, 5, 8; 8n + 15)$$
 for $n \equiv 2, 3 \pmod{5}$

and

$$t(1, 1, 8, 13; n) = \frac{1}{2}N(1, 1, 8, 13; 8n + 23)$$
 for $n \equiv 0, 4, 7, 8, 9, 10 \pmod{13}$.

Proof. If $n \equiv 2, 3 \pmod{5}$, then $\left(\frac{4n+5}{5}\right) = -1$. If $n \equiv 0, 4, 7, 8, 9, 10 \pmod{13}$, then $\left(\frac{4n+5}{13}\right) = -1$. Now putting m = 5, 13 in Theorem 3.2 yields the result.

Remark 3.1 By Theorem 3.2, for $n \equiv 0 \pmod{3}$ we have $(\frac{4n+5}{3}) = -1$ and so $t(1,1,8,9;n) = \frac{1}{2}N(1,1,8,9;8n+19)$ and $t(1,1,8,12;n) = \frac{1}{2}N(1,1,8,12;8n+22)$, which were conjectured by the author in [16, Conjectures 2.2 and 2.7] and first confirmed by Yao in [18].

For $a, b, c, n \in \mathbb{Z}^+$ it is clear that

$$n = a\frac{x(x+1)}{2} + b\frac{y(y+1)}{2} + c\frac{z(z+1)}{2}$$

$$\iff 8n + a + b + c = a(2x+1)^2 + b(2y+1)^2 + c(2z+1)^2.$$

Thus,

$$(3.2) t(a,b,c;n) = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n + a + b + c = ax^2 + by^2 + cz^2, \ 2 \nmid xyz \right\} \right|.$$

Theorem 3.3. For $n \in \mathbb{Z}^+$ we have

$$t(1,3,9;n) = \frac{1}{2}N(1,3,9;8n+13).$$

Proof. By (2.1), (2.7) and (2.9),

$$\sum_{n=0}^{\infty} N(1,3,9;n)q^{n} = \varphi(q)\varphi(q^{3})\varphi(q^{9})$$

$$= \left(\varphi(q^{16})\varphi(q^{48}) + 4q^{16}\psi(q^{32})\psi(q^{96}) + 2q\varphi(q^{48})\psi(q^{8}) + 2q^{3}\varphi(q^{16})\psi(q^{24}) + 6q^{4}\psi(q^{8})\psi(q^{24}) + 4q^{13}\psi(q^{8})\psi(q^{96}) + 4q^{7}\psi(q^{24})\psi(q^{32})\right)$$

$$\times \left(\varphi(q^{144}) + 2q^{36}\psi(q^{288}) + 2q^{9}\psi(q^{72})\right).$$

Collecting the terms of the form q^{8n+13} in (3.3) and then applying (2.2) and (2.6) we deduce that

$$\begin{split} &\sum_{n=0}^{\infty} N(1,3,9;8n+13)q^{8n+13} \\ &= 4q^{13}\psi(q^8)\psi(q^{96})\cdot\varphi(q^{144}) + 2q\varphi(q^{48})\psi(q^8)\cdot 2q^{36}\psi(q^{288}) + 6q^4\psi(q^8)\psi(q^{24})\cdot 2q^9\psi(q^{72}) \\ &= 4q^{13}\psi(q^8)\left(\varphi(q^{144})\psi(q^{96}) + q^{24}\varphi(q^{48})\psi(q^{288})\right) + 12q^{13}\psi(q^8)\psi(q^{24})\psi(q^{72}) \\ &= 16q^{13}\psi(q^8)\psi(q^{24})\psi(q^{72}) = 2q^{13}\sum_{n=0}^{\infty} t(1,3,9;n)q^{8n}. \end{split}$$

Now comparing the coefficients of q^{8n+13} on both sides yields

$$N(1,3,9;8n+13) = 2t(1,3,9;n).$$

Remark 3.2 One can similarly prove that

$$t(1,1,3;n) = \frac{1}{2}N(1,1,3;8n+5)$$
 and $t(1,3,3;n) = \frac{1}{2}N(1,3,3;8n+7)$,

which can be deduced from (1.1).

4. Formulas for t(a, 3a, 2b; n)

For $a, b, n \in \mathbb{Z}^+$ with $2 \nmid a$, in this section we establish general formulas for t(a, 3a, 2b; n), which yield infinite families of identities.

By (2.1), (2.7) and (2.9), for $a, b \in \mathbb{Z}^+$ with $2 \nmid a$ and |q| < 1 we have

$$\sum_{n=0}^{\infty} N(a, 3a, 2b; n)q^{n} = \varphi(q^{a})\varphi(q^{3a})\varphi(q^{2b})$$

$$= (\varphi(q^{16a})\varphi(q^{48a}) + 4q^{16a}\psi(q^{32a})\psi(q^{96a}) + 2q^{a}\varphi(q^{48a})\psi(q^{8a})$$

$$+ 2q^{3a}\varphi(q^{16a})\psi(q^{24a}) + 6q^{4a}\psi(q^{8a})\psi(q^{24a}) + 4q^{13a}\psi(q^{8a})\psi(q^{96a})$$

$$+ 4q^{7a}\psi(q^{24a})\psi(q^{32a}))(\varphi(q^{8b}) + 2q^{2b}\psi(q^{16b})).$$

Theorem 4.1. Let $a, b \in \{1, 3, 5, \ldots\}$. For $n \in \mathbb{Z}^+$ we have

$$t(a, 3a, 2b; n) = \frac{2}{3}N(a, 3a, 2b; 8n + 4a + 2b).$$

Proof. Since $4a + 2b \equiv 2 \pmod{4}$, collecting the terms of the form $q^{8n+4a+2b}$ in (4.1) yields

$$\sum_{n=0}^{\infty} N(a, 3a, 2b; 8n + 4a + 2b)q^{8n+4a+2b} = 6q^{4a}\psi(q^{8a})\psi(q^{24a}) \cdot 2q^{2b}\psi(q^{16b}).$$

Replacing q with $q^{1/8}$ gives

$$\sum_{n=0}^{\infty} N(a, 3a, 2b; 8n + 4a + 2b)q^{n}$$

$$= 12\psi(q^{a})\psi(q^{3a})\psi(q^{2b}) = \frac{12}{8} \sum_{n=0}^{\infty} t(a, 3a, 2b; n)q^{n}.$$

Now comparing the coefficients of q^n on both sides yields the result.

Theorem 4.2. Let $a \in \{1, 3, 5, \ldots\}$ and $m \in \mathbb{Z}^+$. For $n \in \mathbb{Z}^+$ we have

$$t(a, 3a, 8m; n) = \frac{2}{3}N(a, 3a, 8m; 8n + 4a + 8m) - 2N(a, 3a, 8m; 2n + a + 2m).$$

Proof. Set b = 4m. Collecting the terms of the form q^{8n+4a} in (4.1) we deduce that

$$\sum_{n=0}^{\infty} N(a, 3a, 2b; 8n + 4a)q^{8n+4a} = 6q^{4a}\psi(q^{8a})\psi(q^{24a})(\varphi(q^{8b}) + 2q^{2b}\psi(q^{16b})).$$

Replacing q with $q^{1/8}$ we obtain

(4.2)
$$\sum_{n=0}^{\infty} N(a, 3a, 8m; 8n + 4a)q^n = 6\psi(q^a)\psi(q^{3a})(\varphi(q^{4m}) + 2q^m\psi(q^{8m})).$$

On the other hand, using (2.1) and (2.4) we see that

$$\begin{split} &\sum_{n=0}^{\infty} N(a,3a,8m;n)q^n \\ &= \varphi(q^a)\varphi(q^{3a})\varphi(q^{8m}) = (\varphi(q^{4a}) + 2q^a\psi(q^{8a}))(\varphi(q^{12a}) + 2q^{3a}\psi(q^{24a}))\varphi(q^{8m}) \end{split}$$

Collecting the terms of the form q^{2n+a} and then applying (2.6) we get

$$\sum_{n=0}^{\infty} N(a, 3a, 8m; 2n + a)q^{2n+a}$$

$$= (2q^{a}\psi(q^{8a})\varphi(q^{12a}) + 2q^{3a}\psi(q^{24a})\varphi(q^{4a}))\varphi(q^{8m})$$

$$= 2q^{a}\psi(q^{2a})\psi(q^{6a})\varphi(q^{8m})$$

and so

$$\sum_{n=0}^{\infty} N(a, 3a, 8m; 2n + a)q^n = 2\psi(q^a)\psi(q^{3a})\varphi(q^{4m}).$$

This together with (4.2) yields

$$\sum_{n=0}^{\infty} (N(a, 3a, 8m; 8n + 4a) - 3N(a, 3a, 8m; 2n + a))q^{n}$$

$$= 12q^{m}\psi(q^{a})\psi(q^{3a})\psi(q^{8m}) = \frac{12}{8}q^{m}\sum_{n=0}^{\infty} t(a, 3a, 8m; n)q^{n}.$$

Now comparing the coefficients of q^{m+n} on both sides gives the result.

Theorem 4.3. Let $a \in \{1, 3, 5, \ldots\}$ and $m \in \mathbb{N}$. For $n \in \mathbb{Z}^+$ we have

$$t(a, 3a, 8m + 4; n)$$

$$= \begin{cases} \frac{2}{3}N(a,3a,8m+4;8n+4a+8m+4) & if \ n \equiv \frac{a-1}{2}+m \pmod{2}, \\ \frac{2}{3}(N(a,3a,8m+4;8n+4a+8m+4)-N(a,3a,8m+4;2n+a+2m+1)) \\ & if \ n \not\equiv \frac{a-1}{2}+m \pmod{2}. \end{cases}$$

Proof. Set b = 4m + 2. Collecting the terms of the form q^{8n} in (4.1) we deduce that

$$\sum_{n=0}^{\infty} N(a, 3a, 2b; 8n) q^{8n}$$

$$= \left(\varphi(q^{16a}) \varphi(q^{48a}) + 4q^{16a} \psi(q^{32a}) \psi(q^{96a}) \right) \varphi(q^{8b}) + 6q^{4a} \psi(q^{8a}) \psi(q^{24a}) \cdot 2q^{2b} \psi(q^{16b}).$$

Replacing q with $q^{1/8}$ we obtain

(4.3)
$$\sum_{n=0}^{\infty} N(a, 3a, 8m + 4; 8n) q^n = \left(\varphi(q^{2a})\varphi(q^{6a}) + 4q^{2a}\psi(q^{4a})\psi(q^{12a})\right)\varphi(q^{4m+2}) + 12q^{m+(a+1)/2}\psi(q^a)\psi(q^{3a})\psi(q^{8m+4}).$$

On the other hand, using (2.4) we see that

$$\begin{split} &\sum_{n=0}^{\infty} N(a,3a,8m+4;n)q^n \\ &= \varphi(q^a)\varphi(q^{3a})\varphi(q^{8m+4}) = (\varphi(q^{4a}) + 2q^a\psi(q^{8a}))(\varphi(q^{12a}) + 2q^{3a}\psi(q^{24a}))\varphi(q^{8m+4}). \end{split}$$

Collecting the even powers of q we get

$$\sum_{n=0}^{\infty} N(a, 3a, 8m+4; 2n)q^{2n} = (\varphi(q^{4a})\varphi(q^{12a}) + 4q^{4a}\psi(q^{8a})\psi(q^{24a}))\varphi(q^{8m+4})$$

and so

$$\sum_{n=0}^{\infty} N(a, 3a, 8m+4; 2n)q^n = (\varphi(q^{2a})\varphi(q^{6a}) + 4q^{2a}\psi(q^{4a})\psi(q^{12a}))\varphi(q^{4m+2}).$$

This together with (4.3) yields

$$\sum_{n=0}^{\infty} (N(a, 3a, 8m + 4; 8n) - N(a, 3a, 8m + 4; 2n))q^{n}$$

$$= 12q^{m+(a+1)/2}\psi(q^{a})\psi(q^{3a})\psi(q^{8m+4})$$

$$= \frac{3}{2}q^{m+(a+1)/2}\sum_{n=0}^{\infty} t(a, 3a, 8m + 4; n)q^{n}.$$

Comparing the coefficients of $q^{m+(a+1)/2+n}$ on both sides yields

$$t(a, 3a, 8m + 4; n) = \frac{2}{3} (N(a, 3a, 8m + 4; 8n + 4a + 8m + 4) - N(a, 3a, 8m + 4; 2n + a + 2m + 1)).$$

Now assume $n \equiv \frac{a-1}{2} + m \pmod{2}$. Then $2n + 2m + a + 1 \equiv a - 1 + 2m + 2m + a + 1 \equiv 2a \pmod{4}$. If $2n + 2m + a + 1 = ax^2 + 3ay^2 + (8m + 4)z^2$ for some $x, y, z \in \mathbb{Z}$, we must have $a(x^2 + 3y^2) \equiv 2n + 2m + a + 1 \equiv 2a \pmod{4}$ and so $x^2 + 3y^2 \equiv 2 \pmod{4}$. If $2 \mid x - y$, then $4 \mid x^2 + 3y^2$. If $2 \nmid x - y$, then $x^2 + 3y^2$ is odd. Thus, $x^2 + 3y^2 \not\equiv 2 \pmod{4}$ and we get a contradiction. Therefore N(a, 3a, 8m + 4; 2n + a + 2m + 1) = 0. This completes the proof.

5. Formulas for t(a, 27a, c; n) **and** t(3a, 25a, c; n)

The purpose of this section is to present some formulas for t(a, 27a, c; n) and t(3a, 25a, c; n) by using Theorems 4.1-4.3, where $a, c, n \in \mathbb{Z}^+$ and $2 \nmid a$. For later convenience we define t(a, b, c; m) = 0 for $a, b, c \in \mathbb{Z}^+$ and $m \notin \mathbb{N}$. Now let us begin with two lemmas.

Lemma 5.1. Let $a, b, c, n \in \mathbb{Z}^+$ with $3 \nmid a$ and $n \equiv a \pmod{3}$. Then

$$t(a, 3b, 3c; n) = t(3a, b, c; \frac{n-a}{3}).$$

Proof. If $8n + a + 3b + 3c = ax^2 + 3by^2 + 3cz^2$ for some odd integers x, y and z, then clearly $3 \mid x$ and so $8n + a + 3b + 3c = a(3x)^2 + 3by^2 + 3cz^2$ for some odd integers x, y and z. That is, $\frac{8n + a + 3b + 3c}{3} = 3ax^2 + by^2 + cz^2$ for some odd integers x, y and z. Thus, applying (3.2) we obtain

$$\begin{split} &t(a,3b,3c;n)\\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+3b+3c = ax^2+3by^2+3cz^2, \ 2 \nmid xyz \right\} \right| \\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+3b+3c = a(3x)^2+3by^2+3cz^2, \ 2 \nmid xyz \right\} \right| \\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid \frac{8n+a+3b+3c}{3} = 3ax^2+by^2+cz^2, \ 2 \nmid xyz \right\} \right| \\ &= t \left(3a,b,c; \frac{n-a}{2} \right). \end{split}$$

This proves the lemma.

Lemma 5.2. Let $a, b, c, n \in \mathbb{Z}^+$ with $3 \nmid a, a \equiv b \pmod{3}$ and $n \equiv 2a \pmod{3}$. Then

$$t(a,b,9c;n) = \begin{cases} t(a,b,c; \frac{n-a-b}{9}) & if \ n \equiv a+b \pmod{9}, \\ 0 & otherwose. \end{cases}$$

Proof. Since $n \equiv a+b \pmod 3$ we see that $8n+a+b+9c \equiv 0 \pmod 3$. If $8n+a+b+9c=ax^2+by^2+9cz^2$ for some $x,y,z\in\mathbb{Z}$, we must have $x^2+y^2\equiv 0 \pmod 3$ and so $x\equiv y\equiv 0 \pmod 3$. Thus $8n+a+b+9c=a(3x)^2+b(3y)^2+9cz^2$ for some $x,y,z\in\mathbb{Z}$. This implies $9\mid 8n+a+b$. Hence, applying (3.2) we see that

$$t(a,b,9c;n) = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+b+9c = ax^2+by^2+9cz^2, \ 2 \nmid xyz \right\} \right| \\ = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+b+9c = 9ax^2+9by^2+9cz^2, \ 2 \nmid xyz \right\} \right| \\ = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid \frac{8n+a+b+9c}{9} = ax^2+by^2+cz^2, \ 2 \nmid xyz \right\} \right| \\ = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8\frac{n-a-b}{9} + a+b+c = ax^2+by^2+cz^2, \ 2 \nmid xyz \right\} \right| \\ = \left| \left\{ (a,b,c;\frac{n-a-b}{9}) \quad \text{if } n \equiv a+b \pmod{9}, \\ 0 \quad \text{otherwose.} \right.$$

This proves the lemma.

Theorem 5.1. Let $n \in \mathbb{Z}^+$.

- (i) If $n \equiv 0 \pmod{3}$, then $t(1,2,9;n) = \frac{2}{3}N(1,2,9;8n+12)$.
- (ii) If $n \equiv 1 \pmod{3}$, then

$$t(1,3,27;n) = \frac{1}{2}N(1,3,27;8n+31),$$

$$t(1,9,27;n) = \frac{1}{2}N(1,9,27;8n+37),$$

$$t(1,27,27;n) = \frac{1}{2}N(1,27,27;8n+55),$$

$$t(1,9,18;n) = \frac{2}{3}N(1,9,18;8n+28).$$

(iii) If $n \equiv 2 \pmod{3}$, then

$$t(1, 1, 18; n) = \frac{2}{3}N(1, 1, 18; 8n + 20),$$

$$t(2, 9, 9; n) = \frac{2}{3}N(2, 9, 9; 8n + 20),$$

$$t(1, 1, 27; n) = \frac{1}{2}N(1, 1, 27; 8n + 29).$$

Proof. We first prove (i). Suppose $3 \mid n$. For $x \in \mathbb{Z}$ we have $x^2 \equiv 0, 1 \pmod 3$. Thus, if $8n+12=x^2+2y^2+z^2$ for $x,y,z\in \mathbb{Z}$, we must have $3 \mid x$ or $3 \mid z$. Hence $8n+12=x^2+2y^2+(3z)^2$ for some $x,y,z\in \mathbb{Z}$. Applying (1.1), (3.2) and the above we deduce that

$$t(1,2,9;n) = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + (3z)^2 = 8n + 12, \ 2 \nmid xyz \right\} \right|$$

$$= \left| \left\{ (x, y, z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + z^2 = 8n + 12, \ 2 \nmid xyz \right\} \right|$$

$$= t(1, 1, 2; n + 1) = \frac{2}{3}N(1, 1, 2; 8(n + 1) + 4)$$

$$= \frac{2}{3} \left| \left\{ (x, y, z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + z^2 = 8n + 12 \right\} \right|$$

$$= \frac{2}{3} \left| \left\{ (x, y, z) \in \mathbb{Z}^3 \mid x^2 + 2y^2 + (3z)^2 = 8n + 12 \right\} \right|$$

$$= \frac{2}{3}N(1, 2, 9; 8n + 12).$$

Now we consider (ii). Suppose n = 3m + 1. By Lemma 5.1 and Theorem 3.3,

$$\begin{split} t(1,3,27;n) &= t(3,1,9;m) = \frac{1}{2}N(1,3,9;8m+13) \\ &= \frac{1}{2}\big|\big\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + 3y^2 + 9z^2 = 8m+13\big\}\big| \\ &= \frac{1}{2}\big|\big\{(x,y,z) \in \mathbb{Z}^3 \mid 3x^2 + (3y)^2 + 27z^2 = 24m+39\big\}\big| \\ &= \frac{1}{2}\big|\big\{(x,y,z) \in \mathbb{Z}^3 \mid 3x^2 + y^2 + 27z^2 = 24m+39\big\}\big| \\ &= \frac{1}{2}N(1,3,27;24m+39) = \frac{1}{2}N(1,3,27;8n+31). \end{split}$$

The remaining results in part (ii) can be proved similarly.

Finally we consider (iii). Suppose n = 3m + 2. If $x^2 + y^2 + 18z^2 = 24m + 36$ for $x, y, z \in \mathbb{Z}$, then $x^2 + y^2 \equiv 0 \pmod{3}$. This yields $x \equiv y \equiv 0 \pmod{3}$ and so $3 \mid m$. Thus, when $3 \nmid m$ we have N(1, 1, 18; 8n + 20) = N(1, 1, 18; 24m + 36) = 0 and so t(1, 1, 18; n) = 0 by (3.2). Now assume $3 \mid m$. Using Lemma 5.2 and (1.1) we see that

$$t(1,1,18;n) = t(1,1,2;m/3) = \frac{2}{3}N(1,1,2;8m/3+4)$$

$$= \frac{2}{3} |\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + y^2 + 2z^2 = 8m/3 + 4\}|$$

$$= \frac{2}{3} |\{(x,y,z) \in \mathbb{Z}^3 \mid (3x)^2 + (3y)^2 + 18z^2 = 24m + 36\}|$$

$$= \frac{2}{3} |\{(x,y,z) \in \mathbb{Z}^3 \mid x^2 + y^2 + 18z^2 = 8(3m+2) + 20\}|$$

$$= \frac{2}{3}N(1,1,18;8n+20).$$

The remaining results in part (iii) can be proved similarly.

Lemma 5.3. Let $a, b, c \in \mathbb{Z}^+$ with $3 \nmid c$.

- (i) If $m \in \mathbb{Z}^+$ and $m \equiv a c \pmod{3}$, then N(a, 3b, c; m) = N(9a, 3b, c; m).
- (ii) If $n \in \mathbb{Z}^+$ and $n \equiv -c \pmod{3}$, then t(a, 3b, c; n) = t(9a, 3b, c; n a).

Proof. We first prove (i). Suppose $m \in \mathbb{Z}^+$, $m \equiv a-c \pmod{3}$ and $m = ax^2+3by^2+cz^2$ for $x,y,z \in \mathbb{Z}$. If $3 \nmid x$, then $m = ax^2+3by^2+cz^2 \equiv a+cz^2 \equiv a+c$ or $a \pmod{3}$. But $m \equiv a-c \not\equiv a+c$, $a \pmod{3}$. This is a contradiction. Thus $3 \mid x$ and so $m = 9ax^2+3by^2+cz^2$ for some $x,y,z \in \mathbb{Z}$. Hence

$$N(a,3b,c;m) = \left| \{ (x,y,z) \in \mathbb{Z}^3 \mid ax^2 + 3by^2 + cz^2 = m \} \right|$$

$$= |\{(x, y, z) \in \mathbb{Z}^3 \mid 9ax^2 + 3by^2 + cz^2 = m\}|$$

= $N(9a, 3b, c; m)$.

This proves (i).

Now we consider (ii). Suppose $n \in \mathbb{Z}^+$ and $n \equiv -c \pmod{3}$. Then $8n+a+3b+c \equiv a-c \pmod{3}$. Thus, applying (3.2) and the proof of (i) we deduce that

$$t(a,3b,c;n) = \left| \{ (x,y,z) \in \mathbb{Z}^3 \mid ax^2 + 3by^2 + cz^2 = 8n + a + 3b + c, \ 2 \nmid xyz \} \right|$$

$$= \left| \{ (x,y,z) \in \mathbb{Z}^3 \mid 9ax^2 + 3by^2 + cz^2 = 8n + a + 3b + c, \ 2 \nmid xyz \} \right|$$

$$= \left| \{ (x,y,z) \in \mathbb{Z}^3 \mid 9ax^2 + 3by^2 + cz^2 = 8(n-a) + 9a + 3b + c, \ 2 \nmid xyz \} \right|$$

$$= t(9a,3b,c;n-a),$$

which proves the lemma.

Theorem 5.2. Let $a, c \in \mathbb{Z}^+$ with $2 \nmid a$ and $c \equiv 2, 4 \pmod{6}$. For $n \in \mathbb{Z}^+$ with $n \equiv -c \pmod{3}$ we have

$$t(a,27a,c;n) \\ = \begin{cases} \frac{2}{3}N(a,27a,c;8n+28a+c) & \text{if } c \equiv 2,10 \pmod{12}, \\ \frac{2}{3}\left(N(a,27a,c;8n+28a+c)-N(a,27a,c;2n+7a+\frac{c}{4})\right) & \text{if } c \equiv 4,20 \pmod{24}, \\ \frac{2}{3}N(a,27a,c;8n+28a+c)-2N(a,27a,c;2n+7a+\frac{c}{4}) & \text{if } c \equiv 8,16 \pmod{24}. \end{cases}$$

Proof. By Lemma 5.3(ii) and Theorems 4.1-4.3,

$$t(a, 27a, c; n) = t(9a, 27a, c; n - a)$$

$$= \begin{cases} \frac{2}{3}N(9a, 27a, c; 8(n - a) + 36a + c) & \text{if } c \equiv 2, 10 \pmod{12}, \\ \frac{2}{3}\left(N(9a, 27a, c; 8(n - a) + 36a + c) - N(9a, 27a, c; 2(n - a) + 9a + \frac{c}{4})\right) \\ & \text{if } c \equiv 4, 20 \pmod{24}, \\ \frac{2}{3}N(9a, 27a, c; 8(n - a) + 36a + c) - 2N(9a, 27a, c; 2(n - a) + 9a + \frac{c}{4}) \\ & \text{if } c \equiv 8, 16 \pmod{24}. \end{cases}$$

By Lemma 5.3(i),

$$N(a, 27a, c; 8n + 28a + c) = N(9a, 27a, c; 8(n - a) + 36a + c)$$

and for $c \equiv 0 \pmod{4}$,

$$N(a, 27a, c; 2n + 7a + c/4) = N(9a, 27a, c; 2(n - a) + 9a + c/4).$$

Thus the result follows.

Corollary 5.1. Let $a, c \in \mathbb{Z}^+$ with $2 \nmid a$ and $c \equiv 4, 20 \pmod{24}$. For $n \in \mathbb{Z}^+$ with $n \equiv \frac{1-3a}{2} + \frac{c-4}{8} \pmod{6}$ we have

$$t(a, 27a, c; n) = \frac{2}{3}N(a, 27a, c; 8n + 28a + c).$$

Proof. For $x \in \mathbb{Z}$ we have $x^2 \equiv 0, 1 \pmod 4$. Thus, $x^2 + 3y^2 \not\equiv 2 \pmod 4$. Hence, if $2m + 7a + \frac{c}{4} = ax^2 + 27ay^2 + cz^2 = a(x^2 + 3(3y)^2) + cz^2$ for some $x, y, z \in \mathbb{Z}$, then $2m + 7a + \frac{c}{4} \not\equiv 2a \pmod 4$. This yields $m \not\equiv \frac{1}{2}(a + \frac{c}{4}) \pmod 2$. Thus, for $m \equiv \frac{1}{2}(a + \frac{c}{4}) \pmod 2$ we have N(a, 27a, c; 2m + 7a + c/4) = 0. Since $n \equiv \frac{1-3a}{2} + \frac{c-4}{8} \pmod 6$ we see that $n \equiv \frac{a+1}{2} + \frac{c-4}{8} = \frac{1}{2}(a + \frac{c}{4}) \pmod 2$ and so N(a, 27a, c; 2n + 7a + c/4) = 0. Clearly $n \equiv -c \pmod 3$. Thus the result follows from Theorem 5.2.

Theorem 5.3. Let $a, c \in \mathbb{Z}^+$ with $2 \nmid a, 3 \nmid a$ and $6 \mid c$. For $n \in \mathbb{Z}^+$ with $n \equiv a \pmod{3}$ we have

$$t(a,27a,c;n) \\ = \begin{cases} \frac{2}{3}N(a,27a,c;8n+28a+c) & \text{if } c \equiv 6,18 \pmod{24}, \\ \frac{2}{3}\left(N(a,27a,c;8n+28a+c)-N\left(a,27a,c;2n+7a+\frac{c}{4}\right)\right) & \text{if } c \equiv 12 \pmod{24}, \\ \frac{2}{3}N(a,27a,c;8n+28a+c)-2N\left(a,27a,c;2n+7a+\frac{c}{4}\right) & \text{if } c \equiv 0 \pmod{24}. \end{cases}$$

Proof. By Lemma 5.1 and Theorems 4.1-4.3,

$$t(a, 27a, c; n) = t\left(3a, 9a, \frac{c}{3}; \frac{n-a}{3}\right)$$

$$= \begin{cases} \frac{2}{3}N\left(3a, 9a, \frac{c}{3}; 8\frac{n-a}{3} + 12a + \frac{c}{3}\right) & \text{if } c \equiv 6, 18 \pmod{24}, \\ \frac{2}{3}\left(N\left(3a, 9a, \frac{c}{3}; 8\frac{n-a}{3} + 12a + \frac{c}{3}\right) - N\left(3a, 9a, \frac{c}{3}; 2\frac{n-a}{3} + 3a + \frac{c}{12}\right)\right) \\ & \text{if } c \equiv 12 \pmod{24}, \\ \frac{2}{3}N\left(3a, 9a, \frac{c}{3}; 8\frac{n-a}{3} + 12a + \frac{c}{3}\right) - 2N\left(3a, 9a, \frac{c}{3}; 2\frac{n-a}{3} + 3a + \frac{c}{12}\right) \\ & \text{if } c \equiv 0 \pmod{24}. \end{cases}$$

Note that N(3a, 9a, c/3; m) = N(9a, 27a, c; 3m) = N(a, 27a, c; 3m) for $m \in \mathbb{Z}^+$. We then obtain the result.

Theorem 5.4. Suppose $n \in \mathbb{Z}^+$.

- (i) For $n \equiv 1 \pmod{5}$ we have $t(3, 9, 25; n) = \frac{1}{2}N(3, 9, 25; 8n + 37)$.
- (ii) Suppose $a, c \in \mathbb{Z}^+$, $a \equiv 1, 3, 7, 9 \pmod{10}$, $c \equiv 2 \pmod{4}$ and $n \equiv a \equiv -c \pmod{5}$. Then

$$t(3a, 25a, c; n) = \frac{2}{3}N(3a, 25a, c; 8n + 28a + c).$$

Proof. We first prove (i). Suppose $8n + 37 = 3x^2 + 9y^2 + 25z^2$ for some $x, y, z \in \mathbb{Z}$. Since $8n + 37 \equiv 8 + 37 \equiv 0 \pmod{5}$ and $x^2 \equiv 0, \pm 1 \pmod{5}$ we see that $x^2 + 3y^2 \equiv 0 \pmod{5}$ and so $x \equiv y \equiv 0 \pmod{5}$. Thus, $8n + 37 = 3(5x)^2 + 9(5y)^2 + 25z^2$ for some $x, y, z \in \mathbb{Z}$. This yields $25 \mid 8n + 37$ and $\frac{8n+37}{25} = 3x^2 + 9y^2 + z^2$. Hence, when $25 \nmid 8n + 37$ we have N(3, 9, 25; 8n + 37) = 0 and so t(3, 9, 25; n) = 0 by (3.2). Now assume $25 \mid 8n + 37$. From the above, (3.2) and Theorem 3.3 we deduce that for $n \equiv 1 \pmod{5}$,

$$t(3, 9, 25; n) = \left| \{ (x, y, z) \in \mathbb{Z}^3 \mid 3x^2 + 9y^2 + 25z^2 = 8n + 37, \ 2 \nmid xyz \} \right|$$

= $\left| \{ (x, y, z) \in \mathbb{Z}^3 \mid 3(5x)^2 + 9(5y)^2 + 25z^2 = 8n + 37, \ 2 \nmid xyz \} \right|$

$$= \left| \left\{ (x, y, z) \in \mathbb{Z}^3 \mid 3x^2 + 9y^2 + z^2 = \frac{8n + 37}{25}, \ 2 \nmid xyz \right\} \right|$$

$$= t \left(1, 3, 9; \frac{n - 36}{25} \right) = \frac{1}{2} N \left(1, 3, 9; \frac{8n + 37}{25} \right) = \frac{1}{2} N (25, 75, 225; 8n + 37)$$

$$= \frac{1}{2} N (3 \cdot 25, 9 \cdot 25, 25; 8n + 37) = \frac{1}{2} N (3, 9, 25; 8n + 37).$$

This proves (i).

Now we consider (ii). Suppose $a, c \in \mathbb{Z}^+$, $5 \nmid a$, $c \equiv 2 \pmod{4}$ and $n \equiv a \equiv -c \pmod{5}$. Then $8n + 28a + c \equiv 0 \pmod{5}$. If $8n + 28a + c = 3ax^2 + 25ay^2 + cz^2$ for some $x, y, z \in \mathbb{Z}$, we see that $a(3x^2 - z^2) \equiv 3ax^2 + 25ay^2 + cz^2 = 8n + 28a + c \equiv 0 \pmod{5}$. This yields $5 \mid x$, $5 \mid z$ and so $25 \mid 8n + 28a + c$. Hence, when $25 \nmid 8n + 28a + c$ we have N(3a, 25a, c; 8n + 28a + c) = 0 and so t(3a, 25a, c; n) = 0 by (3.2). Now assume $25 \mid 8n + 28a + c$. Applying (3.2) and Theorem 4.1 we see that

$$\begin{split} &t(3a,25a,c;n)\\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 3ax^2 + 25ay^2 + cz^2 = 8n + 28a + c, \ 2 \nmid xyz \right\} \right| \\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 3a(5x)^2 + 25ay^2 + c(5z)^2 = 8n + 28a + c, \ 2 \nmid xyz \right\} \right| \\ &= \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 3ax^2 + ay^2 + cz^2 = \frac{8n + 28a + c}{25}, \ 2 \nmid xyz \right\} \right| \\ &= t\left(a, 3a, c; \frac{n - 9a - 3c}{25} \right) = \frac{2}{3}N\left(a, 3a, c; \frac{8n + 28a + c}{25} \right) \\ &= \frac{2}{3}N(25a, 75a, 25c; 8n + 28a + c) = \frac{2}{3}N(25a, 3a, c; 8n + 28a + c). \end{split}$$

This completes the proof.

Using the method in the proof of Theorem 5.4(i) one can similarly prove the following theorem

Theorem 5.5. Let $n \in \mathbb{Z}^+$. Then

$$t(2,25,25;n) = \frac{2}{3}N(2,25,25;8n+52) \quad for \ n \equiv 1 \pmod{5},$$

$$t(1,25,50;n) = \frac{2}{3}N(1,25,50;8n+76) \quad for \ n \equiv 3 \pmod{5},$$

$$t(3,3,49;n) = \frac{1}{2}N(3,3,49;8n+55) \quad for \ n \equiv 1 \pmod{7},$$

$$t(3,10,49;n) = \frac{2}{3}N(3,10,49;8n+62) \quad for \ n \equiv 1 \pmod{7}.$$

6. Three relations between t(a, b, c; n) and N(a, b, c; 8n + a + b + c)

For $a, b, c, n \in \mathbb{Z}^+$, in this section we establish three general relations between t(a, b, c; n) and N(a, b, c; 8n + a + b + c) under certain conditions.

Theorem 6.1. Let $a, b, c, n \in \mathbb{Z}^+$ with $2 \nmid ab, 4 \mid a-b \text{ and } 4 \mid c-2$. Then

$$t(a, b, c; n) = N(a, b, c; 8n + a + b + c) - N(a, b, c; 2n + (a + b + c)/4).$$

Proof. Suppose $8n + a + b + c = ax^2 + by^2 + cz^2$ for some $x, y, z \in \mathbb{Z}$. Since $a \equiv b \equiv \pm 1 \pmod{4}$ and $c \equiv 2 \pmod{4}$, we see that $a + b + c \equiv 0 \pmod{4}$ and so $a(x^2 + y^2) + 2z^2 \equiv ax^2 + by^2 + cz^2 = 8n + a + b + c \equiv 0 \pmod{4}$. Therefore, either $x \equiv y \equiv z \equiv 0 \pmod{2}$ or $x \equiv y \equiv z \equiv 1 \pmod{2}$. Hence appealing to (3.2) we deduce that

$$t(a,b,c;n) = \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+b+c = ax^2+by^2+cz^2, \ 2 \nmid xyz \right\} \right|$$

$$= N(a,b,c;8n+a+b+c)$$

$$- \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+b+c = ax^2+by^2+cz^2, \ x \equiv y \equiv z \equiv 0 \pmod{2} \right\} \right|$$

$$= N(a,b,c;8n+a+b+c)$$

$$- \left| \left\{ (x,y,z) \in \mathbb{Z}^3 \mid 8n+a+b+c = a(2x)^2+b(2y)^2+c(2z)^2 \right\} \right|$$

$$= N(a,b,c;8n+a+b+c) - N(a,b,c;2n+(a+b+c)/4).$$

This proves the theorem.

Theorem 6.2. Suppose that $a, b, c, n \in \mathbb{Z}^+$ with $2 \nmid ab$ and $4 \mid a - b$. If $c \equiv a \pmod{4}$ or $c \equiv 4 \pmod{8}$, then

$$t(a, b, c; n) = N(a, b, c; 8n + a + b + c).$$

Proof. Assume $c \equiv a \pmod 4$ and $8n+a+b+c=ax^2+by^2+cz^2$ for some $x,y,z \in \mathbb{Z}$. If $2 \mid z$, then $3a \equiv 8n+a+b+c \equiv ax^2+by^2 \equiv a(x^2+y^2) \pmod 4$ and so $x^2+y^2 \equiv 3 \pmod 4$. Since $x^2,y^2 \equiv 0,1 \pmod 4$, we must have $x^2+y^2 \not\equiv 3 \pmod 4$ and get a contradiction. Hence $2 \nmid z$ and $a(x^2+y^2) \equiv ax^2+by^2 = 8n+a+b+c-cz^2 \equiv a+b \equiv 2a \pmod 4$. That is, $x^2+y^2 \equiv 2 \pmod 4$. This implies that $2 \nmid xy$.

Now assume $c \equiv 4 \pmod{8}$ and $8n + a + b + c = ax^2 + by^2 + cz^2$ for some $x, y, z \in \mathbb{Z}$. Then $a(x^2 + y^2) \equiv ax^2 + by^2 = 8n + a + b + c - cz^2 \equiv a + b \equiv 2 \pmod{4}$. This implies $2 \nmid xy$ and so $cz^2 = 8n + a + b + c - ax^2 - by^2 \equiv a + b + c - a - b = c \pmod{8}$. Since $c \equiv 4 \pmod{8}$ we get $2 \nmid z$.

By the above and (3.2), for $c \equiv a \pmod{4}$ or $c \equiv 4 \pmod{8}$,

$$t(a, b, c; n) = \left| \left\{ (x, y, z) \in \mathbb{Z}^3 \mid 8n + a + b + c = ax^2 + by^2 + cz^2, \ 2 \nmid xyz \right\} \right|$$

= $N(a, b, c; 8n + a + b + c)$.

This proves the theorem.

Theorem 6.3. Let $a, b, c, n \in \mathbb{Z}^+$ with $2 \nmid a, 2 \mid b, 2 \mid c, 8 \nmid b, 8 \nmid c$ and $8 \nmid b + c$. Then t(a, b, c; n) = N(a, b, c; 8n + a + b + c).

Proof. Suppose $8n + a + b + c = ax^2 + by^2 + cz^2$ for some $x, y, z \in \mathbb{Z}$. Then clearly $2 \nmid x$ and so $by^2 + cz^2 = 8n + a + b + c - ax^2 \equiv b + c \pmod{8}$. If $2 \mid y$, since $8 \nmid b + c$ we have $2 \nmid z$ and so $c \equiv cz^2 \equiv by^2 + cz^2 \equiv b + c \pmod{8}$. This contradicts the assumption $8 \nmid b$. Hence $2 \nmid y$. Similarly, $2 \nmid z$. Now applying (3.2) yields the result.

Theorem 6.4. Suppose $n \in \mathbb{Z}^+$. Then n is represented by $\frac{x(x+1)}{2} + \frac{y(y+1)}{2} + 9\frac{z(z+1)}{2}$ if and only if $n \not\equiv 5, 8 \pmod{9}$.

Proof. By Theorem 6.2, t(1,1,9;n) = N(1,1,9;8n+11). By Three Squares Theorem, $8n+11 = x^2 + y^2 + z^2$ for some $x,y,z \in \mathbb{Z}$. Assume $n \equiv 0,1 \pmod 3$. Then $3 \nmid 8n+11$.

Since $m^2 \equiv 0,1 \pmod 3$ for $m \in \mathbb{Z}$ we must have $3 \mid xyz$ and so 8n+11 is represented by $x^2+y^2+9z^2$. Hence $t(1,1,9;n)=N(1,1,9;8n+11)\geq 1$. For $n\equiv 2\pmod 9$ we have $9 \mid 8n+11$ and $\frac{8n+11}{9} \equiv 3\pmod 8$. Hence $\frac{8n+11}{9} = x^2+y^2+z^2$ for some $x,y,z\in \mathbb{Z}$. This yields $8n+11=(3x)^2+(3y)^2+9z^2$. Therefore $t(1,1,9;n)=N(1,1,9;8n+11)\geq 1$. Finally we assume $n\equiv 5,8\pmod 9$. If $8n+11=x^2+y^2+9z^2$ for some integers x,y and z, since $m^2\equiv 0,1,4,7\pmod 9$ for $m\in \mathbb{Z}$ we see that $x^2+y^2\equiv 0,1,2,4,5,7,8\pmod 9$ and so $8n+11=x^2+y^2+9z^2\not\equiv 3,6\pmod 9$. This yields $n\not\equiv 5,8\pmod 9$, which contradicts the assumption. Hence t(1,1,9;n)=N(1,1,9;8n+11)=0 for $n\equiv 5,8\pmod 9$. Putting the above together proves the theorem.

Let $a, b, c, n \in \mathbb{Z}^+$. By (3.2), $t(a, b, c; n) \leq N(a, b, c; 8n + a + b + c)$. As stated in Theorems 6.2 and 6.3, under some certain conditions we have t(a, b, c; n) = N(a, b, c; 8n + a + b + c). We have more interest in the non-trivial case t(a, b, c; n) < N(a, b, c; 8n + a + b + c). Assume t(a, b, c; n) < N(a, b, c; 8n + a + b + c). Based on calculations with $a \leq 7$, $a \leq b \leq 30$ and $b \leq c \leq 50$ on Maple, we pose the following challenging conjectures.

Conjecture 6.1. Let $n \in \mathbb{Z}^+$. For (a, b, c) = (1, 1, 3), (1, 1, 4), (1, 1, 6), (1, 1, 7), (1, 1, 15), (1, 2, 2), (1, 2, 5), (1, 3, 3), (1, 3, 9), (1, 5, 10), (1, 6, 9), (1, 7, 7), (1, 7, 15), (1, 9, 15), (1, 15, 15), (1, 15, 25), (2, 3, 3) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(N(a,b,c;4(8n+a+b+c)) - N(a,b,c;8n+a+b+c) \Big).$$

Conjecture 6.2. Let $n \in \mathbb{Z}^+$.

(i) For even n and (a, b, c) = (1, 2, 15), (1, 15, 18), (1, 15, 30), (3, 10, 45) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(N(a,b,c;4(8n+a+b+c)) - N(a,b,c;8n+a+b+c) \Big).$$

(ii) For odd n and (a,b,c)=(1,6,7),(1,7,42),(2,3,21),(2,9,15),(3,5,6),(3,5,10),(5,21,35) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(N(a,b,c;4(8n+a+b+c)) - N(a,b,c;8n+a+b+c) \Big).$$

Conjecture 6.3. Let $n \in \mathbb{Z}^+$. For (a, b, c) = (1, 3, 5), (1, 3, 7), (1, 3, 15), (1, 3, 21), (1, 5, 15), (1, 7, 21), (3, 5, 9), (3, 5, 15), (3, 7, 21) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(3N(a,b,c;8n+a+b+c) - N(a,b,c;4(8n+a+b+c)) \Big).$$

Conjecture 6.4. Let $n \in \mathbb{Z}^+$.

(i) For even n and (a, b, c) = (1, 6, 15), (1, 10, 15) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(3N(a,b,c;8n+a+b+c) - N(a,b,c;4(8n+a+b+c)) \Big).$$

(ii) For odd n and (a, b, c) = (1, 2, 7), (1, 7, 14), (2, 3, 5), (3, 5, 30) we have

$$t(a,b,c;n) = \frac{1}{2} \Big(3N(a,b,c;8n+a+b+c) - N(a,b,c;4(8n+a+b+c)) \Big).$$

Conjectures 6.1-6.4 have been checked for $n \leq 150$ with Maple.

Acknowledgments

The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).

References

- [1] C. Adiga, S. Cooper and J. H. Han, A general relation between sums of squares and sums of triangular numbers, Int. J. Number Theory 1(2005), 175-182.
- [2] N.D. Baruah, S. Cooper and M. Hirschhorn, Sums of squares and sums of triangular numbers induced by partitions of 8, Int. J. Number Theory 4(2008), 525-538.
- [3] P.T. Bateman and M.I. Knopp, *Some new old-fashioned modular identities*, Ramanujan J. **2**(1998), 247-269.
- [4] E.T. Bell, The numbers of representations of integers in certain forms $ax^2 + by^2 + cz^2$, Amer. Math. Monthly **31**(1924), 126-131.
- [5] B.C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.
- [6] B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, 2006.
- [7] S. Cooper, On the number of representations of integers by certain quadratic forms, II, J. Combin. Number Theory 1(2009), 153-182.
- [8] S. Cooper and H.Y. Lam, On the Diophantine equation $n^2 = x^2 + by^2 + cz^2$, J. Number Theory 133(2013), 719-737.
- [9] L.E. Dickson, History of the Theory of Numbers, Vol. II, Carnegie Institute of Washington, Washington D.C., 1923. Reprinted by AMS Chelsea, 1999.
- [10] X.J. Guo, Y.Z. Peng and H.R. Qin, On the representation numbers of ternary quadratic forms and modular forms of weight 3/2, J. Number Theory **140** (2014), 235-266.
- [11] W. Hürlimann, Cooper and Lam's conjecture for generalized Bell ternary quadratic forms, J. Number Theory 158(2016), 23-32.
- [12] B.W. Jones, *The Arithmetic Theory of Quadratic Forms*, Carus Mathematical Monographs, Vol.10, Mathematical Association of America, 1950.
- [13] G. Köhler, On two of Liouville's quaternary forms, Arch. Math. 54(1990), 465-473.
- [14] G. Köhler, Eta Products and Theta Series Identities, Springer, Berlin, 2011.
- [15] Z.H. Sun, Binary quadratic forms and sums of triangular numbers, Acta Arith. 146(2011), 257-297.

- [16] Z.H. Sun, Some relations between t(a, b, c, d; n) and N(a, b, c, d; n), Acta Arith. 175(2016), 269-289.
- [17] E.X.W. Xia and Z.X. Zhong, Proofs of some conjectures of Sun on the relations between N(a, b, c, d; n) and t(a, b, c, d; n), J. Math. Anal. Appl. **463**(2018), 1-18.
- [18] X.M. Yao, The relations between N(a, b, c, d; n) and t(a, b, c, d; n) and (p, k)parametrization of theta functions, J. Math. Anal. Appl. **453**(2017), 125-143.
- [19] D. Ye, Representation of squares by certain ternary quadratic forms, Integers 14(2014), #A52.
- [20] M. Wang and Z.H. Sun, On the number of representations of n as a linear combination of four triangular numbers II, Int. J. Number Theory 13(2017), 593-617.
- [21] K.S. Williams, Number Theory in the Spirit of Liouville, Cambridge Univ. Press, New York, 2011.