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Abstract. Let p be an odd prime, and a, b be two integers. It is the purpose of the paper
to determine the values of u(p±1)/2(a, b) (mod p), where {un(a, b)} is the Lucas sequence

given by u0(a, b) = 0, u1(a, b) = 1 and un+1(a, b) = bun(a, b) − aun−1(a, b) (n > 1). In

the case a = −c2, a reciprocity law is established. As applications we obtain the criteria for

p | u p−1
4

(a, b) (if p ≡ 1 (mod 4)) and for k ∈ Q0(p) and k ∈ Q1(p), where Q0(p) and Q1(p)

are defined as in [10].

1.Introduction. Let a and b be two real numbers. The Lucas sequences {un(a, b)} and
{vn(a, b)} are defined as follows:

(1.1)
u0(a, b) = 0, u1(a, b) = 1,

un+1(a, b) = bun(a, b)− aun−1(a, b) (n > 1);

(1.2)
v0(a, b) = 2, v1(a, b) = b,

vn+1(a, b) = bvn(a, b)− avn−1(a, b) (n > 1).

It is well known that

(1.3)
un(a, b) =

1√
b2 − 4a

((b +
√

b2 − 4a

2

)n

−
(b−√b2 − 4a

2

)n
)

(b2 − 4a 6= 0)

and

(1.4) vn(a, b) =
(b +

√
b2 − 4a

2

)n

+
(b−√b2 − 4a

2

)n

.
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Suppose that p is an odd prime. For two integers a and b with p - a, it is known that
(see [2],[5])

u
p−( b2−4a

p )
(a, b) ≡ 0 (mod p) and up(a, b) ≡ (b2 − 4a

p

)
(mod p),

where
( ·

p

)
is the Legendre symbol.

Let {Fn} be the Fibonacci sequence defined by Fn = un(−1, 1), and let p 6= 5 be an
odd prime. In [14] we determined F(p±1)/2 (mod p) by proving that

(1.5) F p−( 5
p

)

2

≡
{

0 (mod p) if p ≡ 1 (mod 4),

2(−1)[(p+5)/10]
(

5
p

)
5(p−3)/4 (mod p) if p ≡ 3 (mod 4)

and

(1.6) F p+( 5
p

)

2

≡
{

(−1)[(p+5)/10]
(

5
p

)
5(p−1)/4 (mod p) if p ≡ 1 (mod 4),

(−1)[(p+5)/10]5(p−3)/4 (mod p) if p ≡ 3 (mod 4),

where [·] is the greatest integer function.
In [7] the author determined the values of P(p±1)/2 (mod p) (The sequence {Pn} is the

Pell sequence defined by Pn = un(−1, 2).) by proving that

(1.7) P p−( 2
p

)

2

≡
{

0 (mod p) if p ≡ 1 (mod 4),

(−1)[(p+5)/8]2(p−3)/4 (mod p) if p ≡ 3 (mod 4)

and

(1.8) P p+( 2
p

)

2

≡ (−1)[(p+1)/8]2[p/4] (mod p).

Suppose p - a(b2 − 4a),
(

a
p

)
= 1 and m2 ≡ a (mod p). In [8] the author showed that

(1.9) u p+1
2

(a, b) ≡
{ (

b−2m
p

)
(mod p) if

(
b2−4a

p

)
= 1,

0 (mod p) if
(

b2−4a
p

)
= −1

and

(1.10) u p−1
2

(a, b) ≡
{

0 (mod p) if
(

b2−4a
p

)
= 1,

1
m

(
b−2m

p

)
(mod p) if

(
b2−4a

p

)
= −1.

In this paper we will determine u(p±1)/2(a, b) (mod p) and v(p±1)/2(a, b) (mod p) on the
condition that

(
4a−b2

p

)
= 1 or

(−a
p

)
= 1. In the case a = −c2, the following reciprocity

law is established.
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(1.11) Let p be an odd prime such that p - c(b2 +4c2), and un = un(−c2, b). Then there
is a unique element δp ∈ {1,−1} such that

u
(p−( b2+4c2

p ))/2
≡

{
0 (mod p) if p ≡ 1 (mod 4),

2cpδp(b2 + 4c2)
p−3
4 (mod p) if p ≡ 3 (mod 4)

and

u
(p+( b2+4c2

p ))/2
≡





1
cp

δp(b2 + 4c2)
p−1
4 (mod p) if p ≡ 1 (mod 4),

b
cp

δp

(
b2+4c2

p

)
(b2 + 4c2)

p−3
4 (mod p) if p ≡ 3 (mod 4),

where

cp =

{
1 if

(
b2+4c2

p

)
= 1,

c if
(

b2+4c2

p

)
= −1.

Furthermore, if q is also an odd prime satisfying q - c and p ≡ ±q (mod (3− (−1)b)(b2 +
4c2)), then δp = δq.

As an application we obtain the criteria for p | u p−1
4

(a, b) (if p ≡ 1 (mod 4) is a prime).
In particular we have the following result.

(1.12) Let p ≡ 1 (mod 4) be a prime, and b be odd with b2+4 6= p. If p = x2+(b2+4)y2

for some integers x and y, then p | u p−1
4

(−1, b) if and only if 4 | xy.
Let Q0(p) and Q1(p) be defined as in [10]. In Section 5 we also obtain the criteria for

k ∈ Q0(p) and k ∈ Q1(p).

2. The case
(

4a−b2

p

)
= 1. Let Z be the set of integers, i =

√−1 and Z[i] = {a + bi |
a, b ∈ Z}. For π = a + bi ∈ Z[i] the norm of π is given by Nπ = ππ = a2 + b2. Here π
means the complex conjugate of π. When b ≡ 0 (mod 2) and a + b ≡ 1 (mod 4) we say
that π is primary.

If π or −π is primary in Z[i], then we may write π = ±π1π2 · · ·πr, where π1, · · · , πr

are primary primes. For α ∈ Z[i] the quartic Jacobi symbol
(

α
π

)
4

is defined by
(

α
π

)
4

=(
α
π1

)
4
· · · ( α

πr

)
4
, where

(
α
πs

)
4

is the quartic residue character of α modulo πs which is given
by

( α

πs

)
4

=

{
0 if πs | α,

ir if α
Nπs−1

4 ≡ ir (mod πs).

According to [3, pp.123,311] or [1, pp.242-243,247] the quartic Jacobi symbol has the
following properties:

(2.1) If a + bi is primary in Z[i], then
( i

a + bi

)
4

= i
a2+b2−1

4 = i
1−a
2 and

( 1 + i

a + bi

)
4

= i
a−b−b2−1

4 .

(2.2) If α and π are relatively prime primary elements in Z[i], then
(α

π

)
4

=
(α

π

)−1

4
=

(α

π

)
4
.
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(2.3) If a + bi and c + di are relatively prime primary elements in Z[i], then

(a + bi

c + di

)
4

= (−1)
a−1
2 · c−1

2

(c + di

a + bi

)
4
.

Now we can give

THEOREM 2.1. Let p be an odd prime, a, b ∈ Z, p - a,
(

4a−b2

p

)
= 1 and s2 ≡

4a− b2 (mod p)(s ∈ Z). Then

u(p−(−1
p ))/2(a, b) ≡





0 (mod p) if
(

a
p

)
= 1,

2
s

(−1
p

)
(−a)

p−(−1
p

)

4
(

s+bi
p

)
4
i (mod p) if

(
a
p

)
= −1

and

u(p+(−1
p ))/2(a, b) ≡

{
(−a)[p/4]

(
s+bi

p

)
4

(mod p) if
(

a
p

)
= 1,

b
s (−a)[p/4]

(
s+bi

p

)
4
i (mod p) if

(
a
p

)
= −1.

Proof. From [10, Lemma 2.1] we see that

(s + bi

p

)2

4
=

(s2 + b2

p

)
=

(4a

p

)
=

(a

p

)
.

Thus, if (a
p ) = 1 then

(
s+bi

p

)
4

=
(

s+bi
p

)−1

4
= ±1, if (a

p ) = −1 then
(

s+bi
p

)
4

= −(
s+bi

p

)−1

4
=

±i.
If p ≡ 1 (mod 4) then t2 ≡ −1 (mod p) for some integer t. Hence, by (1.3) we have

un(a, b) =
1√

b2 − 4a

((b +
√

b2 − 4a

2
)n − (b−√b2 − 4a

2
)n

)

=
2

2n
√

b2 − 4a

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1(

√
b2 − 4a)2r+1

=
2
2n

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1(b2 − 4a)r

≡ 2
2n

[(n−1)/2]∑
r=0

(
n

2r + 1

)
bn−2r−1

(s

t

)2r+1 t

s

=
t

s

{(b + s/t

2
)n − (b− s/t

2
)n

}

=
t

(2t)ns

{
(s + bt)n + (−1)n−1(s− bt)n

}
(mod p).
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Suppose p = x2 + y2 (x, y ∈ Z) with 2|y and x+ y ≡ 1 (mod 4). Clearly we may choose
the sign of y so that y ≡ xt (mod p). For π = x + yi it is easily seen that Nπ = p and
t ≡ y/x ≡ i (mod π). So, by using (2.2) we get

(s + bi

p

)
4

=
(s + bi

π

)
4

(s + bi

π

)
4

=
(s + bi

π

)
4

(s− bi

π

)
4

=
(s + bi

π

)
4

(s− bi

π

)−1

4
≡

(
s + bi

s− bi

) p−1
4

≡
(

s + bt

s− bt

) p−1
4

(mod π).

It then follows that

(s + bt)
p−1
2 ≡ (s2 − b2t2)

p−1
4

(s + bi

p

)
4
≡ (4a)

p−1
4

(s + bi

p

)
4

(mod π)

and so that

(s− bt)
p−1
2 =

(
s2 − b2t2

s + bt

) p−1
2

≡ (4a)
p−1
4

(s + bi

p

)−1

4
(mod π).

Recall that t ≡ i (mod π). By the above we obtain

u p−1
2

(a, b) ≡ t

(2t)
p−1
2 s

{
(s + bt)

p−1
2 − (s− bt)

p−1
2

}

≡ t

s
(−a)

p−1
4

{(s + bi

p

)
4
−

(s + bi

p

)−1

4

}

≡




0 (mod p) if
(

a
p

)
= 1,

i
s (−a)

p−1
4 · 2

(
s+bi

p

)
4

(mod π) if
(

a
p

)
= −1

and
u p+1

2
(a, b) ≡ t

(2t)
p+1
2 s

{
(s + bt)

p+1
2 + (s− bt)

p+1
2

}

≡ (4a)
p−1
4 t

(2t)
p+1
2 s

{
(s + bt)

(s + bi

p

)
4

+ (s− bt)
(s + bi

p

)−1

4

}

≡ 1
2s

(−a)
p−1
4

{
(s + bt)

(s + bi

p

)
4

+ (s− bt)
(s + bi

p

)−1

4

}

≡




(−a)
p−1
4

(
s+bi

p

)
4

(mod π) if
(

a
p

)
= 1,

b
s (−a)

p−1
4

(
s+bi

p

)
4
i (mod π) if

(
a
p

)
= −1.

Since both sides of the above congruences are rational, the congruences are also true when
π is replaced by p(= Nπ).
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If p ≡ 3 (mod 4), one can similarly prove that

un(a, b) ≡ i

(2i)ns

{
(s + bi)n + (−1)n−1(s− bi)n

}
(mod p).

Since (s + bi)p ≡ s− bi (mod p) we see that

(s + bi

p

)
4
≡ (s + bi)

p(p+1)
4 − p+1

4 ≡
(

s− bi

s + bi

)(p+1)/4

(mod p).

Thus,

(s + bi)
p+1
2 ≡ (s2 + b2)

p+1
4

(s + bi

p

)−1

4
≡ (4a)

p+1
4

(s + bi

p

)−1

4
(mod p)

and
(s− bi)

p+1
2 ≡ (s2 + b2)

p+1
4

(s + bi

p

)
4
≡ (4a)

p+1
4

(s + bi

p

)
4

(mod p).

Hence,

u p+1
2

(a, b) ≡ i

(2i)
p+1
2 s

(4a)
p+1
4

{(s + bi

p

)−1

4
−

(s + bi

p

)
4

}

=





0 (mod p) if
(

a
p

)
= 1,

− 2
s (−a)

p+1
4

(
s+bi

p

)
4
i (mod p) if

(
a
p

)
= −1

and
u p−1

2
(a, b) ≡ i

(2i)
p−1
2 s

{
(s + bi)

p−1
2 + (s− bi)

p−1
2

}

≡ i

(2i)
p−1
2 s

(4a)
p+1
4

{(s + bi

p

)−1

4

1
s + bi

+
(s + bi

p

)
4

1
s− bi

}

≡




(−a)
p−3
4

(
s+bi

p

)
4

(mod p) if
(

a
p

)
= 1,

b
s (−a)

p−3
4

(
s+bi

p

)
4
i (mod p) if

(
a
p

)
= −1.

Combining the above we obtain the result.

COROLLARY 2.1. Let p be an odd prime, a, b ∈ Z, p - a,
(

4a−b2

p

)
= 1 and s2 ≡

4a− b2 (mod p)(s ∈ Z). Then

v(p−(−1
p ))/2(a, b) ≡





2(−a)
p−(−1

p
)

4
(

s+bi
p

)
4

(mod p) if
(

a
p

)
= 1,

0 (mod p) if
(

a
p

)
= −1

and

v(p+(−1
p ))/2(a, b) ≡

{ (−1
p

)
(−a)[p/4]b

(
s+bi

p

)
4

(mod p) if
(

a
p

)
= 1,

−(−1
p

)
(−a)[p/4]s

(
s+bi

p

)
4
i (mod p) if

(
a
p

)
= −1.
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Proof. Let un = un(a, b) and vn = vn(a, b). It follows from (1.3) and (1.4) that
un = 1

b2−4a (2vn+1 − bvn) and vn = 2un+1 − bun = bun − 2aun−1 (n ≥ 1). Thus,

(2.4) v p−1
2

= 2u p+1
2
− bu p−1

2
and v p+1

2
= bu p+1

2
− 2au p−1

2
.

This together with Theorem 2.1 proves the corollary.

3. The case
(−a

p

)
= 1.

LEMMA 3.1. Let p be an odd prime, a, b ∈ Z, and a′ = (b2 − 4a)/4. Then

u p−1
2

(a, b) ≡ −(2
p

)
u p−1

2
(a′, b) (mod p);(i)

u p+1
2

(a, b) ≡ 1
2
(2
p

)
v p−1

2
(a′, b) (mod p);(ii)

v p−1
2

(a, b) ≡ 2
(2
p

)
u p+1

2
(a′, b) (mod p);(iii)

v p+1
2

(a, b) ≡ (2
p

)
v p+1

2
(a′, b) (mod p).(iv)

Proof. Using induction one can easily prove the following known result (see [6]):

un+1(a, b) =
[n/2]∑
r=0

(
n− r

r

)
(−a)rbn−2r (n > 0).

For r = 0, 1, · · · , [p−1
4 ] it is clear that

(p−1
2 − r

r

)/(p−1
2

2r

)
=

(2r)!
p−1
2 · p−3

2 · · · (p−1
2 − r + 1) · r!

≡ (−2)r · (2r)!
1 · 3 · · · (2r − 1) · r! = (−4)r (mod p).

Thus,

u(p+1)/2(a, b) =
[(p−1)/4]∑

r=0

(p−1
2 − r

r

)
(−a)rb

p−1
2 −2r

≡
[(p−1)/4]∑

r=0

(p−1
2

2r

)
(b2 − 4a′)rb

p−1
2 −2r

=
1
2

{(
b +

√
b2 − 4a′

) p−1
2

+
(
b−

√
b2 − 4a′

) p−1
2

}

= 2
p−1
2 −1v(p−1)/2(a′, b) ≡

1
2
(2
p

)
v(p−1)/2(a′, b) (mod p)
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and hence

u(p+1)/2(a′, b) ≡
1
2
(2
p

)
v(p−1)/2((b2 − 4a′)/4, b) (mod p).

That is,

v(p−1)/2(a, b) ≡ 2
(2
p

)
u(p+1)/2(a′, b) (mod p).

If p - b, by using (2.4) and the above we derive that

u(p−1)/2(a, b) =
1
b
(2u(p+1)/2(a, b)− v(p−1)/2(a, b))

≡ 1
b

(2
p

)
v(p−1)/2(a′, b)−

2
b

(2
p

)
u(p+1)/2(a′, b)

= −(2
p

)
u(p−1)/2(a′, b) (mod p).

If p | b, by using (1.3) we also have

u p−1
2

(a, b) ≡ 1
2
√−a

{
(
√−a)

p−1
2 − (−√−a)

p−1
2

}

= −(2
p

) · 1
2
√

a

{
(
√

a)
p−1
2 − (−√a)

p−1
2

}

≡ −(2
p

)
u p−1

2
(a′, b) (mod p).

Hence

v(p+1)/2(a, b) = bu(p+1)/2(a, b)− 2au(p−1)/2(a, b)

≡ b

2
(2
p

)
v(p−1)/2(a′, b) + 2a

(2
p

)
u(p−1)/2(a′, b)

=
(2
p

)
v(p+1)/2(a′, b) (mod p).

The proof is now complete.
We are now ready to give

THEOREM 3.1. Let p be an odd prime, a, b ∈ Z, p - a(b2 − 4a),
(−a

p

)
= 1 and

c2 ≡ −a (mod p) (c ∈ Z).
(i) If p ≡ 1 (mod 4) then

u(p−1)/2(a, b) ≡




0 (mod p) if
(

b2−4a
p

)
= 1,

− (b2−4a)
p−1
4

c

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1
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and

u(p+1)/2(a, b) ≡




(b2 − 4a)
p−1
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

0 (mod p) if
(

b2−4a
p

)
= −1.

(ii) If p ≡ 3 (mod 4) then

u(p−1)/2(a, b) ≡




2(b2 − 4a)
p−3
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

b
c (b2 − 4a)

p−3
4

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1

and

u(p+1)/2(a, b) ≡




b(b2 − 4a)
p−3
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

−2c(b2 − 4a)
p−3
4

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1.

Proof. Let a′ ∈ Z be such that a′ ≡ (b2 − 4a)/4 (mod p). Then clearly (2c)2 ≡ −4a ≡
4a′ − b2 (mod p). Also,

un(a′, b) ≡ un((b2 − 4a)/4, b) (mod p) and vn(a′, b) ≡ vn((b2 − 4a)/4, b) (mod p).

Now, using Theorem 2.1 and Corollary 2.1 for the Lucas sequence {un(a′, b)}, and then
applying Lemma 3.1 and the fact that

(2c + bi

p

)
4

=
( i

p

)
4

(b− 2ci

p

)
4

=
(2
p

)(b− 2ci

p

)
4

we obtain the result.
Remark 3.1 Suppose that p is a prime of the form 4n+3, b, c ∈ Z, p - c and

(
b2+4c2

p

)
= −1.

In [11] the author proved that

(u p+1
2

(−c2, b)

p

)
= −( c

p

)(b + 2ci

p

)
4
i.

Now, it is an easy consequence of Theorem 3.1.

Corollary 3.1. Let p be an odd prime, a, b ∈ Z, p - a(b2 − 4a),
(−a

p

)
= 1 and c2 ≡

−a (mod p) (c ∈ Z).
(i) If p ≡ 1 (mod 4) then

v(p−1)/2(a, b) ≡




2(b2 − 4a)
p−1
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

b
c (b2 − 4a)

p−1
4

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1
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and

v(p+1)/2(a, b) ≡




b(b2 − 4a)
p−1
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

−2c(b2 − 4a)
p−1
4

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1.

(ii) If p ≡ 3 (mod 4) then

v(p−1)/2(a, b) ≡




0 (mod p) if
(

b2−4a
p

)
= 1,

− 1
c (b2 − 4a)

p+1
4

(
b−2ci

p

)
4
i (mod p) if

(
b2−4a

p

)
= −1

and

v(p+1)/2(a, b) ≡




(b2 − 4a)
p+1
4

(
b−2ci

p

)
4

(mod p) if
(

b2−4a
p

)
= 1,

0 (mod p) if
(

b2−4a
p

)
= −1.

Proof. This is immediate from (2.4) and Theorem 3.1.

4. The reciprocity law for u p±1
2

(−c2, b) (mod p).

Lemma 4.1. Let p and q be two positive odd numbers, b, c ∈ Z, gcd(b2 +4c2, pq) = 1 and
p ≡ ±q (mod (3− (−1)b)(b2 + 4c2)). Then

(b + 2ci

p

)
4

=
(b + 2ci

q

)
4
.

Proof. If b ≡ 1 (mod 2), then (−1)(b−1)/2+c(b+2ci) is primary. Using (2.3) we see that

(b + 2ci

p

)
4

=
( (−1)(b−1)/2+c(b + 2ci)

(−1)(p−1)/2p

)
4

=
( (−1)(p−1)/2p

(−1)(b−1)/2+c(b + 2ci)

)
4

=
( (−1)(q−1)/2q

(−1)(b−1)/2+c(b + 2ci)

)
4

=
(b + 2ci

q

)
4
.

If b ≡ 0 (mod 2), then clearly

(3− (−1)b)(b2 + 4c2) = 2(b2 + 4c2) = 8((b/2)2 + c2).

Thus, according to the proof of Theorem 2.1 of [10] we get

(b + 2ci

p

)
4

=
(b/2 + ci

p

)
4

=
(b/2 + ci

q

)
4

=
(b + 2ci

q

)
4
.

This completes the proof.
Now we present the following reciprocity law for u p±1

2
(−c2, b) (mod p).

10



THEOREM 4.1. Let b, c ∈ Z, u0 = 0, u1 = 1, un+1 = bun + c2un−1 (n > 1), and let
p be an odd prime such that p - c(b2 + 4c2). Then there is a unique element δp ∈ {1,−1}
such that

u
(p−( b2+4c2

p ))/2
≡

{
0 (mod p) if p ≡ 1 (mod 4),

2cpδp(b2 + 4c2)
p−3
4 (mod p) if p ≡ 3 (mod 4)

and

u
(p+( b2+4c2

p ))/2
≡





1
cp

δp(b2 + 4c2)
p−1
4 (mod p) if p ≡ 1 (mod 4),

b
cp

δp

(
b2+4c2

p

)
(b2 + 4c2)

p−3
4 (mod p) if p ≡ 3 (mod 4),

where

cp =

{
1 if

(
b2+4c2

p

)
= 1,

c if
(

b2+4c2

p

)
= −1.

Furthermore, if q is also an odd prime satisfying q - c and p ≡ ±q (mod (3− (−1)b)(b2 +
4c2)), then δp = δq. Moreover, we may take

(4.1) δp =





(
b+2ci

p

)
4

if
(

b2+4c2

p

)
= 1,

(
b+2ci

p

)
4
i if

(
b2+4c2

p

)
= −1.

Proof. Let δp be defined by (4.1). Since
(

b+2ci
p

)2

4
= ( b2+4c2

p ) by [10, Lemma 2.1] we see
that δp ∈ {1,−1} and

(b− 2ci

p

)
4

=
(b + 2ci

p

)
4

=
(b + 2ci

p

)−1

4
=

(b + 2ci

p

)3

4
=

(b + 2ci

p

)
4

(b2 + 4c2

p

)
.

So

δp =





(
b−2ci

p

)
4

if
(

b2+4c2

p

)
= 1,

−
(

b−2ci
p

)
4
i if

(
b2+4c2

p

)
= −1.

Now putting a = −c2 in Theorem 3.1 we see that the congruences in Theorem 4.1 hold.
If q is also an odd prime satisfying q - c and p ≡ ±q (mod (3− (−1)b)(b2 + 4c2)), then(

b+2ci
p

)
4

=
(

b+2ci
q

)
4

by Lemma 4.1. Since
(

b+2ci
p

)2

4
= ( b2+4c2

p ) and
(

b+2ci
q

)2

4
= ( b2+4c2

q ) we
see that δp = δq. Hence the theorem is proved.
Remark 4.1 (1) We note that the appearance of all the zero-values modulo p in Theorems
2.1, 3.1 and 4.1 can be inferred from the following result given in [4, p.441], which is due
to D.H.Lehmer. If a, b ∈ Z, (a

p ) = 1 and p - b2 − 4a, then

u
(p−( b2−4a

p ))/2
(a, b) ≡ 0 (mod p).
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(2) In a similar way one can establish a reciprocity law for the Lucas sequence {un((b2+
c2)/4, b)}, where b and c are integers.

(3) Suppose that p is an odd prime and that a and b are integers. For the values of
u(p−( p

3 ))/3(a, b) (mod p) one may consult [9] and [13].
Let δp and cp be defined as in Theorem 4.1. From Theorem 4.1 we see that

(4.2) δp ≡





cp(b2 + 4c2)−
p−1
4 u

p+( b2+4c2
p

)

2

(−c2, b) (mod p) if p ≡ 1 (mod 4),

cp

b (b2 + 4c2)
p+1
4 u

p+( b2+4c2
p

)

2

(−c2, b) (mod p) if p ≡ 3 (mod 4).

Thus, putting b = c = 1 we find δ3 = −1, δ7 = 1, δ11 = −1 and δ19 = 1. Hence

δp =





δ3 = −1 if p ≡ ±3 (mod 20),
δ7 = 1 if p ≡ ±7 (mod 20),
δ11 = −1 if p ≡ ±9 (mod 20),
δ19 = 1 if p ≡ ±1 (mod 20)

= (−1)[
p+5
10 ]

(p

5
)
.

Applying Theorem 4.1 gives (1.5) and (1.6).
Taking b = 2 and c = 1 in (4.2) we find δ3 = 1, δ5 = −1, δ7 = −1 and δ17 = 1. Hence

δp =





δ3 = 1 if p ≡ ±3 (mod 16),
δ5 = −1 if p ≡ ±5 (mod 16),
δ7 = −1 if p ≡ ±7 (mod 16),
δ17 = 1 if p ≡ ±1 (mod 16)

= (−1)[
p+3
8 ].

Using Theorem 4.1 yields (1.7) and (1.8).

Corollary 4.1. Let u0 = 0, u1 = 1, un+1 = 3un + un−1 (n > 1), and let p 6= 3, 13 be an
odd prime. Then

u(p−( 13
p ))/2 ≡

{
0 (mod p) if p ≡ 1 (mod 4),

2δp · 13
p−3
4 (mod p) if p ≡ 3 (mod 4)

and

u(p+( 13
p ))/2 ≡

{
δp · 13

p−1
4 (mod p) if p ≡ 1 (mod 4),

3δp

(
13
p

) · 13
p−3
4 (mod p) if p ≡ 3 (mod 4),

where

δp =
{

1 if p ≡ ±1,±5,±7,±9,±11,±23 (mod 52),
−1 if p ≡ ±3,±15,±17,±19,±21,±25 (mod 52).

Proof. Putting b = 3 and c = 1 in (4.2) we see that

δ53 = δ5 = δ7 = δ43 = δ11 = δ23 = 1 and δ101 = δ37 = δ17 = δ19 = δ31 = δ79 = −1.

Thus, applying Theorem 4.1 we obtain the result.
12



5. The criteria for k ∈ Qr(p) and p | u p−1
4

(a, b).
For positive integer p let Sp denote the set of those rational numbers whose denominator

is prime to p. Following [10] define

Qr(p) =
{

k
∣∣ (k + i

p

)
4

= ir, k ∈ Sp

}
for r = 0, 1, 2, 3.

Now, using Theorem 3.1 we give the following criteria for k ∈ Q0(p) and k ∈ Q1(p).

Theorem 5.1. Let p be an odd prime, and k ∈ Z with k2 6≡ 0,±1 (mod p). Then
(i) k ∈ Q0(p) if and only if

u p+1
2

(−1, 2k) ≡
{

(−k2 − 1)
p−1
4 (mod p) if p ≡ 1 (mod 4),

−k(−k2 − 1)
p−3
4 (mod p) if p ≡ 3 (mod 4).

(ii) k ∈ Q1(p) if and only if

u p−1
2

(−1, 2k) ≡
{
−(−k2 − 1)

p−1
4 (mod p) if p ≡ 1 (mod 4),

−k(−k2 − 1)
p−3
4 (mod p) if p ≡ 3 (mod 4).

Proof. Let a = −1, b = 2k and c = −1. Then clearly

b2 − 4a = 4(k2 + 1) and
(b− 2ci

p

)
4

=
(2k + 2i

p

)
4

=
(k + i

p

)
4
.

Note that 2(p−1)/2 ≡ ( 2
p ) = (−1)[

p+1
4 ] (mod p) and

(
k+i
p

)2

4
= (k2+1

p ) by [10, Lemma 2.1].
Applying the above and Theorem 3.1 we obtain the desired result.

Let p ≡ 1 (mod 4) be a prime, a, b ∈ Z, p - a(b2−4a) and (a
p ) = ( b2−4a

p ) = 1. It follows
from Remark 4.1 that p | u p−1

2
(a, b). Since u2n(a, b) = un(a, b)vn(a, b) (see [5]) we see that

p | u p−1
4

(a, b) or p | v p−1
4

(a, b).
Now we give the criteria for p | u p−1

4
(a, b).

Theorem 5.2. Let p ≡ 1 (mod 4) be a prime, a, b ∈ Z, p - a(b2−4a), (−a
p ) = ( 4a−b2

p ) = 1,
c2 ≡ −a (mod p) and s2 ≡ 4a−b2 (mod p). Then the following statements are equivament:

p | u p−1
4

(a, b);(i)
(s

p

)
=

( c

p

)(b + 2ci

p

)
4
;(ii)

(b + si

p

)
4

= (−1)
p−1
4

(s + bi

p

)
4

= 1.(iii)

Proof. From [9, Lemma 6.1] we know that p | un(a, b) if and only if v2n(a, b) ≡
2an (mod p). So we have

p | u p−1
4

(a, b) ⇐⇒ v p−1
2

(a, b) ≡ 2a
p−1
4 (mod p).
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Hence, using Corollary 3.1 and the fact that

(4a− b2)(p−1)/4 ≡ s(p−1)/2 ≡ (s

p

)
(mod p)

we obtain

p | u p−1
4

(a, b) ⇐⇒ 2(b2 − 4a)
p−1
4

(b− 2ci

p

)
4
≡ 2a

p−1
4 (mod p)

⇐⇒ (4a− b2)
p−1
4

(b− 2ci

p

)
4
≡ (−a)

p−1
4 ≡ ( c

p

)
(mod p)

⇐⇒ (s

p

)
=

( c

p

)(b− 2ci

p

)−1

4
=

( c

p

)(b + 2ci

p

)
4
.

So (i) is equivalent to (ii)
Since

(
a
p

)
=

(−a
p

)
= 1, in view of Corollary 2.1 we find that

p | u p−1
4

(a, b) ⇐⇒ v p−1
2

(a, b) ≡ 2a
p−1
4 (mod p)

⇐⇒ 2(−a)
p−1
4

(s + bi

p

)
4
≡ 2a

p−1
4 (mod p)

⇐⇒
(s + bi

p

)
4

= (−1)
p−1
4

⇐⇒
(s− bi

p

)
4

=
(s + bi

p

)−1

4
= (−1)

p−1
4

⇐⇒
(b + si

p

)
4

=
( i

p

)
4

(s− bi

p

)
4

=
( i

p

)
4
(−1)

p−1
4 = 1.

Thus, (i) is equivalent to (iii). Hence the proof is complete.
Using Theorem 5.2 we can prove

Theorem 5.3. Let p ≡ 1 (mod 4) be a prime, and let b be odd with b2 + 4 6= p. If
p = x2 + (b2 + 4)y2 for some x, y ∈ Z, then p | u p−1

4
(−1, b) if and only if 4 | xy.

Proof. Clearly p - b2 + 4 and (x/y)2 ≡ −(b2 + 4) (mod p). Suppose s2 ≡ −(b2 +
4) (mod p), x = 2αx0(2 - x0) and y = 2βy0(2 - y0). Then s ≡ ±x/y (mod p) and so
( s

p ) = (x
p )(y

p ). Using the Jacobi symbol we see that

(b + 2i

p

)
4

=
( (−1)(b+1)/2(b + 2i)

p

)
4

=
( p

(−1)(b+1)/2(b + 2i)

)
4

=
(x2 + (b2 + 4)y2

b + 2i

)
4

=
( x2

b + 2i

)
4

=
( 2

b + 2i

)2α

4

( x2
0

b + 2i

)
4

=
( i3(1 + i)2

b + 2i

)2α

4

(b + 2i

|x0|
)2

4
=

( i

b + 2i

)2α

4

(b2 + 4
|x0|

)

(by using [10, Lemma 2.1])

= (−1)α
( x0

b2 + 4
)

(by (2.1))

14



and

(s

p

)
=

(x

p

)(y

p

)
=

(2α+β

p

)(x0

p

)(y0

p

)
=

(2
p

)α+β( p

|x0|
)( p

|y0|
)

=
(2
p

)α+β(x2 + (b2 + 4)y2

|x0|
)(x2 + (b2 + 4)y2

|y0|
)

=
(2
p

)α+β(b2 + 4
|x0|

)
= (−1)

p−1
4 (α+β)

( x0

b2 + 4
)
.

Hence, by Theorem 5.2 we have

p | u p−1
4

(−1, b) ⇐⇒ (s

p

)
=

(b + 2i

p

)
4
⇐⇒ (−1)

p−1
4 (α+β) = (−1)α.

If α = 0, then 2 - x and so 2 | y. Clearly,

p = x2 + (b2 + 4)y2 ≡ 1 + 5y2 ≡ 3− 2(−1)y/2 (mod 8).

So we have (−1)
p−1
4 β = 1 if and only if 4 | y.

If β = 0, then 2 - y and so 2 | x. Since

p = x2 + (b2 + 4)y2 ≡ x2 + 5y2 ≡ x2 + 5 ≡ 3 + 2(−1)x/2 (mod 8)

we see that (−1)
p−1
4 α = (−1)α if and only if 4 | x.

Observe that x 6≡ y (mod 2) and hence α = 0 or β = 0. By the above we get

p | u p−1
4

(−1, b) ⇐⇒ (−1)
p−1
4 (α+β) = (−1)α ⇐⇒ 4 | x or 4 | y ⇐⇒ 4 | xy.

This proves the theorem.
Remark 5.1 Let {Fn} be the Fibonacci sequence, and let p ≡ 1, 9 (mod 20) be a prime.
Then clearly p = x2 + 5y2 for some x, y ∈ Z. Hence, it follows from Theorem 5.3 that
p | F(p−1)/4 if and only if 4 | xy. This result was given in [14].

Corollary 5.1. Let p ≡ 1 (mod 4) be a prime, and b be odd with b2 + 4 6= p. If p is
represented by x2 + 16(b2 + 4)y2 or 16x2 + (b2 + 4)y2, then p | u p−1

4
(−1, b).

Corollary 5.2. Let p 6= 13 be a prime of the form 4n + 1. Then p | u p−1
4

(−1, 3) if and
only if p can be represented by x2 + 208y2 or 16x2 + 13y2.

Proof. Set un = un(−1, 3). If p | u p−1
4

, then p | u p−1
2

since u p−1
2

= u p−1
4

v p−1
4

(−1, 3)
(see [5]). Thus, applying Theorem 3.1 we see that (13

p ) = 1. If p = x2 + 208y2 or
16x2 + 13y2(x, y ∈ Z), then again (13

p ) =
(−13

p

)
= 1.

Now assume
(

13
p

)
= 1. Since p ≡ 1 (mod 4), from the theory of binary quadratic forms

we know that p = x2 + 13y2 for some x, y ∈ Z. Hence, applying Theorem 5.3 we get

p | u p−1
4

⇐⇒ p = x2 + 13y2 with 4 | xy ⇐⇒ p = x2 + 16 · 13y2 or 16x2 + 13y2.
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This is the result.
Remark 5.2 Let p ≡ 1 (mod 4) be a prime, and b ∈ Z be with ( b2+4

p ) = 1. Then
p | u p−1

4
(−1, b) if and only if p is represented by one of the primitive (integral) binary

quadratic forms Ax2+2Bxy+Cy2 of discriminant −4(3−(−1)b)2(b2+4) with the condition
that 2 - A and

( (3−(−1)b)b+Bi
A

)
4

= 1. This result will be published in [12].
In the end we pose the following two conjectures. The two conjectures have been

checked for all primes less than 3000.
Conjecture 5.1 (see [8]) Let p ≡ 3 (mod 8) be a prime, and hence p = x2 + 2y2 for
some integers x and y. If Pn is the Pell sequence given by P0 = 0, P1 = 1 and Pn+1 =
2Pn + Pn−1(n ≥ 1), then

P p+1
4
≡ p− (−1)

y2−1
8

2
(mod p).

Conjecture 5.2 Let p ≡ 3, 7 (mod 20) be a prime, and hence 2p = x2 + 5y2 for some
integers x and y. If Fn is the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+1 =
Fn + Fn−1(n ≥ 1), then

F p+1
4
≡

{
2(−1)[

p−5
10 ] · 10

p−3
4 (mod p) if y ≡ ±p−1

2 (mod 8),

−2(−1)[
p−5
10 ] · 10

p−3
4 (mod p) if y 6≡ ±p−1

2 (mod 8).
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