Acta Arith. 159(2013), 89-100.
On the quartic character of quadratic units

ZHI-Hong Sun
School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, PR China
E-mail: zhihongsun@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let \mathbb{Z} be the set of integers, and let (m, n) be the greatest common divisor of integers m and n. Let p be a prime of the form $4 k+1$ and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$, $d=2^{r} d_{0}$ and $c \equiv d_{0} \equiv 1(\bmod 4)$. In the paper we determine $\left(\frac{b+\sqrt{b^{2}+4^{\alpha}}}{2}\right)^{\frac{p-1}{4}}(\bmod p)$ for $p=x^{2}+\left(b^{2}+4^{\alpha}\right) y^{2}(b, x, y \in \mathbb{Z}, 2 \nmid b)$, and $\left(2 a+\sqrt{4 a^{2}+1}\right)^{\frac{p-1}{4}}(\bmod p)$ for $p=x^{2}+\left(4 a^{2}+1\right) y^{2}(a, x, y \in \mathbb{Z})$ on condition that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. As applications we obtain the congruence for $U_{(p-1) / 4}(\bmod p)$ and the criterion for $p \mid U_{(p-1) / 8}\left(\right.$ if $p \equiv 1(\bmod 8)$), where $\left\{U_{n}\right\}$ is the Lucas sequence given by $U_{0}=0, U_{1}=1$ and $U_{n+1}=b U_{n}+U_{n-1}(n \geq 1)$, and $b \not \equiv 2(\bmod 4)$. Hence we partially solve some conjectures that we posed in 2009.

MSC: Primary 11A15, Secondary 11A07, 11B39, 11E25
Keywords: Congruence; quartic residue; Lucas sequence

1. Introduction.

Let \mathbb{Z} be the set of integers and $i=\sqrt{-1}$. For any odd prime p and $a \in \mathbb{Z}$ let $\left(\frac{a}{p}\right)$ be the Legendre symbol. For $a, b, c, d \in \mathbb{Z}$ with $2 \nmid c$ and $2 \mid d$, one can define the quartic Jacobi symbol $\left(\frac{a+b i}{c+d i}\right)_{4}$ as in [S4]. From [IR] we know that $\overline{\left(\frac{a+b i}{c+d i}\right)_{4}}=$ $\left(\frac{a-b i}{c-d i}\right)_{4}=\left(\frac{a+b i}{c+d i}\right)_{4}^{-1}$, where \bar{x} means the complex conjugate of x. For the properties of the quartic Jacobi symbol, see [IR], [BEW], [S2] and [S4]. In particular, for $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$,

$$
\begin{equation*}
\left(\frac{i}{a+b i}\right)_{4}=(-1)^{\frac{a^{2}-1}{8}} i^{\left(1-(-1)^{\frac{b}{2}}\right) / 2} \quad \text { and } \quad\left(\frac{-1}{a+b i}\right)_{4}=(-1)^{\frac{b}{2}} . \tag{1.1}
\end{equation*}
$$

Let $D>1$ be a squarefree integer, and $\varepsilon_{D}=(m+n \sqrt{D}) / 2$ be the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{D})$ (where \mathbb{Q} is the set of rational numbers). Suppose that $p \equiv 1(\bmod 4)$ is a prime such that $\left(\frac{D}{p}\right)=1$. As $\frac{m+n \sqrt{D}}{2} \cdot \frac{m-n \sqrt{D}}{2}=\frac{m^{2}-D n^{2}}{4}=$ ± 1, we may introduce the Legendre symbol $\left(\frac{\varepsilon_{D}}{p}\right)$. When the norm $N\left(\varepsilon_{D}\right)=\left(m^{2}-\right.$ $\left.D n^{2}\right) / 4$ equals -1 , many mathematicians tried to characterize those primes p for which ε_{D} is a quadratic residue modulo p (that is, $\left(\frac{\varepsilon_{D}}{p}\right)=1$), see [Lem]. This
general problem was finally solved by the author in [S2, S3]. The next natural problem is to determine whether ε_{D} is a quartic residue modulo p when $\left(\frac{\varepsilon_{D}}{p}\right)=1$. When the norm $N\left(\varepsilon_{D}\right)=\left(m^{2}-D n^{2}\right) / 4$ equals 1 , the problem was solved by the author in $[\mathrm{S} 2]$. Now we assume that $N\left(\varepsilon_{D}\right)=\left(m^{2}-D n^{2}\right) / 4=-1$. Using the cyclotomic numbers of order 4 , in 1974 E . Lehmer [L] proved that for a prime $p=8 k+1=x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}, \varepsilon_{2}=1+\sqrt{2}$ is a quartic residue of p if and only if $4 \mid y$ and $\frac{p-1}{8} \equiv \frac{y}{4}(\bmod 2)$. See also [S4, Corollary 3.1]. If $p \neq 17$ is a prime of the form $8 k+1$ and so $p=C^{2}+2 D^{2}$ for some $C, D \in \mathbb{Z}$, in [S5, Corollary 3.1] the author showed that $\varepsilon_{17}=4+\sqrt{17}$ is a quartic residue modulo p if and only if $p=x^{2}+17 y^{2}(x, y \in \mathbb{Z})$ and $(-1)^{y}=\left(\frac{2 C-3 D}{17}\right)$.

Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b, p \neq b^{2}+4$ and $p=c^{2}+d^{2}=$ $x^{2}+\left(b^{2}+4\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. If $4 \mid x y$, in [S4, Conjecture 9.5] the author conjectured that

$$
\varepsilon_{b^{2}+4}^{\frac{p-1}{4}}=\left(\frac{b+\sqrt{b^{2}+4}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid x, \tag{1.2}\\ (-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

where [•] is the greatest integer function. For $m, n \in \mathbb{Z}$ let (m, n) be the greatest common divisor of m and n. For $m \in \mathbb{Z}$ with $m=2^{\alpha} m_{0}\left(2 \nmid m_{0}\right)$ we write $2^{\alpha} \| m$. In the paper we use the results in $[\mathrm{S} 4, \mathrm{~S} 6]$ to prove (1.2) under the condition that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. More generally, we determine $\left(\frac{b+\sqrt{b^{2}+4^{\alpha}}}{2}\right)^{\frac{p-1}{4}}(\bmod p)$ for $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4^{\alpha}\right) y^{2}(2 \nmid b)$, see Theorem 2.2. We also determine $\left(2 a+\sqrt{4 a^{2}+1}\right)^{\frac{p-1}{4}}(\bmod p)$ for $p=c^{2}+d^{2}=x^{2}+\left(4 a^{2}+1\right) y^{2}(a \in \mathbb{Z})$, see Corollary 4.1.

For $b, c \in \mathbb{Z}$ the Lucas sequences $\left\{U_{n}(b, c)\right\}$ and $\left\{V_{n}(b, c)\right\}$ are defined by

$$
\begin{align*}
& U_{0}(b, c)=0, U_{1}(b, c)=1 \\
& U_{n+1}(b, c)=b U_{n}(b, c)-c U_{n-1}(b, c)(n \geq 1) \tag{1.3}
\end{align*}
$$

and

$$
\begin{align*}
& V_{0}(b, c)=2, V_{1}(b, c)=b, \\
& V_{n+1}(b, c)=b V_{n}(b, c)-c V_{n-1}(b, c)(n \geq 1) . \tag{1.4}
\end{align*}
$$

Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4\right) y^{2} \neq b^{2}+4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv$ $1(\bmod 4)$. In $[\mathrm{S} 4$, Conjecture 9.4$]$ the author conjectured that for $4 \nmid x y$,

$$
U_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases}(-1)^{\left[\frac{b}{4}\right]+\frac{d}{4}+\frac{x-2}{4}} \frac{2 y}{x}(\bmod p) & \text { if } 2 \| x, \\ (-1)^{\frac{x-1}{2}} \frac{2 d y}{c x}(\bmod p) & \text { if } 2 \| y\end{cases}
$$

and that for $4 \mid x y$,

$$
V_{\frac{p-1}{4}}(b,-1) \equiv\left\{\begin{array}{cl}
-2(-1)^{\left[\frac{b}{4}\right]+\frac{x}{4} \frac{d}{c}(\bmod p)} & \text { if } 4 \mid x \\
2(-1)^{\frac{d+y}{4}}(\bmod p) & \text { if } 4 \mid y \\
2
\end{array}\right.
$$

In the present paper we prove the above conjecture under the condition that $(c, x+$ $d)=1$ or $\left(d_{0}, x+c\right)=1$. We also establish similar results for $U_{\frac{p-1}{4}}(b,-1)(\bmod p)$ and $V_{\frac{p-1}{4}}(b,-1)(\bmod p)$ in the case $b \equiv 0(\bmod 4)$. As a consequence, we obtain a criterion for $p \left\lvert\, U_{\frac{p-1}{8}}(b,-1)\right.$, where $b \in \mathbb{Z}, b \not \equiv 2(\bmod 4)$ and p is a prime of the form $8 k+1$, see Theorems 3.2, 3.4 and 4.2.
2. Congruences for $\left(\frac{b+\sqrt{b^{2}+4^{\alpha}}}{2}\right)^{\frac{p-1}{4}}(\bmod p)$.

Lemma $2.1\left(\left[\mathbf{S} 4\right.\right.$, Corollary 6.1]). Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $c \equiv 1(\bmod 4)$. Let $b \in \mathbb{Z}, 2 \nmid b$ and $p=x^{2}+\left(b^{2}+4\right) y^{2}$ with $x, y \in \mathbb{Z}, x=2^{s} x_{0}, y=2^{t} y_{0}$ and $x_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Then

$$
\begin{aligned}
& \left(\frac{b-\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv \begin{cases}\mp(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{x}{y}(\bmod p) & \text { if } 2 \| y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\mp(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{d x}{c y}(\bmod p) & \text { if } 2 \| y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i \\
\mp(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8}} \frac{d}{c}(\bmod p) & \text { if } 4 \mid y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1 \\
\pm(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 4 \mid y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i, \\
\mp(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 2 \| x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\mp(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-1}{8}} \frac{d}{c}(\bmod p) & \text { if } 2 \| x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i, \\
\pm(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-5}{8} \frac{d x}{c y}(\bmod p)} & \text { if } 4 \mid x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1 \\
\mp(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{x}{y}(\bmod p) & \text { if } 4 \mid x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i\end{cases}
\end{aligned}
$$

Lemma $2.2\left(\left[\mathbf{S 6}\right.\right.$, Theorem 4.5]). Let $p \equiv 1(\bmod 4)$ be a prime, $p=c^{2}+d^{2}=$ $x^{2}+\left(a^{2}+b^{2}\right) y^{2} \neq a^{2}+b^{2}, a, b, c, d, x, y \in \mathbb{Z}, a \neq 0,2 \mid a,(a, b)=1, c \equiv 1(\bmod 4)$, $d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Suppose $\left(\frac{(a c+b d) / x}{b+a i}\right)_{4}=i^{m}$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{d}{4}+\frac{x}{4}}\left(\frac{c}{d}\right)^{m}(\bmod p) & \text { if } 4 \mid a \text { and } 2 \mid x \\ (-1)^{\frac{d}{4}+\frac{y}{4}}\left(\frac{c}{d}\right)^{m}(\bmod p) & \text { if } 4 \mid a \text { and } 2 \nmid x \\ (-1)^{\frac{b+1}{2}+\frac{d}{4}+\frac{x-2}{4}\left(\frac{c}{d}\right)^{m-1}(\bmod p)} & \text { if } 2 \| \text { and } 2 \mid x \\ (-1)^{\frac{b-1}{2}+\frac{d}{4}+\frac{y}{4}+\frac{x-1}{2}\left(\frac{c}{d}\right)^{m-1}(\bmod p)} & \text { if } 2 \| a \text { and } 2 \nmid x\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
\left(a^{2}+b^{2}\right)^{\frac{p-5}{8}} \equiv \begin{cases}(-1)^{\frac{x-2}{4}}\left(\frac{c}{d}\right)^{m-1} \frac{y}{x}(\bmod p) & \text { if } 4 \mid a \text { and } 2 \mid x \\ (-1)^{\frac{x+1}{2}}\left(\frac{c}{d}\right)^{m-1} \frac{y}{x}(\bmod p) & \text { if } 4 \mid a \text { and } 2 \nmid x, \\ (-1)^{\frac{x}{4}+\frac{b+1}{2}\left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p)} & \text { if } 2 \| a \text { and } 2 \mid x, \\ (-1)^{\frac{b-1}{2}}\left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p) & \text { if } 2 \| a \text { and } 2 \nmid x\end{cases}
$$

Theorem 2.1. Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b, p \neq b^{2}+4$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$, $x=2^{s} x_{0}\left(2 \nmid x_{0}\right), y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$.
(i) If $4 \nmid x y$, then

$$
\begin{aligned}
\left(\frac{b+(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} & \equiv-\left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv \begin{cases}(-1)^{\left[\frac{b}{4}\right]+\frac{d}{4}} \frac{c}{d}(\bmod p) & \text { if } 2 \| x, \\
1(\bmod p) & \text { if } 2 \| y\end{cases}
\end{aligned}
$$

(ii) If $4 \mid x y$, then

$$
\left(\frac{b+\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv\left(\frac{b-\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid x \\ (-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

Proof. Since $\left(\frac{-1}{b+2 i}\right)_{4}=-1$ by (1.1), replacing x with $(-1)^{\left(x_{0}-1\right) / 2} x$ in Lemma 2.1 we get
(2.1)

$$
\begin{aligned}
& \left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} c x /(d y)}{2}\right)^{\frac{p-1}{4}} \\
& \equiv \begin{cases}\mp(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{x}{y}(\bmod p) & \text { if } 2 \| y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\mp(-1)^{\frac{b-1}{2}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{d x}{c y}(\bmod p) & \text { if } 2 \| y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i, \\
\mp(-1)^{\frac{b-1}{2}+\frac{x_{0}-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8} \frac{d}{c}(\bmod p)} & \text { if } 4 \mid y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\pm(-1)^{\frac{b-1}{2}+\frac{x_{0}-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 4 \mid y \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i, \\
\mp(-1)^{\frac{b^{2}-1}{8}+\frac{x_{0}-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 2 \| x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\mp(-1)^{\frac{b^{2}-1}{8}+\frac{x_{0}-1}{2}}\left(b^{2}+4\right)^{\frac{p-1}{8} \frac{d}{c}(\bmod p)} & \text { if } 2 \| x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i, \\
\pm(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{d x}{c y}(\bmod p) & \text { if } 4 \mid x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm 1, \\
\mp(-1)^{\frac{b^{2}-1}{8}}\left(b^{2}+4\right)^{\frac{p-5}{8}} \frac{x}{y}(\bmod p) & \text { if } 4 \mid x \text { and }\left(\frac{(2 c+b d) / x}{b+2 i}\right)_{4}= \pm i\end{cases}
\end{aligned}
$$

Taking $a=2$ in Lemma 2.2 we obtain

$$
\left(b^{2}+4\right)^{\left[\frac{p}{8}\right]} \equiv \begin{cases}(-1)^{\frac{b+1}{2}+\frac{d}{4}+\frac{x_{0}-1}{2}}\left(\frac{c}{d}\right)^{m-1}(\bmod p) & \text { if } 2 \| x \\ (-1)^{\frac{b-1}{2}\left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p)} & \text { if } 2 \| y \\ (-1)^{\frac{x}{4}+\frac{b+1}{2}\left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p)} & \text { if } 4 \mid x \\ (-1)^{\frac{b-1}{2}+\frac{d}{4}+\frac{y}{4}+\frac{x_{0}-1}{2}}\left(\frac{c}{d}\right)^{m-1}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

This together with (2.1) yields

$$
\left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}-(-1)^{\left[\frac{b}{4}\right]+\frac{d}{4}} \frac{c}{d}(\bmod p) & \text { if } 2 \| x \tag{2.2}\\ -1(\bmod p) & \text { if } 2 \| y \\ (-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid x \\ (-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

Since $\frac{b+(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2} \cdot \frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2} \equiv \frac{b^{2}-\left(b^{2}+4\right)}{4}=-1(\bmod p)$, we see that

$$
\begin{equation*}
\left(\frac{b+(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{p-1}{4}}\left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{-\frac{p-1}{4}}(\bmod p) . \tag{2.3}
\end{equation*}
$$

Now combining (2.2) with (2.3) we deduce the result.
Corollary 2.1. Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b, p \neq b^{2}+4$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4\right) y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $4 \mid x y$. Suppose $c \equiv 1(\bmod 4)$, $d=2^{r} d_{0}$ and $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
\left(\frac{b+\sqrt{b^{2}+4}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid x, \\ (-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 4 \mid y .\end{cases}
$$

Theorem 2.2. Let $p \equiv 1(\bmod 4)$ be a prime, $\alpha \in\{2,3,4, \ldots\}, b \in \mathbb{Z}, 2 \nmid b$, $p \neq b^{2}+4^{\alpha}$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4^{\alpha}\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}, x=2^{s} x_{0}\left(2 \nmid x_{0}\right), y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
\left(\frac{b-\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv\left(\frac{b+\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{b^{2}-1}{8}+2^{\alpha-2}+\frac{d+x}{4} \alpha}(\bmod p) & \text { if } 4 \mid x \\ (-1)^{\frac{d+y}{4} \alpha}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
\begin{aligned}
\left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} & \equiv(-1)^{\alpha}\left(\frac{b+(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv \begin{cases}(-1)^{\frac{(b+2)^{2}-9}{8}+\frac{b+1}{2} \alpha+2^{\alpha-2}}(\bmod p) & \text { if } 2 \| x, \\
(-1)^{\frac{b-1}{2}(\alpha+1)}(\bmod p) & \text { if } 2 \| y .\end{cases}
\end{aligned}
$$

Proof. It is clear that

$$
\begin{align*}
& \left(\frac{b+\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}}\left(\frac{b-\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \tag{2.4}\\
& \equiv\left(\frac{b^{2}-\left(b^{2}+4^{\alpha}\right)}{4}\right)^{\frac{p-1}{4}}=(-1)^{\frac{p-1}{4}} 2^{\frac{p-1}{2}(\alpha-1)} \equiv(-1)^{\frac{p-1}{4} \alpha}(\bmod p) .
\end{align*}
$$

By [IR, p.64] we have

$$
2^{\frac{p-1}{4}} \equiv\left(\frac{d}{c}\right)^{\frac{c d}{2}} \equiv\left(\frac{d}{c}\right)^{\frac{d}{2}} \equiv \begin{cases}(-1)^{\frac{d}{4}}(\bmod p) & \text { if } p \equiv 1(\bmod 8) \tag{2.5}\\ \frac{d}{c}(\bmod p) & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

Suppose that $\left(\frac{\left(2^{\alpha} c+b d\right) / x}{b+2^{\alpha i}}\right)_{4}=i^{m}$. As $\left(\frac{-1}{b+2^{\alpha} i}\right)_{4}=1$ we have $\left(\frac{\left(2^{\alpha} c+b d\right) /(-x)}{b+2^{\alpha} i}\right)_{4}=i^{m}$. By [S4, Theorem 6.1], (2.5) and Lemma 2.2 we have the following conclusions: If $p \equiv 1(\bmod 8)$ and $4 \mid x$, then

$$
\begin{aligned}
& \left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv(-1)^{\frac{b^{2}-1}{8}+(\alpha+1) \frac{2^{\alpha}-(-1)}{4} \frac{x_{0}-1}{2}{ }_{x}}+(\alpha-1) \frac{d}{4}\left(\frac{d}{c}\right)^{m}\left(2^{2 \alpha}+b^{2}\right)^{\frac{p-1}{8}} \\
& \equiv(-1)^{\frac{b^{2}-1}{8}+(\alpha+1) \frac{2^{\alpha}-\left(-1 \frac{x_{0}-1}{2}\right.}{4}{ }_{x}}+(\alpha-1) \frac{d}{4}\left(\frac{d}{c}\right)^{m} \cdot(-1)^{\frac{d}{4}+\frac{x}{4}}\left(\frac{c}{d}\right)^{m} \\
& =(-1)^{\frac{b^{2}-1}{8}+2^{\alpha-2}(\alpha+1)+\frac{d}{4} \alpha+\frac{x}{4} \alpha}=(-1)^{\frac{b^{2}-1}{8}+2^{\alpha-2}+\frac{d+x}{4} \alpha}(\bmod p) .
\end{aligned}
$$

If $p \equiv 1(\bmod 8)$ and $4 \mid y$, then

$$
\begin{aligned}
\left(\frac{b-(-1)^{\frac{x_{0}-1}{2} \frac{c x}{d y}}}{2}\right)^{\frac{p-1}{4}} & \equiv(-1)^{(\alpha+1) \frac{y}{4}+(\alpha-1) \frac{d}{4}}\left(\frac{d}{c}\right)^{m}\left(2^{2 \alpha}+b^{2}\right)^{\frac{p-1}{8}} \\
& \equiv(-1)^{(\alpha+1) \frac{y}{4}+(\alpha-1) \frac{d}{4}}\left(\frac{d}{c}\right)^{m} \cdot(-1)^{\frac{d}{4}+\frac{y}{4}}\left(\frac{c}{d}\right)^{m} \\
& =(-1)^{\frac{d+y}{4} \alpha}(\bmod p) .
\end{aligned}
$$

If $p \equiv 5(\bmod 8)$ and $2 \| y$, then

$$
\begin{aligned}
& \left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv(-1)^{\frac{b+1}{2}}\left(\frac{d}{c}\right)^{m-b \alpha+\alpha-1}(-1)^{\frac{x_{0}-1}{2}} \frac{x}{y}\left(2^{2 \alpha}+b^{2}\right)^{\frac{p-5}{8}} \\
& \equiv(-1)^{\frac{b+1}{2}}\left(\frac{d}{c}\right)^{m-b \alpha+\alpha-1}(-1)^{\frac{x_{0}-1}{2}} \frac{x}{y} \cdot(-1)^{\frac{x_{0}-1}{2}}\left(\frac{c}{d}\right)^{m+1} \frac{y}{x} \\
& \equiv(-1)^{\frac{b-1}{2}(\alpha+1)}(\bmod p) .
\end{aligned}
$$

If $p \equiv 5(\bmod 8)$ and $2 \| x$, then

$$
\begin{aligned}
& \left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}} \\
& \equiv(-1)^{\frac{(b+2)^{2}-9}{8}+2^{\alpha-2}}\left(\frac{d}{c}\right)^{m+(-1)^{\frac{b-1}{2}} \alpha+\alpha-1}(-1)^{\frac{x_{0}-1}{2}} \frac{x}{y}\left(2^{2 \alpha}+b^{2}\right)^{\frac{p-5}{8}} \\
& \equiv(-1)^{\frac{(b+2)^{2}-9}{8}+2^{\alpha-2}}\left(\frac{d}{c}\right)^{m+(-1)^{\frac{b-1}{2}} \alpha+\alpha-1}(-1)^{\frac{x_{0}-1}{2}} \frac{x}{y} \cdot(-1)^{\frac{x-2}{4}}\left(\frac{c}{d}\right)^{m-1} \frac{y}{x} \\
& \equiv(-1)^{\frac{(b+2)^{2}-9}{8}+\frac{b+1}{2} \alpha+2^{\alpha-2}}(\bmod p) .
\end{aligned}
$$

Now putting all the above together we derive the result.
Remark 2.1 In [S4, Theorem 5.1(iv)], $(-1)^{\frac{p-4 a_{0}-b^{2}}{8}}$ should be $(-1)^{\frac{p-4 a_{0}-b^{2}}{8}}+2^{r-2}$. In [S4, Theorem 6.1(ii)], $(-1)^{\frac{\left(a_{0}+2\right)^{2}-(b+2)^{2}}{8}}$ should be $(-1)^{\frac{\left(a_{0}+2\right)^{2}-(b+2)^{2}}{8}+2^{r-2}}$. In the case $2 \nmid y, 4 \mid a$ and $8 \mid p-5$ on page 518 of [S4], $(-1)^{\frac{p-4 a_{0}-b^{2}}{8}+\frac{a_{0}^{2}-1}{8}}$ should be $(-1)^{\frac{p-4 a_{0}-b^{2}}{8}}+\frac{a_{0}^{2}-1}{8}+2^{r-2}$.

Taking $\alpha=2$ in Theorem 2.2 we deduce the following result.
Corollary 2.2. Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b, p \neq b^{2}+16$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+16\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4)$ and $d=2^{r} d_{0}$ with $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
\left(\frac{b+\sqrt{b^{2}+16}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{y}(\bmod p) & \text { if } b \equiv 1(\bmod 8), \\ (-1)^{\frac{p-1}{4}}(\bmod p) & \text { if } b \equiv 3(\bmod 8) \\ 1(\bmod p) & \text { if } b \equiv 5(\bmod 8), \\ (-1)^{\frac{p-1}{4}+y}(\bmod p) & \text { if } b \equiv 7(\bmod 8)\end{cases}
$$

Remark 2.2 We conjecture that the condition $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$ in Theorems 2.1-2.2 and Corollaries 2.1-2.2 can be canceled. See [S4, Conjecture 9.5].
3. Congruences for $U_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right)$ and $V_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right)(\bmod p)$.

Let $\left\{U_{n}(b, c)\right\}$ and $\left\{V_{n}(b, c)\right\}$ be the Lucas sequences given by (1.3) and (1.4). Set $d=b^{2}-4 c$. It is well known that for any positive integer n,

$$
U_{n}(b, c)= \begin{cases}\frac{1}{\sqrt{d}}\left\{\left(\frac{b+\sqrt{d}}{2}\right)^{n}-\left(\frac{b-\sqrt{d}}{2}\right)^{n}\right\} & \text { if } d \neq 0 \tag{3.1}\\ n\left(\frac{b}{2}\right)^{n-1} & \text { if } d=0\end{cases}
$$

and

$$
\begin{equation*}
V_{n}(b, c)=\left(\frac{b+\sqrt{d}}{2}\right)^{n}+\left(\frac{b-\sqrt{d}}{2}\right)^{n} \tag{3.2}
\end{equation*}
$$

From [S1, Lemma 6.1(b)] we know that if $p>3$ is a prime such that $p \nmid b c d$, then

$$
\begin{equation*}
p \mid U_{n}(b, c) \Longleftrightarrow V_{2 n}(b, c) \equiv 2 c^{n}(\bmod p) \tag{3.3}
\end{equation*}
$$

Theorem 3.1. Let $p \equiv 1(\bmod 4)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b$ and $p=c^{2}+d^{2}=$ $x^{2}+\left(b^{2}+4\right) y^{2} \neq b^{2}+4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4), d=2^{r} d_{0}$, $y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$.
(i) If $4 \nmid x y$, then $V_{\frac{p-1}{4}}(b,-1) \equiv 0(\bmod p)$ and

$$
U_{\frac{p-1}{4}}(b,-1) \equiv\left\{\begin{array}{cc}
(-1)^{\left[\frac{b}{4}\right]+\frac{d}{4}+\frac{x-2}{4} \frac{2 y}{x}(\bmod p)} & \text { if } 2 \| x \\
(-1)^{\frac{x-1}{2}} \frac{2 d y}{c x}(\bmod p) & \text { if } 2 \| y \\
7 &
\end{array}\right.
$$

(ii) If $4 \mid x y$, then $U_{\frac{p-1}{4}}(b,-1) \equiv 0(\bmod p)$ and

$$
V_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases}2(-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d}(\bmod p) & \text { if } 4 \mid x \\ 2(-1)^{\frac{d+y}{4}}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

Proof. Suppose $x=2^{s} x_{0}$ with $2 \nmid x_{0}$. Since $\left(\frac{c x}{d y}\right)^{2} \equiv b^{2}+4(\bmod p)$, using (3.1) and (3.2) we see that
$U_{\frac{p-1}{4}}(b,-1) \equiv(-1)^{\frac{x_{0}-1}{2}} \frac{d y}{c x}\left\{\left(\frac{b+(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}}-\left(\frac{b-(-1)^{\frac{x_{0}-1}{2}} \frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}}\right\}(\bmod p)$
and

$$
V_{\frac{p-1}{4}}(b,-1) \equiv\left(\frac{b+\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}}+\left(\frac{b-\frac{c x}{d y}}{2}\right)^{\frac{p-1}{4}}(\bmod p)
$$

Now applying Theorem 2.1 we deduce the result.
Remark 3.1 When p is a prime of the form $8 k+1$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+\right.$ 4) y^{2} with $b \in\{1,3\}$ and $4 \mid y$, the conjecture $V_{\frac{p-1}{4}}(b,-1) \equiv 2(-1)^{\frac{d+y}{4}}(\bmod p)$ is equivalent to a conjecture of E. Lehmer. See [L, Conjecture 4].
Theorem 3.2. Let $p \equiv 1(\bmod 8)$ be a prime, $b \in \mathbb{Z}, 2 \nmid b$ and $p=c^{2}+d^{2}=$ $x^{2}+\left(b^{2}+4\right) y^{2} \neq b^{2}+4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4)$ and $d=2^{r} d_{0}$ with $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then $p \left\lvert\, U_{\frac{p-1}{8}}(b,-1)\right.$ if and only if $y \equiv \frac{p-1}{2}+d(\bmod 8)$.

Proof. This is immediate from (3.3) and Theorem 3.1.
Using (3.1), (3.2) and Theorem 2.2 one can similarly prove the following result.
Theorem 3.3. Let $p \equiv 1(\bmod 4)$ be a prime, $b, \alpha \in \mathbb{Z}, \alpha \geq 2,2 \nmid b, p \neq b^{2}+4^{\alpha}$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4^{\alpha}\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4)$, $d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$.
(i) If $p \equiv 1(\bmod 8)$, then $U_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right) \equiv 0(\bmod p)$ and

$$
V_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right) \equiv \begin{cases}2(-1)^{\frac{b^{2}-1}{8}+2^{\alpha-2}+\frac{d+x}{4} \alpha}(\bmod p) & \text { if } 4 \mid x \\ 2(-1)^{\frac{d+y}{4} \alpha}(\bmod p) & \text { if } 4 \mid y\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
U_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right) \equiv \begin{cases}0(\bmod p) & \text { if } 2 \mid \alpha, \\ 2(-1)^{\frac{(b+2)^{2}-1}{8}+\frac{b+1}{2}+\frac{x-2}{4} \frac{d y}{c x}(\bmod p)} & \text { if } 2 \nmid \alpha \text { and } 2 \| x \\ 2(-1)^{\frac{x+1}{2}} \frac{d y}{c x}(\bmod p) & \text { if } 2 \nmid \alpha \text { and } 2 \| y\end{cases}
$$

and

$$
V_{\frac{p-1}{4}}\left(b,-4^{\alpha-1}\right) \equiv \begin{cases}0(\bmod p) & \text { if } 2 \nmid \alpha \\ 2(-1)^{\frac{(b+2)^{2}-9}{8}+2^{\alpha-2}}(\bmod p) & \text { if } 2 \mid \alpha \text { and } 2 \| x \\ 2(-1)^{\frac{b-1}{2}}(\bmod p) & \text { if } 2 \mid \alpha \text { and } 2 \| y\end{cases}
$$

From (2.5), (3.3) and Theorem 3.3 we derive the following result.
Theorem 3.4. Let $p \equiv 1(\bmod 8)$ be a prime, $b, \alpha \in \mathbb{Z}, \alpha \geq 2,2 \nmid b, p \neq b^{2}+4^{\alpha}$ and $p=c^{2}+d^{2}=x^{2}+\left(b^{2}+4^{\alpha}\right) y^{2}$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1(\bmod 4)$ and $d=2^{r} d_{0}$ with $d_{0} \equiv 1(\bmod 4)$. Assume $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
p \left\lvert\, U_{\frac{p-1}{8}}\left(b,-4^{\alpha-1}\right) \Longleftrightarrow \frac{p-1}{8}+\frac{d}{4} \equiv \begin{cases}\frac{b^{2}-1}{8}+2^{\alpha-2}+\frac{x}{4} \alpha(\bmod 2) & \text { if } 4 \mid x \\ \frac{y}{4} \alpha(\bmod 2) & \text { if } 4 \mid y\end{cases}\right.
$$

4. Congruences for $U_{\frac{p-1}{4}}(4 a,-1)$ and $V_{\frac{p-1}{4}}(4 a,-1)(\bmod p)$.

Theorem 4.1. Let $a \in \mathbb{Z}, a \neq 0$ and let $p \equiv 1(\bmod 4)$ be a prime such that $p=c^{2}+d^{2}=x^{2}+\left(4 a^{2}+1\right) y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4)$ and $p \neq 4 a^{2}+1$. Suppose $d=2^{r} d_{0}, y=2^{t} y_{0}$ and $d_{0} \equiv y_{0} \equiv 1(\bmod 4)$. Assume that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
U_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}(-1)^{\frac{a+1}{2}+\frac{d}{4}+\frac{x-2}{4} \frac{y}{x}(\bmod p)} & \text { if } 2 \nmid a y, \\ 0(\bmod p) & \text { if } 2 \mid a y\end{cases}
$$

and

$$
V_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}2(-1)^{\frac{d}{4}+\frac{a}{2} y+\frac{x y}{4}}(\bmod p) & \text { if } 2 \mid a, \\ 2(-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y, \\ 0(\bmod p) & \text { if } 2 \nmid a y .\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
U_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}(-1)^{\frac{a}{2}+\frac{x-2}{4}} \frac{d y}{c x}(\bmod p) & \text { if } 2 \mid a \text { and } 2 \nmid y, \\ (-1)^{\frac{x+1}{2}} \frac{d y}{c x}(\bmod p) & \text { if } 2 \mid a \text { and } 2 \mid y, \\ (-1)^{\frac{x-1}{2}} \frac{d y}{c x}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y, \\ 0(\bmod p) & \text { if } 2 \nmid a y\end{cases}
$$

and

$$
V_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}0(\bmod p) & \text { if } 2 \mid a y \\ 2(-1)^{\frac{a-1}{2}+\frac{x}{4}} \frac{d}{c}(\bmod p) & \text { if } 2 \nmid a y\end{cases}
$$

Proof. Clearly $\left(4 a^{2}+1, x\right) \mid p$ and so $\left(4 a^{2}+1, x\right)=1$. As $(d-2 a c)(d+2 a c)=$ $d^{2}-4 a^{2} c^{2} \equiv x^{2}-c^{2}-4 a^{2} c^{2} \equiv x^{2}\left(\bmod 4 a^{2}+1\right)$, we see that $\left(d-2 a c, 4 a^{2}+1\right)=1$.

Suppose $\left(\frac{(d-2 a c) / x}{1-2 a i}\right)_{4}=i^{m}$ and $x=2^{s} x_{0}\left(2 \nmid x_{0}\right)$. Since $\left(\frac{-1}{1-2 a i}\right)_{4}=(-1)^{a}$ by (1.1), replacing x with $(-1)^{\left(x_{0}-1\right) / 2} x$ in $[S 4$, Theorem 7.3$]$ we see that for $p \equiv 1(\bmod 8)$,

$$
U_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}(-1)^{\frac{a+1}{2}} \frac{y}{x}\left(\frac{d}{c}\right)^{m+1}\left(4 a^{2}+1\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 2 \nmid a y, \\ 0(\bmod p) & \text { if } 2 \mid a y\end{cases}
$$

and

$$
V_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}2(-1)^{\frac{a}{2} y}\left(\frac{d}{c}\right)^{m}\left(4 a^{2}+1\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 2 \mid a \\ 2(-1)^{\frac{x+1}{2}}\left(\frac{d}{c}\right)^{m+1}\left(4 a^{2}+1\right)^{\frac{p-1}{8}}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y, \\ 0(\bmod p) & \text { if } 2 \nmid a y\end{cases}
$$

and that for $p \equiv 5(\bmod 8)$,

$$
U_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}(-1)^{\frac{a}{2} y}\left(\frac{d}{c}\right)^{m}\left(4 a^{2}+1\right)^{\frac{p-5}{8}}(\bmod p) & \text { if } 2 \mid a \\ (-1)^{\frac{x-1}{2}}\left(\frac{d}{c}\right)^{m+1}\left(4 a^{2}+1\right)^{\frac{p-5}{8}}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y \\ 0(\bmod p) & \text { if } 2 \nmid a y\end{cases}
$$

and

$$
V_{\frac{p-1}{4}}(4 a,-1) \equiv \begin{cases}0(\bmod p) & \text { if } 2 \mid a y \\ 2(-1)^{\frac{a+1}{2}} \frac{x}{y}\left(\frac{d}{c}\right)^{m+1}\left(4 a^{2}+1\right)^{\frac{p-5}{8}}(\bmod p) & \text { if } 2 \nmid a y\end{cases}
$$

Replacing a, b with $-2 a, 1$ in Lemma 2.2 we see that for $p \equiv 1(\bmod 8)$,

$$
\left(4 a^{2}+1\right)^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{d}{4}+\frac{x y}{4}}\left(\frac{c}{d}\right)^{m}(\bmod p) & \text { if } 2 \mid a \\ (-1)^{\frac{d}{4}+\frac{x+2}{4}}\left(\frac{c}{d}\right)^{m-1}(\bmod p) & \text { if } 2 \nmid a y \\ (-1)^{\frac{d}{4}+\frac{x-1}{2}+\frac{y}{4}}\left(\frac{c}{d}\right)^{m-1}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y\end{cases}
$$

while for $p \equiv 5(\bmod 8)$,

$$
\left(4 a^{2}+1\right)^{\frac{p-5}{8}} \equiv \begin{cases}(-1)^{\frac{x-2}{4}}\left(\frac{c}{d}\right)^{m-1} \frac{y}{x}(\bmod p) & \text { if } 2 \mid a \text { and } 2 \nmid y \\ (-1)^{\frac{x+1}{2}}\left(\frac{c}{d}\right)^{m-1} \frac{y}{x}(\bmod p) & \text { if } 2 \mid a \text { and } 2 \mid y \\ (-1)^{\frac{x}{4}+1}\left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p) & \text { if } 2 \nmid a y \\ \left(\frac{c}{d}\right)^{m} \frac{y}{x}(\bmod p) & \text { if } 2 \nmid a \text { and } 2 \mid y\end{cases}
$$

Now putting all the above together we deduce the result.
Corollary 4.1. Let $a \in \mathbb{Z}, a \neq 0$ and let $p \equiv 1(\bmod 4)$ be a prime such that $p=c^{2}+d^{2}=x^{2}+\left(4 a^{2}+1\right) y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4)$ and $p \neq 4 a^{2}+1$.

Suppose $d=2^{r} d_{0}$ with $d_{0} \equiv 1(\bmod 4)$. Assume that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. If $4 \mid x y$, then

$$
\left(2 a+\sqrt{4 a^{2}+1}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{d}{4}+\frac{a}{2} y+\frac{x y}{4}}(\bmod p) & \text { if } 2 \mid a, \\ (-1)^{\frac{d}{4}+\frac{y}{4}}(\bmod p) & \text { if } 2 \nmid a \text { and } 4 \mid y \\ (-1)^{\frac{a-1}{2}+\frac{x}{4}} \frac{d}{c}(\bmod p) & \text { if } 2 \nmid a \text { and } 4 \mid x\end{cases}
$$

Proof. Suppose $4 \mid x y$. By Theorem 4.1, $p \left\lvert\, U_{\frac{p-1}{4}}(4 a,-1)\right.$. Hence, using (3.1) and (3.2) we see that

$$
\begin{aligned}
\left(2 a+\sqrt{4 a^{2}+1}\right)^{\frac{p-1}{4}} & =\sqrt{4 a^{2}+1} U_{\frac{p-1}{4}}(4 a,-1)+\frac{1}{2} V_{\frac{p-1}{4}}(4 a,-1) \\
& \equiv \frac{1}{2} V_{\frac{p-1}{4}}(4 a,-1)(\bmod p) .
\end{aligned}
$$

Now the result follows from Theorem 4.1 immediately.
From Theorem 4.1 and (3.3) we deduce the following result.
Theorem 4.2. Let $a \in \mathbb{Z}, a \neq 0$ and let $p \equiv 1(\bmod 8)$ be a prime such that $p=c^{2}+d^{2}=x^{2}+\left(4 a^{2}+1\right) y^{2}$ with $c, d, x, y \in \mathbb{Z}, c \equiv 1(\bmod 4)$ and $p \neq 4 a^{2}+1$. Suppose $d=2^{r} d_{0}$ with $d_{0} \equiv 1(\bmod 4)$. Assume that $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=1$. Then

$$
p\left|U_{\frac{p-1}{8}}(4 a,-1) \Longleftrightarrow 4\right| x y \text { and } \frac{p-1}{8} \equiv \begin{cases}\frac{d}{4}+\frac{a}{2} y+\frac{x y}{4}(\bmod 2) & \text { if } 2 \mid a, \\ \frac{d}{4}+\frac{y}{4}(\bmod 2) & \text { if } 2 \nmid a .\end{cases}
$$

Remark 4.1 We conjecture that the condition $(c, x+d)=1$ or $\left(d_{0}, x+c\right)=$ 1 in Theorems 3.1-3.4, 4.1-4.2 and Corollary 4.1 can be canceled. See also [S4, Conjectures 9.4, 9.10, 9.11, 9.14 and 9.19].

References

[BEW] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, New York, 1990.
[L] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[Lem] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
[S1] Z.H. Sun, On the theory of cubic residues and nonresidues, Acta Arith. 84 (1998), 291-335.
[S2] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory 113 (2005), 10-52.
[S3] Z.H. Sun, On the quadratic character of quadratic units, J. Number Theory 128 (2008), 1295-1335.
[S4] Z.H. Sun, Quartic, octic residues and Lucas sequences, J. Number Theory 129 (2009), 499-550.
[S5] Z.H. Sun, Congruences for $\left(A+\sqrt{A^{2}+m B^{2}}\right)^{(p-1) / 2}$ and $\left(b+\sqrt{a^{2}+b^{2}}\right)^{(p-1) / 4}(\bmod p)$, Acta Arith. 149 (2011), 275-296.
[S6] Z.H. Sun, Congruences for $q^{[p / 8]}(\bmod p)$, Acta Arith. 159 (2013), 1-25.

