Acta Arith. 159(2013), 89-100.

On the quartic character of quadratic units

ZHI-HONG SUN

School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, PR China E-mail: zhihongsun@yahoo.com Homepage: http://www.hytc.edu.cn/xsjl/szh

ABSTRACT. Let \mathbb{Z} be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and $p=c^2+d^2$ with $c,d\in\mathbb{Z}$, $d=2^rd_0$ and $c\equiv d_0\equiv 1\pmod 4$. In the paper we determine $(\frac{b+\sqrt{b^2+4^\alpha}}{2})^{\frac{p-1}{4}}\pmod p$ for $p=x^2+(b^2+4^\alpha)y^2$ $(b,x,y\in\mathbb{Z},\ 2\nmid b)$, and $(2a+\sqrt{4a^2+1})^{\frac{p-1}{4}}\pmod p$ for $p=x^2+(4a^2+1)y^2$ $(a,x,y\in\mathbb{Z})$ on condition that (c,x+d)=1 or $(d_0,x+c)=1$. As applications we obtain the congruence for $U_{(p-1)/4}\pmod p$ and the criterion for $p\mid U_{(p-1)/8}$ (if $p\equiv 1\pmod 8$), where $\{U_n\}$ is the Lucas sequence given by $U_0=0,\ U_1=1$ and $U_{n+1}=bU_n+U_{n-1}\ (n\geq 1)$, and $b\not\equiv 2\pmod 4$. Hence we partially solve some conjectures that we posed in 2009.

MSC: Primary 11A15, Secondary 11A07, 11B39, 11E25 Keywords: Congruence; quartic residue; Lucas sequence

1. Introduction.

Let \mathbb{Z} be the set of integers and $i=\sqrt{-1}$. For any odd prime p and $a\in\mathbb{Z}$ let $(\frac{a}{p})$ be the Legendre symbol. For $a,b,c,d\in\mathbb{Z}$ with $2\nmid c$ and $2\mid d$, one can define the quartic Jacobi symbol $(\frac{a+bi}{c+di})_4$ as in [S4]. From [IR] we know that $\overline{(\frac{a+bi}{c+di})_4}=(\frac{a-bi}{c-di})_4=(\frac{a+bi}{c+di})_4^{-1}$, where \bar{x} means the complex conjugate of x. For the properties of the quartic Jacobi symbol, see [IR], [BEW], [S2] and [S4]. In particular, for $a,b\in\mathbb{Z}$ with $2\nmid a$ and $2\mid b$,

$$(1.1) \qquad \left(\frac{i}{a+bi}\right)_4 = (-1)^{\frac{a^2-1}{8}} i^{(1-(-1)^{\frac{b}{2}})/2} \quad \text{and} \quad \left(\frac{-1}{a+bi}\right)_4 = (-1)^{\frac{b}{2}}.$$

Let D>1 be a squarefree integer, and $\varepsilon_D=(m+n\sqrt{D})/2$ be the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{D})$ (where \mathbb{Q} is the set of rational numbers). Suppose that $p\equiv 1\pmod 4$ is a prime such that $(\frac{D}{p})=1$. As $\frac{m+n\sqrt{D}}{2}\cdot\frac{m-n\sqrt{D}}{2}=\frac{m^2-Dn^2}{4}=\pm 1$, we may introduce the Legendre symbol $(\frac{\varepsilon_D}{p})$. When the norm $N(\varepsilon_D)=(m^2-Dn^2)/4$ equals -1, many mathematicians tried to characterize those primes p for which ε_D is a quadratic residue modulo p (that is, $(\frac{\varepsilon_D}{p})=1$), see [Lem]. This

The author is supported by the National Natural Sciences Foundation of China (No. 10971078).

general problem was finally solved by the author in [S2, S3]. The next natural problem is to determine whether ε_D is a quartic residue modulo p when $\left(\frac{\varepsilon_D}{p}\right) = 1$. When the norm $N(\varepsilon_D) = (m^2 - Dn^2)/4$ equals 1, the problem was solved by the author in [S2]. Now we assume that $N(\varepsilon_D) = (m^2 - Dn^2)/4 = -1$. Using the cyclotomic numbers of order 4, in 1974 E. Lehmer [L] proved that for a prime $p = 8k + 1 = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$, $\varepsilon_2 = 1 + \sqrt{2}$ is a quartic residue of p if and only if $4 \mid y$ and $\frac{p-1}{8} \equiv \frac{y}{4} \pmod{2}$. See also [S4, Corollary 3.1]. If $p \neq 17$ is a prime of the form 8k + 1 and so $p = C^2 + 2D^2$ for some $C, D \in \mathbb{Z}$, in [S5, Corollary 3.1] the author showed that $\varepsilon_{17} = 4 + \sqrt{17}$ is a quartic residue modulo p if and only if $p = x^2 + 17y^2(x, y \in \mathbb{Z})$ and $(-1)^y = (\frac{2C-3D}{17})$. Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 4$ and $p = c^2 + d^2 = 1$

Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 4$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$ and $d_0 \equiv 1 \pmod{4}$. If $4 \mid xy$, in [S4, Conjecture 9.5] the author conjectured that

$$(1.2) \qquad \varepsilon_{b^2+4}^{\frac{p-1}{4}} = \left(\frac{b+\sqrt{b^2+4}}{2}\right)^{\frac{p-1}{4}} \equiv \left\{ \begin{array}{l} (-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}}\frac{c}{d} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{d}{4}+\frac{y}{4}} \pmod{p} & \text{if } 4 \mid y, \end{array} \right.$$

where $[\cdot]$ is the greatest integer function. For $m, n \in \mathbb{Z}$ let (m, n) be the greatest common divisor of m and n. For $m \in \mathbb{Z}$ with $m = 2^{\alpha}m_0(2 \nmid m_0)$ we write $2^{\alpha} \parallel m$. In the paper we use the results in [S4,S6] to prove (1.2) under the condition that (c, x+d) = 1 or $(d_0, x+c) = 1$. More generally, we determine $\left(\frac{b+\sqrt{b^2+4^{\alpha}}}{2}\right)^{\frac{p-1}{4}} \pmod{p}$ for $p = c^2 + d^2 = x^2 + (b^2 + 4^{\alpha})y^2$ $(2 \nmid b)$, see Theorem 2.2. We also determine $(2a + \sqrt{4a^2 + 1})^{\frac{p-1}{4}} \pmod{p}$ for $p = c^2 + d^2 = x^2 + (4a^2 + 1)y^2$ $(a \in \mathbb{Z})$, see Corollary 4.1.

For $b, c \in \mathbb{Z}$ the Lucas sequences $\{U_n(b,c)\}$ and $\{V_n(b,c)\}$ are defined by

(1.3)
$$U_0(b,c) = 0, \ U_1(b,c) = 1, U_{n+1}(b,c) = bU_n(b,c) - cU_{n-1}(b,c) \ (n \ge 1)$$

and

(1.4)
$$V_0(b,c) = 2, \ V_1(b,c) = b,$$

$$V_{n+1}(b,c) = bV_n(b,c) - cV_{n-1}(b,c) \ (n \ge 1).$$

Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2 \neq b^2 + 4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. In [S4, Conjecture 9.4] the author conjectured that for $4 \nmid xy$,

$$U_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases} (-1)^{\left[\frac{b}{4}\right] + \frac{d}{4} + \frac{x-2}{4} \frac{2y}{x} \pmod{p} & \text{if } 2 \parallel x, \\ (-1)^{\frac{x-1}{2}} \frac{2dy}{cx} \pmod{p} & \text{if } 2 \parallel y, \end{cases}$$

and that for $4 \mid xy$,

$$V_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases} -2(-1)^{\left[\frac{b}{4}\right] + \frac{x}{4}} \frac{d}{c} \pmod{p} & \text{if } 4 \mid x, \\ 2(-1)^{\frac{d+y}{4}} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

In the present paper we prove the above conjecture under the condition that (c, x +d) = 1 or $(d_0, x + c) = 1$. We also establish similar results for $U_{\frac{p-1}{4}}(b, -1) \pmod{p}$ and $V_{\frac{p-1}{4}}(b,-1) \pmod p$ in the case $b \equiv 0 \pmod 4$. As a consequence, we obtain a criterion for $p \mid U_{\frac{p-1}{8}}(b,-1)$, where $b \in \mathbb{Z}, b \not\equiv 2 \pmod 4$ and p is a prime of the form 8k + 1, see Theorems 3.2, 3.4 and 4.2.

2. Congruences for $\left(\frac{b+\sqrt{b^2+4^{\alpha}}}{2}\right)^{\frac{p-1}{4}} \pmod{p}$.

Lemma 2.1 ([S4, Corollary 6.1]). Let $p \equiv 1 \pmod{4}$ be a prime and $p = c^2 + d^2$ with $c, d \in \mathbb{Z}$ and $c \equiv 1 \pmod{4}$. Let $b \in \mathbb{Z}$, $2 \nmid b$ and $p = x^2 + (b^2 + 4)y^2$ with $x, y \in \mathbb{Z}, \ x = 2^s x_0, \ y = 2^t y_0 \ and \ x_0 \equiv y_0 \equiv 1 \pmod{4}$. Then

$$\left(\frac{b-\frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}}$$

$$\left\{ \begin{array}{l} \mp (-1)^{\frac{b-1}{2}} (b^2+4)^{\frac{p-5}{8}} \frac{x}{y} \pmod{p} & \text{if } 2 \parallel y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b-1}{2}} (b^2+4)^{\frac{p-5}{8}} \frac{dx}{cy} \pmod{p} & \text{if } 2 \parallel y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \mp (-1)^{\frac{b-1}{2}} (b^2+4)^{\frac{p-1}{8}} \frac{d}{c} \pmod{p} & \text{if } 4 \mid y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \pm (-1)^{\frac{b-1}{2}} (b^2+4)^{\frac{p-1}{8}} \pmod{p} & \text{if } 4 \mid y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \mp (-1)^{\frac{b^2-1}{8}} (b^2+4)^{\frac{p-1}{8}} \pmod{p} & \text{if } 2 \parallel x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}} (b^2+4)^{\frac{p-1}{8}} \frac{d}{c} \pmod{p} & \text{if } 2 \parallel x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \pm (-1)^{\frac{b^2-1}{8}} (b^2+4)^{\frac{p-5}{8}} \frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}} (b^2+4)^{\frac{p-5}{8}} \frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}} (b^2+4)^{\frac{p-5}{8}} \frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i. \end{array} \right.$$

Lemma 2.2 ([S6, Theorem 4.5]). Let $p \equiv 1 \pmod{4}$ be a prime, $p = c^2 + d^2 = 1$ $x^2 + (a^2 + b^2)\dot{y}^2 \neq a^2 + b^2$, $a, b, c, d, x, y \in \mathbb{Z}$, $a \neq 0$, $2 \mid a$, (a, b) = 1, $c \equiv 1 \pmod{4}$, $d = 2^r d_0, y = 2^t y_0 \text{ and } d_0 \equiv y_0 \equiv 1 \pmod{4}. \text{ Assume } (c, x+d) = 1 \text{ or } (d_0, x+c) = 1.$ Suppose $\left(\frac{(ac+bd)/x}{b+ai}\right)_4 = i^m$. (i) If $p \equiv 1 \pmod{8}$, then

$$(a^{2} + b^{2})^{\frac{p-1}{8}} \equiv \begin{cases} (-1)^{\frac{d}{4} + \frac{x}{4}} (\frac{c}{d})^{m} \pmod{p} & \text{if } 4 \mid a \text{ and } 2 \mid x, \\ (-1)^{\frac{d}{4} + \frac{y}{4}} (\frac{c}{d})^{m} \pmod{p} & \text{if } 4 \mid a \text{ and } 2 \nmid x, \\ (-1)^{\frac{b+1}{2} + \frac{d}{4} + \frac{x-2}{4}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 2 \parallel a \text{ and } 2 \nmid x, \\ (-1)^{\frac{b-1}{2} + \frac{d}{4} + \frac{y}{4} + \frac{x-1}{2}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 2 \parallel a \text{ and } 2 \nmid x. \end{cases}$$

(ii) If $p \equiv 5 \pmod{8}$, then

$$(a^{2} + b^{2})^{\frac{p-5}{8}} \equiv \begin{cases} (-1)^{\frac{x-2}{4}} (\frac{c}{d})^{m-1} \frac{y}{x} \pmod{p} & \text{if } 4 \mid a \text{ and } 2 \mid x, \\ (-1)^{\frac{x+1}{2}} (\frac{c}{d})^{m-1} \frac{y}{x} \pmod{p} & \text{if } 4 \mid a \text{ and } 2 \nmid x, \\ (-1)^{\frac{x}{4} + \frac{b+1}{2}} (\frac{c}{d})^{m} \frac{y}{x} \pmod{p} & \text{if } 2 \parallel a \text{ and } 2 \nmid x, \\ (-1)^{\frac{b-1}{2}} (\frac{c}{d})^{m} \frac{y}{x} \pmod{p} & \text{if } 2 \parallel a \text{ and } 2 \nmid x. \end{cases}$$

Theorem 2.1. Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 4$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$, $x = 2^s x_0 (2 \nmid x_0)$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$.

(i) If $4 \nmid xy$, then

$$\left(\frac{b + (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \equiv -\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \\
\equiv \begin{cases} (-1)^{\left[\frac{b}{4}\right] + \frac{d}{4}} \frac{c}{d} \pmod{p} & \text{if } 2 \parallel x, \\ 1 \pmod{p} & \text{if } 2 \parallel y. \end{cases}$$

(ii) If $4 \mid xy$, then

$$\left(\frac{b + \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} \equiv \left(\frac{b - \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases} (-1)^{\left[\frac{b}{4}\right] + \frac{x}{4}} \frac{c}{d} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{d}{4} + \frac{y}{4}} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

Proof. Since $(\frac{-1}{b+2i})_4 = -1$ by (1.1), replacing x with $(-1)^{(x_0-1)/2}x$ in Lemma 2.1 we get (2.1)

$$\left(\frac{b-(-1)^{\frac{x_0-1}{2}}cx/(dy)}{2}\right)^{\frac{p-1}{4}}$$

$$\left\{ \begin{array}{l} \mp (-1)^{\frac{b-1}{2}}(b^2+4)^{\frac{p-5}{8}}\frac{x}{y} \pmod{p} & \text{if } 2 \parallel y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b-1}{2}}(b^2+4)^{\frac{p-5}{8}}\frac{dx}{cy} \pmod{p} & \text{if } 2 \parallel y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \mp (-1)^{\frac{b-1}{2}+\frac{x_0-1}{2}}(b^2+4)^{\frac{p-1}{8}}\frac{d}{c} \pmod{p} & \text{if } 4 \mid y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \pm (-1)^{\frac{b-1}{2}+\frac{x_0-1}{2}}(b^2+4)^{\frac{p-1}{8}} \pmod{p} & \text{if } 4 \mid y \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \mp (-1)^{\frac{b^2-1}{8}+\frac{x_0-1}{2}}(b^2+4)^{\frac{p-1}{8}} \pmod{p} & \text{if } 2 \parallel x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}+\frac{x_0-1}{2}}(b^2+4)^{\frac{p-1}{8}}\frac{d}{c} \pmod{p} & \text{if } 2 \parallel x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm i, \\ \pm (-1)^{\frac{b^2-1}{8}}(b^2+4)^{\frac{p-5}{8}}\frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}}(b^2+4)^{\frac{p-5}{8}}\frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \\ \mp (-1)^{\frac{b^2-1}{8}}(b^2+4)^{\frac{p-5}{8}}\frac{dx}{cy} \pmod{p} & \text{if } 4 \mid x \text{ and } \left(\frac{(2c+bd)/x}{b+2i}\right)_4 = \pm 1, \end{array} \right.$$

Taking a = 2 in Lemma 2.2 we obtain

$$(b^2 + 4)^{\left[\frac{p}{8}\right]} \equiv \begin{cases} (-1)^{\frac{b+1}{2} + \frac{d}{4} + \frac{x_0 - 1}{2}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 2 \parallel x, \\ (-1)^{\frac{b-1}{2}} (\frac{c}{d})^m \frac{y}{x} \pmod{p} & \text{if } 2 \parallel y, \\ (-1)^{\frac{x}{4} + \frac{b+1}{2}} (\frac{c}{d})^m \frac{y}{x} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{b-1}{2} + \frac{d}{4} + \frac{y}{4} + \frac{x_0 - 1}{2}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

This together with (2.1) yields

$$(2.2) \qquad \left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \equiv \begin{cases} -(-1)^{\left[\frac{b}{4}\right] + \frac{d}{4}} \frac{c}{d} \pmod{p} & \text{if } 2 \parallel x, \\ -1 \pmod{p} & \text{if } 2 \parallel y, \\ (-1)^{\left[\frac{b}{4}\right] + \frac{x}{4}} \frac{c}{d} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{d}{4} + \frac{y}{4}} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

Since $\frac{b+(-1)^{\frac{x_0-1}{2}}\frac{cx}{dy}}{2} \cdot \frac{b-(-1)^{\frac{x_0-1}{2}}\frac{cx}{dy}}{2} \equiv \frac{b^2-(b^2+4)}{4} = -1 \pmod{p}$, we see that

$$(2.3) \qquad \left(\frac{b + (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \equiv (-1)^{\frac{p - 1}{4}} \left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{-\frac{p - 1}{4}} \pmod{p}.$$

Now combining (2.2) with (2.3) we deduce the result.

Corollary 2.1. Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 4$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2$ with $c, d, x, y \in \mathbb{Z}$ and $4 \mid xy$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$ and $d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then

$$\left(\frac{b+\sqrt{b^2+4}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases} (-1)^{\left[\frac{b}{4}\right]+\frac{x}{4}} \frac{c}{d} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{d}{4}+\frac{y}{4}} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

Theorem 2.2. Let $p \equiv 1 \pmod{4}$ be a prime, $\alpha \in \{2, 3, 4, ...\}$, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 4^{\alpha}$ and $p = c^2 + d^2 = x^2 + (b^2 + 4^{\alpha})y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$, $x = 2^s x_0 (2 \nmid x_0)$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$.

(i) If $p \equiv 1 \pmod{8}$, then

$$\left(\frac{b - \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} \equiv \left(\frac{b + \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases} (-1)^{\frac{b^2 - 1}{8} + 2^{\alpha - 2} + \frac{d + x}{4}\alpha} \pmod{p} & \text{if } 4 \mid x, \\ (-1)^{\frac{d + y}{4}\alpha} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

(ii) If $p \equiv 5 \pmod{8}$, then

$$\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \equiv (-1)^{\alpha} \left(\frac{b + (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}}$$

$$\equiv \begin{cases} (-1)^{\frac{(b + 2)^2 - 9}{8} + \frac{b + 1}{2} \alpha + 2^{\alpha - 2}} \pmod{p} & \text{if } 2 \parallel x, \\ (-1)^{\frac{b - 1}{2} (\alpha + 1)} \pmod{p} & \text{if } 2 \parallel y. \end{cases}$$

Proof. It is clear that

(2.4)
$$\begin{pmatrix} \frac{b + \frac{cx}{dy}}{2} \end{pmatrix}^{\frac{p-1}{4}} \left(\frac{b - \frac{cx}{dy}}{2} \right)^{\frac{p-1}{4}}$$

$$\equiv \left(\frac{b^2 - (b^2 + 4^{\alpha})}{4} \right)^{\frac{p-1}{4}} = (-1)^{\frac{p-1}{4}} 2^{\frac{p-1}{2}(\alpha - 1)} \equiv (-1)^{\frac{p-1}{4}\alpha} \pmod{p}.$$

$$5$$

By [IR, p.64] we have

$$(2.5) 2^{\frac{p-1}{4}} \equiv \left(\frac{d}{c}\right)^{\frac{cd}{2}} \equiv \left(\frac{d}{c}\right)^{\frac{d}{2}} \equiv \begin{cases} (-1)^{\frac{d}{4}} \pmod{p} & \text{if } p \equiv 1 \pmod{8}, \\ \frac{d}{c} \pmod{p} & \text{if } p \equiv 5 \pmod{8}. \end{cases}$$

Suppose that $(\frac{(2^{\alpha}c+bd)/x}{b+2^{\alpha}i})_4 = i^m$. As $(\frac{-1}{b+2^{\alpha}i})_4 = 1$ we have $(\frac{(2^{\alpha}c+bd)/(-x)}{b+2^{\alpha}i})_4 = i^m$. By [S4, Theorem 6.1], (2.5) and Lemma 2.2 we have the following conclusions: If $p \equiv 1 \pmod{8}$ and $4 \mid x$, then

$$\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}}$$

$$\equiv (-1)^{\frac{b^2 - 1}{8} + (\alpha + 1)^{\frac{2^{\alpha} - (-1)^{\frac{x_0 - 1}{2}} x}{4} + (\alpha - 1)^{\frac{d}{4}}} \left(\frac{d}{c}\right)^m (2^{2\alpha} + b^2)^{\frac{p - 1}{8}}$$

$$\equiv (-1)^{\frac{b^2 - 1}{8} + (\alpha + 1)^{\frac{2^{\alpha} - (-1)^{\frac{x_0 - 1}{2}} x} + (\alpha - 1)^{\frac{d}{4}}} \left(\frac{d}{c}\right)^m \cdot (-1)^{\frac{d}{4} + \frac{x}{4}} \left(\frac{c}{d}\right)^m$$

$$= (-1)^{\frac{b^2 - 1}{8} + 2^{\alpha - 2}} (\alpha + 1)^{\frac{d}{4}} \alpha + \frac{x}{4} \alpha} = (-1)^{\frac{b^2 - 1}{8} + 2^{\alpha - 2} + \frac{d + x}{4} \alpha} \pmod{p}.$$

If $p \equiv 1 \pmod{8}$ and $4 \mid y$, then

$$\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}} \equiv (-1)^{(\alpha + 1)\frac{y}{4} + (\alpha - 1)\frac{d}{4}} \left(\frac{d}{c}\right)^m (2^{2\alpha} + b^2)^{\frac{p - 1}{8}}
\equiv (-1)^{(\alpha + 1)\frac{y}{4} + (\alpha - 1)\frac{d}{4}} \left(\frac{d}{c}\right)^m \cdot (-1)^{\frac{d}{4} + \frac{y}{4}} \left(\frac{c}{d}\right)^m
= (-1)^{\frac{d + y}{4}\alpha} \pmod{p}.$$

If $p \equiv 5 \pmod{8}$ and $2 \parallel y$, then

$$\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}}$$

$$\equiv (-1)^{\frac{b + 1}{2}} \left(\frac{d}{c}\right)^{m - b\alpha + \alpha - 1} (-1)^{\frac{x_0 - 1}{2}} \frac{x}{y} (2^{2\alpha} + b^2)^{\frac{p - 5}{8}}$$

$$\equiv (-1)^{\frac{b + 1}{2}} \left(\frac{d}{c}\right)^{m - b\alpha + \alpha - 1} (-1)^{\frac{x_0 - 1}{2}} \frac{x}{y} \cdot (-1)^{\frac{x_0 - 1}{2}} \left(\frac{c}{d}\right)^{m + 1} \frac{y}{x}$$

$$\equiv (-1)^{\frac{b - 1}{2}(\alpha + 1)} \pmod{p}.$$

If $p \equiv 5 \pmod{8}$ and $2 \parallel x$, then

$$\left(\frac{b - (-1)^{\frac{x_0 - 1}{2}} \frac{cx}{dy}}{2}\right)^{\frac{p - 1}{4}}$$

$$\equiv (-1)^{\frac{(b+2)^2 - 9}{8} + 2^{\alpha - 2}} \left(\frac{d}{c}\right)^{m + (-1)^{\frac{b - 1}{2}} \alpha + \alpha - 1} (-1)^{\frac{x_0 - 1}{2}} \frac{x}{y} (2^{2\alpha} + b^2)^{\frac{p - 5}{8}}$$

$$\equiv (-1)^{\frac{(b+2)^2 - 9}{8} + 2^{\alpha - 2}} \left(\frac{d}{c}\right)^{m + (-1)^{\frac{b - 1}{2}} \alpha + \alpha - 1} (-1)^{\frac{x_0 - 1}{2}} \frac{x}{y} \cdot (-1)^{\frac{x - 2}{4}} \left(\frac{c}{d}\right)^{m - 1} \frac{y}{x}$$

$$\equiv (-1)^{\frac{(b+2)^2 - 9}{8} + \frac{b + 1}{2} \alpha + 2^{\alpha - 2}} \pmod{p}.$$

Now putting all the above together we derive the result.

Remark 2.1 In [S4, Theorem 5.1(iv)], $(-1)^{\frac{p-4a_0-b^2}{8}}$ should be $(-1)^{\frac{p-4a_0-b^2}{8}+2^{r-2}}$. In [S4, Theorem 6.1(ii)], $(-1)^{\frac{(a_0+2)^2-(b+2)^2}{8}}$ should be $(-1)^{\frac{(a_0+2)^2-(b+2)^2}{8}+2^{r-2}}$. In the case $2 \nmid y$, $4 \mid a$ and $8 \mid p-5$ on page 518 of [S4], $(-1)^{\frac{p-4a_0-b^2}{8}+\frac{a_0^2-1}{8}}$ should be $(-1)^{\frac{p-4a_0-b^2}{8}+\frac{a_0^2-1}{8}}$.

Taking $\alpha = 2$ in Theorem 2.2 we deduce the following result.

Corollary 2.2. Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$, $p \neq b^2 + 16$ and $p = c^2 + d^2 = x^2 + (b^2 + 16)y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$ and $d = 2^r d_0$ with $d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then

$$\left(\frac{b+\sqrt{b^2+16}}{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases} (-1)^y \pmod{p} & \text{if } b \equiv 1 \pmod{8}, \\ (-1)^{\frac{p-1}{4}} \pmod{p} & \text{if } b \equiv 3 \pmod{8}, \\ 1 \pmod{p} & \text{if } b \equiv 5 \pmod{8}, \\ (-1)^{\frac{p-1}{4}+y} \pmod{p} & \text{if } b \equiv 7 \pmod{8}. \end{cases}$$

Remark 2.2 We conjecture that the condition (c, x + d) = 1 or $(d_0, x + c) = 1$ in Theorems 2.1-2.2 and Corollaries 2.1-2.2 can be canceled. See [S4, Conjecture 9.5].

3. Congruences for $U_{\frac{p-1}{4}}(b,-4^{\alpha-1})$ and $V_{\frac{p-1}{4}}(b,-4^{\alpha-1}) \pmod p$.

Let $\{U_n(b,c)\}$ and $\{V_n(b,c)\}$ be the Lucas sequences given by (1.3) and (1.4). Set $d=b^2-4c$. It is well known that for any positive integer n,

(3.1)
$$U_n(b,c) = \begin{cases} \frac{1}{\sqrt{d}} \left\{ \left(\frac{b + \sqrt{d}}{2} \right)^n - \left(\frac{b - \sqrt{d}}{2} \right)^n \right\} & \text{if } d \neq 0, \\ n(\frac{b}{2})^{n-1} & \text{if } d = 0 \end{cases}$$

and

(3.2)
$$V_n(b,c) = \left(\frac{b+\sqrt{d}}{2}\right)^n + \left(\frac{b-\sqrt{d}}{2}\right)^n.$$

From [S1, Lemma 6.1(b)] we know that if p > 3 is a prime such that $p \nmid bcd$, then

(3.3)
$$p \mid U_n(b,c) \iff V_{2n}(b,c) \equiv 2c^n \pmod{p}.$$

Theorem 3.1. Let $p \equiv 1 \pmod{4}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2 \neq b^2 + 4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$.

(i) If $4 \nmid xy$, then $V_{\frac{p-1}{4}}(b, -1) \equiv 0 \pmod{p}$ and

$$U_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases} (-1)^{\left[\frac{b}{4}\right] + \frac{d}{4} + \frac{x-2}{4} \frac{2y}{x} \pmod{p} & \text{if } 2 \parallel x, \\ (-1)^{\frac{x-1}{2} \frac{2dy}{cx}} \pmod{p} & \text{if } 2 \parallel y. \end{cases}$$

(ii) If $4 \mid xy$, then $U_{\frac{p-1}{4}}(b,-1) \equiv 0 \pmod{p}$ and

$$V_{\frac{p-1}{4}}(b,-1) \equiv \begin{cases} 2(-1)^{\left[\frac{b}{4}\right] + \frac{x}{4}} \frac{c}{d} \pmod{p} & \text{if } 4 \mid x, \\ 2(-1)^{\frac{d+y}{4}} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

Proof. Suppose $x = 2^s x_0$ with $2 \nmid x_0$. Since $(\frac{cx}{dy})^2 \equiv b^2 + 4 \pmod{p}$, using (3.1) and (3.2) we see that

$$U_{\frac{p-1}{4}}(b,-1) \equiv (-1)^{\frac{x_0-1}{2}} \frac{dy}{cx} \left\{ \left(\frac{b + \left(-1\right)^{\frac{x_0-1}{2}} \frac{cx}{dy}}{2} \right)^{\frac{p-1}{4}} - \left(\frac{b - \left(-1\right)^{\frac{x_0-1}{2}} \frac{cx}{dy}}{2} \right)^{\frac{p-1}{4}} \right\} \pmod{p}$$

and

$$V_{\frac{p-1}{4}}(b,-1) \equiv \left(\frac{b + \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} + \left(\frac{b - \frac{cx}{dy}}{2}\right)^{\frac{p-1}{4}} \ (\text{mod } p).$$

Now applying Theorem 2.1 we deduce the result.

Remark 3.1 When p is a prime of the form 8k+1 and $p=c^2+d^2=x^2+(b^2+4)y^2$ with $b \in \{1,3\}$ and $4 \mid y$, the conjecture $V_{\frac{p-1}{4}}(b,-1) \equiv 2(-1)^{\frac{d+y}{4}} \pmod{p}$ is equivalent to a conjecture of E. Lehmer. See [L, Conjecture 4].

Theorem 3.2. Let $p \equiv 1 \pmod{8}$ be a prime, $b \in \mathbb{Z}$, $2 \nmid b$ and $p = c^2 + d^2 = x^2 + (b^2 + 4)y^2 \neq b^2 + 4$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$ and $d = 2^r d_0$ with $d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then $p \mid U_{\frac{p-1}{8}}(b, -1)$ if and only if $y \equiv \frac{p-1}{2} + d \pmod{8}$.

Proof. This is immediate from (3.3) and Theorem 3.1.

Using (3.1), (3.2) and Theorem 2.2 one can similarly prove the following result.

Theorem 3.3. Let $p \equiv 1 \pmod{4}$ be a prime, $b, \alpha \in \mathbb{Z}$, $\alpha \geq 2$, $2 \nmid b$, $p \neq b^2 + 4^{\alpha}$ and $p = c^2 + d^2 = x^2 + (b^2 + 4^{\alpha})y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$, $d = 2^r d_0$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. Assume (c, x+d) = 1 or $(d_0, x+c) = 1$.

(i) If $p \equiv 1 \pmod{8}$, then $U_{\frac{p-1}{4}}(b, -4^{\alpha-1}) \equiv 0 \pmod{p}$ and

$$V_{\frac{p-1}{4}}(b, -4^{\alpha-1}) \equiv \begin{cases} 2(-1)^{\frac{b^2-1}{8} + 2^{\alpha-2} + \frac{d+x}{4}\alpha} \pmod{p} & \text{if } 4 \mid x, \\ 2(-1)^{\frac{d+y}{4}\alpha} \pmod{p} & \text{if } 4 \mid y. \end{cases}$$

(ii) If $p \equiv 5 \pmod{8}$, then

$$U_{\frac{p-1}{4}}(b, -4^{\alpha-1}) \equiv \begin{cases} 0 \pmod{p} & \text{if } 2 \mid \alpha, \\ 2(-1)^{\frac{(b+2)^2-1}{8} + \frac{b+1}{2} + \frac{x-2}{4}} \frac{dy}{cx} \pmod{p} & \text{if } 2 \nmid \alpha \text{ and } 2 \parallel x, \\ 2(-1)^{\frac{x+1}{2}} \frac{dy}{cx} \pmod{p} & \text{if } 2 \nmid \alpha \text{ and } 2 \parallel y \end{cases}$$

and

$$V_{\frac{p-1}{4}}(b, -4^{\alpha-1}) \equiv \begin{cases} 0 \pmod{p} & \text{if } 2 \nmid \alpha, \\ 2(-1)^{\frac{(b+2)^2-9}{8} + 2^{\alpha-2}} \pmod{p} & \text{if } 2 \mid \alpha \text{ and } 2 \parallel x, \\ 2(-1)^{\frac{b-1}{2}} \pmod{p} & \text{if } 2 \mid \alpha \text{ and } 2 \parallel y. \end{cases}$$

From (2.5), (3.3) and Theorem 3.3 we derive the following result.

Theorem 3.4. Let $p \equiv 1 \pmod{8}$ be a prime, $b, \alpha \in \mathbb{Z}$, $\alpha \geq 2$, $2 \nmid b$, $p \neq b^2 + 4^{\alpha}$ and $p = c^2 + d^2 = x^2 + (b^2 + 4^{\alpha})y^2$ for some $c, d, x, y \in \mathbb{Z}$. Suppose $c \equiv 1 \pmod{4}$ and $d = 2^r d_0$ with $d_0 \equiv 1 \pmod{4}$. Assume (c, x + d) = 1 or $(d_0, x + c) = 1$. Then

$$p \mid U_{\frac{p-1}{8}}(b, -4^{\alpha - 1}) \iff \frac{p-1}{8} + \frac{d}{4} \equiv \begin{cases} \frac{b^2 - 1}{8} + 2^{\alpha - 2} + \frac{x}{4}\alpha \pmod{2} & \text{if } 4 \mid x, \\ \frac{y}{4}\alpha \pmod{2} & \text{if } 4 \mid y. \end{cases}$$

4. Congruences for $U_{\frac{p-1}{4}}(4a,-1)$ and $V_{\frac{p-1}{4}}(4a,-1)$ (mod p).

Theorem 4.1. Let $a \in \mathbb{Z}$, $a \neq 0$ and let $p \equiv 1 \pmod{4}$ be a prime such that $p = c^2 + d^2 = x^2 + (4a^2 + 1)y^2$ with $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$ and $p \neq 4a^2 + 1$. Suppose $d = 2^r d_0$, $y = 2^t y_0$ and $d_0 \equiv y_0 \equiv 1 \pmod{4}$. Assume that (c, x + d) = 1 or $(d_0, x + c) = 1$.

(i) If $p \equiv 1 \pmod{8}$, then

$$U_{\frac{p-1}{4}}(4a, -1) \equiv \begin{cases} (-1)^{\frac{a+1}{2} + \frac{d}{4} + \frac{x-2}{4}} \frac{y}{x} \pmod{p} & \text{if } 2 \nmid ay, \\ 0 \pmod{p} & \text{if } 2 \mid ay \end{cases}$$

and

$$V_{\frac{p-1}{4}}(4a, -1) \equiv \begin{cases} 2(-1)^{\frac{d}{4} + \frac{a}{2}y + \frac{xy}{4}} \pmod{p} & \text{if } 2 \mid a, \\ 2(-1)^{\frac{d}{4} + \frac{y}{4}} \pmod{p} & \text{if } 2 \nmid a \text{ and } 2 \mid y, \\ 0 \pmod{p} & \text{if } 2 \nmid ay. \end{cases}$$

(ii) If $p \equiv 5 \pmod{8}$, then

$$U_{\frac{p-1}{4}}(4a, -1) \equiv \begin{cases} (-1)^{\frac{a}{2} + \frac{x-2}{4}} \frac{dy}{cx} \pmod{p} & \text{if } 2 \mid a \text{ and } 2 \nmid y, \\ (-1)^{\frac{x+1}{2}} \frac{dy}{cx} \pmod{p} & \text{if } 2 \mid a \text{ and } 2 \mid y, \\ (-1)^{\frac{x-1}{2}} \frac{dy}{cx} \pmod{p} & \text{if } 2 \nmid a \text{ and } 2 \mid y, \\ 0 \pmod{p} & \text{if } 2 \nmid ay \end{cases}$$

and

$$V_{\frac{p-1}{4}}(4a,-1) \equiv \left\{ \begin{array}{ll} 0 \; (\bmod \; p) & \text{if } 2 \mid ay, \\ 2(-1)^{\frac{a-1}{2} + \frac{x}{4}} \frac{d}{c} \; (\bmod \; p) & \text{if } 2 \nmid ay. \end{array} \right.$$

Proof. Clearly $(4a^2+1,x) \mid p$ and so $(4a^2+1,x)=1$. As $(d-2ac)(d+2ac)=d^2-4a^2c^2\equiv x^2-c^2-4a^2c^2\equiv x^2\pmod{4a^2+1}$, we see that $(d-2ac,4a^2+1)=1$.

Suppose $(\frac{(d-2ac)/x}{1-2ai})_4 = i^m$ and $x = 2^s x_0$ $(2 \nmid x_0)$. Since $(\frac{-1}{1-2ai})_4 = (-1)^a$ by (1.1), replacing x with $(-1)^{(x_0-1)/2}x$ in [S4, Theorem 7.3] we see that for $p \equiv 1 \pmod{8}$,

$$U_{\frac{p-1}{4}}(4a, -1) \equiv \begin{cases} (-1)^{\frac{a+1}{2}} \frac{y}{x} (\frac{d}{c})^{m+1} (4a^2 + 1)^{\frac{p-1}{8}} \pmod{p} & \text{if } 2 \nmid ay, \\ 0 \pmod{p} & \text{if } 2 \mid ay \end{cases}$$

and

$$V_{\frac{p-1}{4}}(4a,-1) \equiv \begin{cases} 2(-1)^{\frac{a}{2}y} (\frac{d}{c})^m (4a^2+1)^{\frac{p-1}{8}} \pmod{p} & \text{if } 2 \mid a, \\ 2(-1)^{\frac{x+1}{2}} (\frac{d}{c})^{m+1} (4a^2+1)^{\frac{p-1}{8}} \pmod{p} & \text{if } 2 \nmid a \text{ and } 2 \mid y, \\ 0 \pmod{p} & \text{if } 2 \nmid ay, \end{cases}$$

and that for $p \equiv 5 \pmod{8}$,

$$U_{\frac{p-1}{4}}(4a,-1) \equiv \begin{cases} (-1)^{\frac{a}{2}y} (\frac{d}{c})^m (4a^2+1)^{\frac{p-5}{8}} \pmod{p} & \text{if } 2 \mid a, \\ (-1)^{\frac{x-1}{2}} (\frac{d}{c})^{m+1} (4a^2+1)^{\frac{p-5}{8}} \pmod{p} & \text{if } 2 \nmid a \text{ and } 2 \mid y, \\ 0 \pmod{p} & \text{if } 2 \nmid ay \end{cases}$$

and

$$V_{\frac{p-1}{4}}(4a,-1) \equiv \begin{cases} 0 \pmod{p} & \text{if } 2 \mid ay, \\ 2(-1)^{\frac{a+1}{2}} \frac{x}{y} (\frac{d}{c})^{m+1} (4a^2+1)^{\frac{p-5}{8}} \pmod{p} & \text{if } 2 \nmid ay. \end{cases}$$

Replacing a, b with -2a, 1 in Lemma 2.2 we see that for $p \equiv 1 \pmod{8}$,

$$(4a^2+1)^{\frac{p-1}{8}} \equiv \left\{ \begin{array}{ll} (-1)^{\frac{d}{4}+\frac{xy}{4}} (\frac{c}{d})^m \pmod{p} & \text{if } 2 \mid a, \\ \\ (-1)^{\frac{d}{4}+\frac{x+2}{4}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 2 \nmid ay, \\ \\ (-1)^{\frac{d}{4}+\frac{x-1}{2}+\frac{y}{4}} (\frac{c}{d})^{m-1} \pmod{p} & \text{if } 2 \nmid a \text{ and } 2 \mid y, \end{array} \right.$$

while for $p \equiv 5 \pmod{8}$,

$$(4a^2+1)^{\frac{p-5}{8}} \equiv \left\{ \begin{array}{l} (-1)^{\frac{x-2}{4}} (\frac{c}{d})^{m-1} \frac{y}{x} \; (\text{mod } p) & \text{if } 2 \mid a \; \text{and } 2 \nmid y, \\ (-1)^{\frac{x+1}{2}} (\frac{c}{d})^{m-1} \frac{y}{x} \; (\text{mod } p) & \text{if } 2 \mid a \; \text{and } 2 \mid y, \\ (-1)^{\frac{x}{4}+1} (\frac{c}{d})^{m} \frac{y}{x} \; (\text{mod } p) & \text{if } 2 \nmid ay, \\ (\frac{c}{d})^{m} \frac{y}{x} \; (\text{mod } p) & \text{if } 2 \nmid a \; \text{and } 2 \mid y. \end{array} \right.$$

Now putting all the above together we deduce the result.

Corollary 4.1. Let $a \in \mathbb{Z}$, $a \neq 0$ and let $p \equiv 1 \pmod{4}$ be a prime such that $p = c^2 + d^2 = x^2 + (4a^2 + 1)y^2$ with $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$ and $p \neq 4a^2 + 1$.

Suppose $d = 2^r d_0$ with $d_0 \equiv 1 \pmod{4}$. Assume that (c, x+d) = 1 or $(d_0, x+c) = 1$. If $4 \mid xy$, then

$$(2a + \sqrt{4a^2 + 1})^{\frac{p-1}{4}} \equiv \begin{cases} (-1)^{\frac{d}{4} + \frac{a}{2}y + \frac{xy}{4}} \pmod{p} & \text{if } 2 \mid a, \\ (-1)^{\frac{d}{4} + \frac{y}{4}} \pmod{p} & \text{if } 2 \nmid a \text{ and } 4 \mid y, \\ (-1)^{\frac{a-1}{2} + \frac{x}{4}} \frac{d}{c} \pmod{p} & \text{if } 2 \nmid a \text{ and } 4 \mid x. \end{cases}$$

Proof. Suppose $4 \mid xy$. By Theorem 4.1, $p \mid U_{\frac{p-1}{4}}(4a, -1)$. Hence, using (3.1) and (3.2) we see that

$$(2a + \sqrt{4a^2 + 1})^{\frac{p-1}{4}} = \sqrt{4a^2 + 1} U_{\frac{p-1}{4}}(4a, -1) + \frac{1}{2} V_{\frac{p-1}{4}}(4a, -1)$$

$$\equiv \frac{1}{2} V_{\frac{p-1}{4}}(4a, -1) \pmod{p}.$$

Now the result follows from Theorem 4.1 immediately.

From Theorem 4.1 and (3.3) we deduce the following result.

Theorem 4.2. Let $a \in \mathbb{Z}$, $a \neq 0$ and let $p \equiv 1 \pmod{8}$ be a prime such that $p = c^2 + d^2 = x^2 + (4a^2 + 1)y^2$ with $c, d, x, y \in \mathbb{Z}$, $c \equiv 1 \pmod{4}$ and $p \neq 4a^2 + 1$. Suppose $d = 2^r d_0$ with $d_0 \equiv 1 \pmod{4}$. Assume that (c, x + d) = 1 or $(d_0, x + c) = 1$. Then

$$p \mid U_{\frac{p-1}{8}}(4a,-1) \iff 4 \mid xy \ and \ \frac{p-1}{8} \equiv \left\{ \begin{array}{l} \frac{d}{4} + \frac{a}{2}y + \frac{xy}{4} \pmod{2} & \text{if } 2 \mid a, \\ \frac{d}{4} + \frac{y}{4} \pmod{2} & \text{if } 2 \nmid a. \end{array} \right.$$

Remark 4.1 We conjecture that the condition (c, x + d) = 1 or $(d_0, x + c) = 1$ in Theorems 3.1-3.4, 4.1-4.2 and Corollary 4.1 can be canceled. See also [S4, Conjectures 9.4, 9.10, 9.11, 9.14 and 9.19].

References

- [BEW] B.C. Berndt, R.J. Evans and K.S. Williams, *Gauss and Jacobi Sums*, Wiley, New York, 1998
- [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Springer, New York, 1990.
- [L] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
- [Lem] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
- [S1] Z.H. Sun, On the theory of cubic residues and nonresidues, Acta Arith. 84 (1998), 291-335.
- [S2] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory 113 (2005), 10-52.
- [S3] Z.H. Sun, On the quadratic character of quadratic units, J. Number Theory 128 (2008), 1295-1335.
- [S4] Z.H. Sun, Quartic, octic residues and Lucas sequences, J. Number Theory 129 (2009), 499-550.
- [S5] Z.H. Sun, Congruences for $(A + \sqrt{A^2 + mB^2})^{(p-1)/2}$ and $(b + \sqrt{a^2 + b^2})^{(p-1)/4}$ (mod p), Acta Arith. **149** (2011), 275-296.
- [S6] Z.H. Sun, Congruences for $q^{[p/8]} \pmod{p}$, Acta Arith. **159** (2013), 1-25.