Acta Arith. 149(2011), no.3, 275-296.

Congruences for $\left(A+\sqrt{A^{2}+m B^{2}}\right)^{\frac{p-1}{2}}$ and $\left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{4}}(\bmod p)$ by ZHI-HONG SUN (Huaian)

Abstract

Let \mathbb{Z} be the set of integers, and let p be an odd prime. In the paper we use the quadratic reciprocity law to determine $(A+$ $\left.\sqrt{A^{2}+m B^{2}}\right)^{\frac{p-1}{2}}(\bmod p)$ for $A, B, m \in \mathbb{Z}$, and use Western's formula to determine $\left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{4}}(\bmod p)$ provided that $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv$ $1(\bmod 8), a, b, x, y \in \mathbb{Z}, 2 \nmid a, 4 \mid b$ and $a^{2}+b^{2}$ is a prime.

1. Introduction.

Let \mathbb{Z} and \mathbb{N} be the sets of integers and positive integers respectively, $i=\sqrt{-1}$ and $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$. For $a, b \in \mathbb{Z}, a+b i$ is called primary if $b \equiv 0(\bmod 2)$ and $a \equiv 1-b(\bmod 4)$. When π or $-\pi$ is primary in $\mathbb{Z}[i]$ and $\alpha \in \mathbb{Z}[i]$, one can define the quartic Jacobi symbol $\left(\frac{\alpha}{\pi}\right)_{4}$ as in [S2,S4]. For the properties of the quartic Jacobi symbol one may consult [IR], [S4, (2.1)-(2.8)] and [S6, Propositions 2.1-2.6].

For any positive integer m and $a \in \mathbb{Z}$ let $\left(\frac{a}{m}\right)$ be the Legendre-JacobiKronecker symbol. (We also assume $\left(\frac{a}{1}\right)=1$.) For our convenience we also define $\left(\frac{a}{-m}\right)=\left(\frac{a}{m}\right)$. Then for any two odd numbers m and n we have the following general quadratic reciprocity law:

$$
\left(\frac{m}{n}\right)= \begin{cases}(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{m}\right) & \text { if } m>0 \text { or } n>0 \tag{1.1}\\ -(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{m}\right) & \text { if } m<0 \text { and } n<0\end{cases}
$$

Let $a, m, A, B, C, D \in \mathbb{Z}$ and let p be an odd prime such that $a p=C^{2}+$ $m D^{2}$. In Section 2 we obtain congruences for $\left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ using only the quadratic reciprocity law. This generalizes the result for $m=1$ in [S5]. For example, if $p=C^{2}+2 D^{2}$ is a prime of the form $8 k+1$, then

$$
(3 \pm \sqrt{17})^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{2 C+3 D}{17}\right)(\bmod p) & \text { if } \quad\left(\frac{p}{17}\right)=1 \\ \left(\frac{2 C+3 D}{17}\right) \frac{(3 \mp \sqrt{17}) D}{2 C}(\bmod p) & \text { if } \quad\left(\frac{p}{17}\right)=-1\end{cases}
$$

[^0]Suppose that p is a prime of the form $8 k+1$. In Section 3, using Western's formula for octic residues we determine $\left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{4}}(\bmod p)$ provided that $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2} \neq a^{2}+b^{2}, a, b, x, y \in \mathbb{Z}, 2 \nmid a, 4 \mid b$ and $a^{2}+b^{2}$ is a prime. See Theorems 3.1 and 3.2. For instance, if $p \neq 17$ is a prime of the form $8 k+1$ and so $p=C^{2}+2 D^{2}$ for some $C, D \in \mathbb{Z}$, then

$$
\begin{aligned}
& (4 \pm \sqrt{17})^{\frac{p-1}{4}} \equiv 1(\bmod p) \\
& \Longleftrightarrow p=x^{2}+17 y^{2}(x, y \in \mathbb{Z}) \quad \text { and } \quad(-1)^{y}=\left(\frac{2 C-3 D}{17}\right)
\end{aligned}
$$

For $b, c \in \mathbb{Z}$ the Lucas sequences $\left\{U_{n}(b, c)\right\}$ and $\left\{V_{n}(b, c)\right\}$ are defined by

$$
U_{0}(b, c)=0, U_{1}(b, c)=1, U_{n+1}(b, c)=b U_{n}(b, c)-c U_{n-1}(b, c)(n \geq 1)
$$

and

$$
V_{0}(b, c)=2, V_{1}(b, c)=b, V_{n+1}(b, c)=b V_{n}(b, c)-c V_{n-1}(b, c)(n \geq 1)
$$

Let $d=b^{2}-4 c$. It is well known that for $n \in \mathbb{N}$,

$$
U_{n}(b, c)= \begin{cases}\frac{1}{\sqrt{d}}\left\{\left(\frac{b+\sqrt{d}}{2}\right)^{n}-\left(\frac{b-\sqrt{d}}{2}\right)^{n}\right\} & \text { if } d \neq 0 \tag{1.2}\\ n\left(\frac{b}{2}\right)^{n-1} & \text { if } d=0\end{cases}
$$

and

$$
\begin{equation*}
V_{n}(b, c)=\left(\frac{b+\sqrt{d}}{2}\right)^{n}+\left(\frac{b-\sqrt{d}}{2}\right)^{n} \tag{1.3}
\end{equation*}
$$

Let p be an odd prime. In Section 2 we obtain a criterion for $U_{\frac{p-1}{4}}(2 A$, $\left.-m B^{2}\right) \equiv 0(\bmod p)($ if $p \equiv 1(\bmod 4))$ in terms of binary quadratic forms, in Section 3 we derive a criterion for $p \left\lvert\, U_{\frac{p-1}{8}}\left(2 b,-a^{2}\right)($ if $p \equiv 1(\bmod 8)$, \right. $2 \nmid a, 4 \mid b$ and $a^{2}+b^{2}$ is a prime), and in Section 4 we pose five conjectures concerning $V_{\frac{p+1}{4}}(k,-1)(\bmod p)($ if $p \equiv 3(\bmod 4))$ and $q^{[p / 8]}(\bmod p)($ if $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4))$, where $[x]$ is the greatest integer not exceeding x.

Throughout the paper we use (m, n) to denote the greatest common divisor of integers m and n.
2. Congruences for $\left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$.

For complex numbers A, B, C, D and m it is clear that

$$
\begin{equation*}
\left(A^{2}+m B^{2}\right)\left(C^{2}+m D^{2}\right)=(A C-m B D)^{2}+m(A D+B C)^{2} . \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Suppose $A, B, C, D, m \in \mathbb{Z}, A^{2}+m B^{2} \neq 0, C^{2}+m D^{2}>1$, $(A, B)=(C, D)=1,2 \nmid C^{2}+m D^{2}$ and $\left(A^{2}+m B^{2}, C^{2}+m D^{2}\right)=1$. Let

$$
\delta_{0}= \begin{cases}1 & \text { if } A^{2}+m B^{2}>0 \text { or } A D+B C>0 \\ -1 & \text { if } A^{2}+m B^{2}<0 \text { and } A D+B C<0\end{cases}
$$

Then

$$
\begin{aligned}
& \delta_{0}\left(\frac{A D+B C}{C^{2}+m D^{2}}\right) \\
& = \begin{cases}(-1)^{\frac{A D+B C}{2}} m\left(\frac{A D+B C}{A^{2}+m B^{2}}\right) & \text { if } A D+B C \equiv 0(\bmod 2), \\
\left(\frac{A D+B C}{A^{2}+m B^{2}}\right) & \text { if } A D+B C \equiv 1(\bmod 4), \\
(-1)^{\left[\frac{m}{2}\right] D}\left(\frac{-A D-B C}{A^{2}+m B^{2}}\right) & \text { if } A D+B C \equiv 3(\bmod 4) .\end{cases}
\end{aligned}
$$

Proof. If q is a prime such that $q \mid\left(A D+B C, C^{2}+m D^{2}\right)$, then $D^{2}\left(A^{2}+m B^{2}\right) \equiv B^{2} C^{2}+m B^{2} D^{2}=B^{2}\left(C^{2}+m D^{2}\right) \equiv 0(\bmod q)$. As $\left(A^{2}+m B^{2}, C^{2}+m D^{2}\right)=1$, we have $q \nmid A^{2}+m B^{2}$ and hence $q \mid D$. Thus, $C^{2} \equiv-m D^{2} \equiv 0(\bmod q)$ and so $q \mid C$. Since $(C, D)=1$, this is impossible. Therefore, $\left(A D+B C, C^{2}+m D^{2}\right)=1$. By the symmetry, we also have $\left(A D+B C, A^{2}+m B^{2}\right)=1$.

Suppose $A D+B C=2^{\alpha_{1}} n_{1}\left(2 \nmid n_{1}\right)$ and $A^{2}+m B^{2}=2^{\alpha} n(2 \nmid n)$. By (1.1) and (2.1) we obtain

$$
\begin{aligned}
& \left(\frac{A D+B C}{C^{2}+m D^{2}}\right)\left(\frac{2^{\alpha_{1}}}{C^{2}+m D^{2}}\right) \\
& =\left(\frac{n_{1}}{C^{2}+m D^{2}}\right)=(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{C^{2}+m D^{2}}{n_{1}}\right) \\
& =(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{A^{2}+m B^{2}}{n_{1}}\right)\left(\frac{\left(A^{2}+m B^{2}\right)\left(C^{2}+m D^{2}\right)}{n_{1}}\right) \\
& =(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{2^{\alpha} n}{n_{1}}\right)\left(\frac{(A C-m B D)^{2}+m(A D+B C)^{2}}{n_{1}}\right) \\
& =(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{2}{n_{1}}\right)^{\alpha}\left(\frac{n}{n_{1}}\right)\left(\frac{(A C-m B D)^{2}}{n_{1}}\right) \\
& =(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{2}{n_{1}}\right)^{\alpha} \delta_{0}(-1)^{\frac{n_{1}-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n_{1}}{n}\right) \\
& =\delta_{0}(-1)^{\frac{n_{1}-1}{2} \cdot \frac{C^{2}+m D^{2}-n}{2}}\left(\frac{2}{n_{1}}\right)^{\alpha}\left(\frac{2}{n}\right)^{\alpha_{1}}\left(\frac{A D+B C}{n}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
& \delta_{0}\left(\frac{A D+B C}{C^{2}+m D^{2}}\right) \\
& =(-1)^{\frac{n_{1}-1}{2} \cdot \frac{\left(C^{2}+m D^{2}\right) n-1}{2}}\left(\frac{2}{\left(C^{2}+m D^{2}\right) n}\right)^{\alpha_{1}}\left(\frac{2}{n_{1}}\right)^{\alpha}\left(\frac{A D+B C}{n}\right) \tag{2.2}
\end{align*}
$$

If $2 \mid A D+B C$, as $\left(A D+B C, A^{2}+m B^{2}\right)=1$ we have $2 \nmid A^{2}+m B^{2}$. Thus, $\alpha=0, n=A^{2}+m B^{2}$ and $2 \nmid\left(C^{2}+m D^{2}\right) n$. By (2.1) we have

$$
\begin{aligned}
& \left(C^{2}+m D^{2}\right) n \\
& =\left(A^{2}+m B^{2}\right)\left(C^{2}+m D^{2}\right)=(A C-m B D)^{2}+m(A D+B C)^{2} \\
& \equiv \begin{cases}1(\bmod 8) & \text { if } A D+B C \equiv 0(\bmod 4), \\
1+4 m(\bmod 8) & \text { if } A D+B C \equiv 2(\bmod 4) .\end{cases}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& (-1)^{\frac{n_{1}-1}{2} \cdot \frac{\left(C^{2}+m D^{2}\right) n-1}{2}}\left(\frac{2}{\left(C^{2}+m D^{2}\right) n}\right)^{\alpha_{1}} \\
& =\left(\frac{2}{\left(C^{2}+m D^{2}\right) n}\right)^{\alpha_{1}} \\
& =\left\{\begin{array}{lll}
1 & \text { if } A D+B C \equiv 0(\bmod 4) \\
\left(\frac{2}{1+4 m}\right)=(-1)^{m} & \text { if } & A D+B C \equiv 2(\bmod 4)
\end{array}\right.
\end{aligned}
$$

Hence, by (2.2) we deduce the result.
Now assume $A D+B C \equiv 1(\bmod 4)$. Then $\alpha_{1}=0$ and $n_{1}=A D+B C \equiv$ $1(\bmod 4)$. Observe that

$$
\begin{aligned}
\left(\frac{2}{n_{1}}\right)^{\alpha}\left(\frac{A D+B C}{n}\right) & =\left(\frac{2}{A D+B C}\right)^{\alpha}\left(\frac{A D+B C}{n}\right) \\
& =\left(\frac{A D+B C}{2}\right)^{\alpha}\left(\frac{A D+B C}{n}\right)=\left(\frac{A D+B C}{A^{2}+m B^{2}}\right)
\end{aligned}
$$

By (2.2) we deduce the result.
Finally we assume $A D+B C \equiv 3(\bmod 4)$. Then $A(-D)+B(-C) \equiv$ $1(\bmod 4)$. From the above we deduce

$$
\delta_{0}\left(\frac{A D+B C}{C^{2}+m D^{2}}\right)=(-1)^{\frac{C^{2}+m D^{2}-1}{2}}\left(\frac{A(-D)+B(-C)}{A^{2}+m B^{2}}\right)
$$

As $(C, D)=1$ and $2 \nmid C^{2}+m D^{2}$, we see that $\frac{C^{2}+m D^{2}-1}{2} \equiv\left[\frac{m}{2}\right] D(\bmod 2)$. So the result follows. The proof is now complete.

Lemma 2.2. Let $C, D, m \in \mathbb{Z}$ with $(C, D)=1$ and $C^{2}+m D^{2} \in\{3,5,7, \ldots\}$. Then

$$
\left(\frac{D}{C^{2}+m D^{2}}\right)= \begin{cases}1 & \text { if } 4 \mid D \\ (-1)^{m} & \text { if } 4 \mid D-2 \\ (-1)^{\frac{D-1}{2} \cdot\left[\frac{m}{2}\right]} & \text { if } 2 \nmid D\end{cases}
$$

Proof. Set $D=2^{\alpha} D_{0}\left(2 \nmid D_{0}\right)$. If $4 \mid D$, then $C^{2}+m D^{2} \equiv C^{2} \equiv$ $1(\bmod 8)$ and so

$$
\left(\frac{D}{C^{2}+m D^{2}}\right)=\left(\frac{D_{0}}{C^{2}+m D^{2}}\right)=\left(\frac{C^{2}+m D^{2}}{D_{0}}\right)=\left(\frac{C^{2}}{D_{0}}\right)=1
$$

If $4 \mid D-2$, then $C^{2}+m D^{2} \equiv 1+4 m(\bmod 8)$ and so

$$
\left(\frac{D}{C^{2}+m D^{2}}\right)=\left(\frac{2 D_{0}}{C^{2}+m D^{2}}\right)=\left(\frac{2}{1+4 m}\right)\left(\frac{C^{2}+m D^{2}}{D_{0}}\right)=(-1)^{m}
$$

If $2 \nmid D$, then

$$
\begin{aligned}
& \left(\frac{D}{C^{2}+m D^{2}}\right) \\
& =(-1)^{\frac{D-1}{2}} \cdot \frac{C^{2}+m D^{2}-1}{2} \\
& =\left(\frac{C^{2}+m D^{2}}{D}\right)=(-1)^{\frac{D-1}{2} \cdot \frac{C^{2}+m D^{2}-1}{2}}\left(\frac{C^{2}}{D}\right) \\
& \frac{D-1}{2} \cdot \frac{C^{2}+m-1}{2}
\end{aligned}=(-1)^{\frac{D-1}{2} \cdot\left[\frac{m}{2}\right]} . ~ \$
$$

So the lemma is proved.
Lemma 2.3. Let $b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Let p be an odd prime such that $p \nmid c\left(b^{2}-4 c\right)$. Then

$$
p \left\lvert\, U_{n}(b, c) \Longleftrightarrow\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{2 n} \equiv c^{n}(\bmod p)\right.
$$

Proof. From (1.2) we have

$$
\begin{aligned}
p \mid U_{n}(b, c) & \Longleftrightarrow\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{n} \equiv\left(\frac{b-\sqrt{b^{2}-4 c}}{2}\right)^{n}(\bmod p) \\
& \Longleftrightarrow\left(\frac{b+\sqrt{b^{2}-4 c}}{2}\right)^{2 n} \equiv\left(\frac{b^{2}-\left(b^{2}-4 c\right)}{4}\right)^{n}=c^{n}(\bmod p)
\end{aligned}
$$

This proves the lemma.
For complex numbers A, B and m it is clear that
(2.3) $(A+B \sqrt{-m}) \frac{A+\sqrt{A^{2}+m B^{2}}}{2}=\left(\frac{A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}}{2}\right)^{2}$.

Now using Lemmas 2.1-2.3 and (2.3) we deduce the following main result.

Theorem 2.1. Let p be an odd prime, $a, m, C, D \in \mathbb{Z}, a>0,2 \nmid a,(C, D)$ $=1$ and ap $=C^{2}+m D^{2}$. Let $A, B \in \mathbb{Z}$ with $(A, B)=1, p \nmid m B$ and $\left(A^{2}+m B^{2}, a p\right)=1$. Suppose that δ_{0} is given in Lemma 2.1. Let

$$
\begin{aligned}
& \delta_{1}= \begin{cases}(-1)^{\frac{D}{2} m} & \text { if } 2 \mid D, \\
(-1)^{\frac{D-1}{2} \cdot\left[\frac{m}{2}\right]} & \text { if } 2 \nmid D,\end{cases} \\
& \delta_{2}= \begin{cases}1 & \text { if } A D+B C \equiv 0,1(\bmod 4), \\
(-1)^{m} & \text { if } A D+B C \equiv 2(\bmod 4), \\
(-1)^{\left[\frac{m}{2}\right] D} & \text { if } A D+B C \equiv 3(\bmod 4),\end{cases}
\end{aligned}
$$

and

$$
\varepsilon= \begin{cases}\delta_{0} \delta_{1} \delta_{2}\left(\frac{A D+B C}{A^{2}+m B^{2}}\right) & \text { if } A D+B C \not \equiv 3(\bmod 4), \\ \delta_{0} \delta_{1} \delta_{2}\left(\frac{-A D-B C}{A^{2}+m B^{2}}\right) & \text { if } A D+B C \equiv 3(\bmod 4) .\end{cases}
$$

Then

$$
\begin{aligned}
& \left(\frac{A \pm \sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\varepsilon\left(\frac{D(A D+B C)}{a}\right)(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1, \\
\varepsilon\left(\frac{D(A D+B C)}{a}\right) \frac{D\left(A \mp \sqrt{A^{2}+m B^{2}}\right)}{B C}(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Moreover, if $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{4}}\left(2 A,-m B^{2}\right)\right. \\
& \quad \Longleftrightarrow\left(\frac{A^{2}+m B^{2}}{p}\right)=1 \quad \text { and } \quad \varepsilon\left(\frac{D(A D+B C)}{a}\right)=\left(\frac{2 B C D}{p}\right) .
\end{aligned}
$$

Proof. As $\left(\frac{-m}{p}\right)=1$ and $(\sqrt{x})^{p}=\sqrt{x} \cdot x^{\frac{p-1}{2}} \equiv\left(\frac{x}{p}\right) \sqrt{x}(\bmod p)$ for $x \in \mathbb{Z}$, using the binomial theorem and Fermat's little theorem we see that

$$
\begin{aligned}
& \left(A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}\right)^{p} \\
& \equiv A^{p}+(B \sqrt{-m})^{p}+\left(\sqrt{A^{2}+m B^{2}}\right)^{p} \\
& \equiv A+B \sqrt{-m}+\left(\frac{A^{2}+m B^{2}}{p}\right) \sqrt{A^{2}+m B^{2}}(\bmod p)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(\frac{A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}}{2}\right)^{p-1} \\
& \equiv \frac{\left(A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}\right)^{p}}{A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}} \\
& \equiv \frac{A+B \sqrt{-m}+\left(\frac{A^{2}+m B^{2}}{p}\right) \sqrt{A^{2}+m B^{2}}}{A+B \sqrt{-m}+\sqrt{A^{2}+m B^{2}}} \\
& =\left\{\begin{array}{lll}
\frac{A-\sqrt{A^{2}+m B^{2}}}{B \sqrt{-m}}(\bmod p) & \text { if } & \left(\frac{A^{2}+m B^{2}}{p}\right)=-1, \\
1(\bmod p) & \text { if } \quad\left(\frac{A^{2}+m B^{2}}{p}\right)=1 .
\end{array}\right.
\end{aligned}
$$

Hence applying (2.3) we obtain

$$
\begin{aligned}
& (A+B \sqrt{-m})^{\frac{p-1}{2}}\left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{lll}
\frac{A-\sqrt{A^{2}+m B^{2}}}{B \sqrt{-m}}(\bmod p) & \text { if } & \left(\frac{A^{2}+m B^{2}}{p}\right)=-1, \\
1(\bmod p) & \text { if } & \left(\frac{A^{2}+m B^{2}}{p}\right)=1 .
\end{array}\right.
\end{aligned}
$$

As $\left(\frac{C}{D}\right)^{2} \equiv-m(\bmod p)$, substituting $\sqrt{-m}$ with $\frac{C}{D}$ in the congruence we have

$$
\begin{aligned}
& \left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}}\left(A+\frac{B C}{D}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\frac{A-\sqrt{A^{2}+m B^{2}}}{B C / D}(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1, \\
1(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1\end{cases}
\end{aligned}
$$

Using Lemmas 2.1 and 2.2 we have

$$
\begin{aligned}
(A+B C / D)^{\frac{p-1}{2}} & \equiv\left(\frac{A+B C / D}{p}\right)=\left(\frac{D}{p}\right)\left(\frac{A D+B C}{p}\right) \\
& =\left(\frac{D}{a}\right)\left(\frac{A D+B C}{a}\right)\left(\frac{D}{a p}\right)\left(\frac{A D+B C}{a p}\right) \\
& =\left(\frac{D}{a}\right)\left(\frac{A D+B C}{a}\right)\left(\frac{D}{C^{2}+m D^{2}}\right)\left(\frac{A D+B C}{C^{2}+m D^{2}}\right) \\
& =\varepsilon\left(\frac{D(A D+B C)}{a}\right)(\bmod p) .
\end{aligned}
$$

Now combining the above we deduce

$$
\begin{aligned}
& \left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\varepsilon\left(\frac{D(A D+B C)}{a}\right)(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1, \\
\varepsilon\left(\frac{D(A D+B C)}{a}\right) \frac{D\left(A-\sqrt{A^{2}+m B^{2}}\right)}{B C}(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Since $a p=C^{2}+m D^{2}$ we see that $\left(\frac{-m}{p}\right)=1$ and so

$$
\begin{aligned}
& \left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}}\left(\frac{A-\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& =\left(-\frac{m B^{2}}{4}\right)^{\frac{p-1}{2}} \equiv 1(\bmod p) .
\end{aligned}
$$

We also have

$$
\frac{D\left(A+\sqrt{A^{2}+m B^{2}}\right)}{B C} \cdot \frac{D\left(A-\sqrt{A^{2}+m B^{2}}\right)}{B C}=\frac{-m B^{2} D^{2}}{B^{2} C^{2}} \equiv 1(\bmod p) .
$$

Thus, we also have

$$
\begin{aligned}
& \left(\frac{A-\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\varepsilon\left(\frac{D(A D+B C)}{a}\right)(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1, \\
\varepsilon\left(\frac{D(A D+B C)}{a}\right) \frac{D\left(A+\sqrt{A^{2}+m B^{2}}\right)}{B C}(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Now we assume $p \equiv 1(\bmod 4)$. From the above and Lemma 2.3 we see that

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{4}}\left(2 A,-m B^{2}\right)\right. \\
& \Longleftrightarrow\left(A+\sqrt{A^{2}+m B^{2}}\right)^{\frac{p-1}{2}} \equiv\left(-m B^{2}\right)^{\frac{p-1}{4}} \equiv\left(\frac{B C}{D}\right)^{\frac{p-1}{2}}(\bmod p) \\
& \Longleftrightarrow\left(\frac{A+\sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \equiv\left(\frac{2 B C D}{p}\right)(\bmod p) \\
& \Longleftrightarrow\left(\frac{2 B C D}{p}\right) \varepsilon\left(\frac{D(A D+B C)}{a}\right) \\
& \quad \equiv \begin{cases}1(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1, \\
\frac{D\left(A-\sqrt{A^{2}+m B^{2}}\right)}{B C}(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Since $p \nmid m B\left(A^{2}+m B^{2}\right)$ we have $A \not \equiv \pm \sqrt{A^{2}+m B^{2}}(\bmod p)$ and so $A^{2}+m B^{2}-A \sqrt{A^{2}+m B^{2}} \not \equiv 0(\bmod p)$. Thus

$$
\left(\frac{D\left(A-\sqrt{A^{2}+m B^{2}}\right)}{B C}\right)^{2} \equiv \frac{2 A^{2}+m B^{2}-2 A \sqrt{A^{2}+m B^{2}}}{-m B^{2}} \not \equiv 1(\bmod p)
$$

and so $\left(\frac{D\left(A-\sqrt{A^{2}+m B^{2}}\right)}{B C}\right) \not \equiv \pm 1(\bmod p)$. Hence,

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{4}}\left(2 A,-m B^{2}\right)\right. \\
& \quad \Longleftrightarrow\left(\frac{A^{2}+m B^{2}}{p}\right)=1 \quad \text { and } \quad \varepsilon\left(\frac{D(A D+B C)}{a}\right)=\left(\frac{2 B C D}{p}\right) .
\end{aligned}
$$

The proof is now complete.
Remark 2.1 From (2.1) we see that $(A D+B C, A C-m B D)=1$ implies $\left(A D+B C,\left(A^{2}+m B^{2}\right)\left(C^{2}+m D^{2}\right)\right)=1$. Thus, according to the proof of Lemma 2.1, we may replace the condition $\left(A^{2}+m B^{2}, C^{2}+m D^{2}\right)=1$ with $(A D+B C, A C-m B D)=1$ in Lemma 2.1. Hence, by the proof of Theorem 2.1, we may replace the condition $\left(A^{2}+m B^{2}, a p\right)=1$ with $(A D+B C, A C-m B D)=1$ in Theorem 2.1.
Corollary 2.1. Let p be an odd prime, $m \in\{2,4,6, \ldots\}$ and $p=C^{2}+$ $m D^{2}$ for some $C, D \in \mathbb{Z}$. Suppose $A, B \in \mathbb{Z},(A, B)=1, p \nmid B\left(A^{2}+m B^{2}\right)$ and $A D+B C \not \equiv 3(\bmod 4)$. Then

$$
\begin{aligned}
& \left(\frac{A \pm \sqrt{A^{2}+m B^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{1-(-1)^{D}}{2} \cdot \frac{D-1}{2} \cdot \frac{m}{2}}\left(\frac{A D+B C}{A^{2}+m B^{2}}\right)(\bmod p) & \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=1, \\
(-1)^{\frac{1-(-1)^{D}}{2} \cdot \frac{D-1}{2} \cdot \frac{m}{2}}\left(\frac{A D+B C}{A^{2}+m B^{2}}\right) \frac{D\left(A \mp \sqrt{A^{2}+m B^{2}}\right)}{B C} & (\bmod p) \\
& \text { if }\left(\frac{A^{2}+m B^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Moreover, if $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{4}}\left(2 A,-m B^{2}\right)\right. \\
& \Leftrightarrow\left(\frac{A^{2}+m B^{2}}{p}\right)=1 \text { and }(-1)^{\frac{1-(-1)^{D}}{2}} \cdot \frac{D-1}{2} \cdot \frac{m}{2} \\
& \Leftrightarrow\left(\frac{A D+B C}{A^{2}+m B^{2}}\right)=\left(\frac{2 B}{p}\right)\left(\frac{m}{C}\right) .
\end{aligned}
$$

Proof. For $p \equiv 1(\bmod 4)$ we have $\left(\frac{C}{p}\right)=\left(\frac{p}{C}\right)=\left(\frac{C^{2}+m D^{2}}{C}\right)=\left(\frac{m}{C}\right)$ and $\left(\frac{D}{p}\right)=\left(\frac{p}{D}\right)=\left(\frac{C^{2}+m D^{2}}{D}\right)=\left(\frac{C^{2}}{D}\right)=1$. Thus, taking $a=1$ in Theorem 2.1 we deduce the result.
Corollary 2.2. Let p be a prime of the form $8 k+1$ and so $p=C^{2}+2 D^{2}$ for some $C, D \in \mathbb{Z}$. Suppose $A, B \in \mathbb{Z},(A, B)=1, p \nmid B\left(A^{2}+2 B^{2}\right)$ and $A D+B C \not \equiv 3(\bmod 4)$. Then

$$
\begin{aligned}
& \left(A \pm \sqrt{A^{2}+2 B^{2}}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{lll}
\left(\frac{A D+B C}{A^{2}+2 B^{2}}\right)(\bmod p) & \text { if }\left(\frac{p}{A^{2}+2 B^{2}}\right)=1, \\
\left(\frac{A D+B C}{A^{2}+2 B^{2}}\right) \frac{D\left(A \mp \sqrt{A^{2}+2 B^{2}}\right)}{B C}(\bmod p) & \text { if }\left(\frac{p}{A^{2}+2 B^{2}}\right)=-1 .
\end{array}\right.
\end{aligned}
$$

Moreover, if $p \equiv 1(\bmod 4)$, then
$p \left\lvert\, U_{\frac{p-1}{4}}\left(2 A,-2 B^{2}\right) \Leftrightarrow\left(\frac{p}{A^{2}+2 B^{2}}\right)=1\right.$ and $\left(\frac{A D+B C}{A^{2}+2 B^{2}}\right)=\left(\frac{B}{p}\right)\left(\frac{2}{C}\right)$.

Proof. If $2 \nmid D$, then $p=C^{2}+2 D^{2} \equiv 1+2=3(\bmod 8)$. Thus $2 \mid D$. Now putting $m=2$ in Corollary 2.1 and noting that $\left(\frac{A^{2}+2 B^{2}}{p}\right)=\left(\frac{p}{A^{2}+2 B^{2}}\right)$ we deduce the result.

For instance, if $p=C^{2}+2 D^{2}$ is a prime of the form $8 k+1$, then

$$
(3 \pm \sqrt{17})^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{2 C+3 D}{17}\right)(\bmod p) & \text { if } \quad\left(\frac{p}{17}\right)=1 \tag{2.4}\\ \left(\frac{2 C+3 D}{17}\right) \frac{(3 \mp \sqrt{17}) D}{2 C}(\bmod p) & \text { if } \quad\left(\frac{p}{17}\right)=-1\end{cases}
$$

and

$$
\begin{align*}
p \left\lvert\, U_{\frac{p-1}{4}}(3,-2)\right. & \Longleftrightarrow p \left\lvert\, U_{\frac{p-1}{4}}(6,-8)\right. \\
& \Longleftrightarrow\left(\frac{p}{17}\right)=1 \quad \text { and } \quad\left(\frac{2 C+3 D}{17}\right)=\left(\frac{2}{C}\right) . \tag{2.5}
\end{align*}
$$

Corollary 2.3. Let $p \equiv 1,3,7,9(\bmod 20)$ be a prime different from 7 .
(i) If $p \equiv 1,9(\bmod 20)$ and hence $p=C^{2}+5 D^{2}$ with $C, D \in \mathbb{Z}$ and $C+D \equiv 1(\bmod 4)$, then

$$
\left(\frac{1 \pm \sqrt{6}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\delta_{1}\left(\frac{C+D}{6}\right)(\bmod p) & \text { if }\left(\frac{6}{p}\right)=1 \\ \delta_{1}\left(\frac{C+D}{6}\right) \frac{D}{C}(1 \mp \sqrt{6})(\bmod p) & \text { if }\left(\frac{6}{p}\right)=-1\end{cases}
$$

and

$$
p \left\lvert\, U_{\frac{p-1}{4}}(2,-5) \Longleftrightarrow\left(\frac{6}{p}\right)=1 \quad\right. \text { and } \quad \delta_{1}\left(\frac{C+D}{6}\right)=(-1)^{\frac{p-1}{4} D}\left(\frac{C}{5}\right)
$$

where $\delta_{1}=1$ or -1 according as $4 \nmid D-2$ or $4 \mid D-2$.
(ii) If $p \equiv 3,7(\bmod 20)$ and hence $7 p=C^{2}+5 D^{2}$ with $C, D \in \mathbb{Z}$ and $C+D \equiv 1(\bmod 4)$, then

$$
\left(\frac{1 \pm \sqrt{6}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\delta_{1}\left(\frac{C+D}{6}\right)\left(\frac{D(C+D)}{7}\right)(\bmod p) & \text { if }\left(\frac{6}{p}\right)=1 \\ \delta_{1}\left(\frac{C+D}{6}\right)\left(\frac{D(C+D)}{7}\right) \frac{D}{C}(1 \mp \sqrt{6})(\bmod p) & \text { if }\left(\frac{6}{p}\right)=-1\end{cases}
$$

where $\delta_{1}=1$ or -1 according as $4 \nmid D-2$ or $4 \mid D-2$.
Proof. If $p=C^{2}+5 D^{2}$ with $C, D \in \mathbb{Z}$ and $D=2^{\alpha} D_{0}\left(2 \nmid D_{0}\right)$, then clearly $\left(\frac{C}{p}\right)=\left(\frac{p}{C}\right)=\left(\frac{5}{C}\right)=\left(\frac{C}{5}\right)$ and $\left(\frac{2 D}{p}\right)=\left(\frac{2^{\alpha+1}}{p}\right)\left(\frac{D_{0}}{p}\right)=\left(\frac{2}{p}\right)^{\alpha+1}\left(\frac{p}{D_{0}}\right)=$ $(-1)^{\frac{p-1}{4}(\alpha+1)}=(-1)^{\frac{p-1}{4} D}$. Thus, putting $a=A=B=1$ and $m=5$ in Theorem 2.1 we deduce (i). Taking $a=7, A=B=1$ and $m=5$ in Theorem 2.1 we deduce (ii).

Corollary 2.4. Let $p \equiv 1,2,4(\bmod 7)$ be an odd prime and hence $p=$ $C^{2}+7 D^{2}$ for some $C, D \in \mathbb{Z}$. Suppose $C+D \equiv 1(\bmod 4)$. Then

$$
\begin{aligned}
& (1 \pm 2 \sqrt{2})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{D(D-1)}{2}+\frac{C+D-1}{4}}(\bmod p) & \text { if } p \equiv \pm 1(\bmod 8) \\
(-1)^{\frac{D(D-1)}{2}+\frac{C+D-1}{4}} \frac{D}{C}(-1 \pm 2 \sqrt{2})(\bmod p) & \text { if } p \equiv \pm 3(\bmod 8)\end{cases}
\end{aligned}
$$

Moreover, if $p \equiv 1(\bmod 4)$, then

$$
p\left|U_{\frac{p-1}{4}}(2,-7) \Longleftrightarrow 8\right| p-1 \text { and }(-1)^{\frac{D(D-1)}{2}+\frac{C+D-1}{4}}=(-1)^{\frac{C-1}{2}}\left(\frac{C}{7}\right)
$$

Proof. Taking $a=A=B=1$ and $m=7$ in Theorem 2.1 we obtain the congruence for $(1 \pm 2 \sqrt{2})^{\frac{p-1}{2}}(\bmod p)$. For $p \equiv 1(\bmod 8)$ and $D=$ $2^{\alpha} D_{0}\left(2 \nmid D_{0}\right)$, it is clear that

$$
2 \nmid C, \quad\left(\frac{C}{p}\right)=\left(\frac{p}{C}\right)=\left(\frac{C^{2}+7 D^{2}}{C}\right)=\left(\frac{7}{C}\right)=(-1)^{\frac{C-1}{2}}\left(\frac{C}{7}\right)
$$

and

$$
\left(\frac{D}{p}\right)=\left(\frac{D_{0}}{p}\right)=\left(\frac{p}{D_{0}}\right)=\left(\frac{C^{2}+7 D^{2}}{D_{0}}\right)=\left(\frac{C^{2}}{D_{0}}\right)=1 .
$$

Thus, by Theorem 2.1 we have

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{4}}(2,-7)\right. \\
& \quad \Longleftrightarrow 8 \mid p-1 \quad \text { and } \quad(-1)^{\frac{D(D-1)}{2}+\frac{C+D-1}{4}}=\left(\frac{2 C D}{p}\right)=(-1)^{\frac{C-1}{2}}\left(\frac{C}{7}\right) .
\end{aligned}
$$

This completes the proof.
Corollary 2.5. Let $p \equiv 1,3(\bmod 8)$ be a prime and hence $p=C^{2}+2 D^{2}$ for some $C, D \in \mathbb{Z}$.
(i) If $p \equiv 1(\bmod 8)$ and $C+D \equiv 1(\bmod 4)$, then

$$
(2 \pm \sqrt{3})^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{C^{2}-1}{8}}\left(\frac{C}{3}\right)(\bmod p) & \text { if } p \equiv 1(\bmod 24) \\ (-1)^{\frac{C^{2}-1}{8}}\left(\frac{D}{3}\right) \frac{D}{C}(1 \mp \sqrt{3})(\bmod p) & \text { if } p \equiv 17(\bmod 24)\end{cases}
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}(4,1) \Longleftrightarrow\left(\frac{C}{3}\right)=(-1)^{\frac{C^{2}-1}{8}}\right.
$$

(ii) If $p \equiv 3(\bmod 8), p>3$ and $C \equiv D \equiv 1(\bmod 4)$, then

$$
(2 \pm \sqrt{3})^{\frac{p+1}{4}} \equiv \begin{cases}(-1)^{\frac{C-1}{4}}\left(\frac{C}{3}\right)(\bmod p) & \text { if } p \equiv 19(\bmod 24) \\ (-1)^{\frac{C-1}{4}}\left(\frac{D}{3}\right) \frac{D}{C}(1 \pm \sqrt{3})(\bmod p) & \text { if } p \equiv 11(\bmod 24)\end{cases}
$$

Proof. If $p \equiv 1(\bmod 8)$, then $2 \mid D$. If $p \equiv 3(\bmod 8)$, then $2 \nmid D$. Thus, putting $a=A=B=1$ and $m=2$ in Corollary 2.1 we see that

$$
\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{C+D}{3}\right)(\bmod p) & \text { if }\left(\frac{3}{p}\right)=1 \\ \left(\frac{C+D}{3}\right) \frac{D}{C}(1 \mp \sqrt{3})(\bmod p) & \text { if }\left(\frac{3}{p}\right)=-1\end{cases}
$$

If $p \equiv 1(\bmod 3)$, then $3 \mid D$ and $\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}$. If $p \equiv 2(\bmod 3)$, then $3 \mid C$ and $\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)=-(-1)^{\frac{p-1}{2}}$. Thus,

$$
\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{C}{3}\right)(\bmod p) & \text { if } p \equiv 1(\bmod 24) \\ \left(\frac{D}{3}\right) \frac{D}{C}(1 \mp \sqrt{3})(\bmod p) & \text { if } p \equiv 17(\bmod 24) \\ \left(\frac{D}{3}\right)(\bmod p) & \text { if } p \equiv 11(\bmod 24) \\ \left(\frac{C}{3}\right) \frac{D}{C}(1 \mp \sqrt{3})(\bmod p) & \text { if } p \equiv 19(\bmod 24)\end{cases}
$$

If $p \equiv 1(\bmod 8)$, by $[S 5, \mathrm{p} .1317]$ we have $2^{\frac{p-1}{4}} \equiv(-1)^{\frac{C^{2}-1}{8}}(\bmod p)$ and so

$$
\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{2}}=\left(\frac{2 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{C^{2}-1}{8}}(2 \pm \sqrt{3})^{\frac{p-1}{4}}(\bmod p)
$$

Thus, from the above we obtain the congruence for $(2 \pm \sqrt{3})^{\frac{p-1}{4}}(\bmod p)$. Applying Lemma 2.3 we see that

$$
\begin{aligned}
p \left\lvert\, U_{\frac{p-1}{8}}(4,1)\right. & \Longleftrightarrow(2+\sqrt{3})^{\frac{p-1}{4}} \equiv 1(\bmod p) \\
& \Longleftrightarrow p \equiv 1(\bmod 24) \quad \text { and } \quad(-1)^{\frac{C^{2}-1}{8}}\left(\frac{C}{3}\right) \equiv 1(\bmod p) \\
& \Longleftrightarrow\left(\frac{C}{3}\right)=(-1)^{\frac{C^{2}-1}{8}}
\end{aligned}
$$

Now assume $p \equiv 3(\bmod 8)$ and $C \equiv D \equiv 1(\bmod 4)$. By [S5, p.1317] we have $2^{\frac{p-3}{4}} \equiv(-1)^{\frac{C-1}{2}+\frac{C^{2}-1}{8}} \frac{D}{C}=(-1)^{\frac{C-1}{4}} \frac{D}{C}(\bmod p)$. Thus,

$$
\begin{aligned}
& (2 \pm \sqrt{3})^{\frac{p+1}{4}} \\
& =2^{\frac{p+1}{4}}\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p+1}{2}}=2^{\frac{p-3}{4}}\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{2}}(1 \pm \sqrt{3}) \\
& \equiv(-1)^{\frac{C-1}{4}} \frac{D}{C}\left(\frac{1 \pm \sqrt{3}}{2}\right)^{\frac{p-1}{2}}(1 \pm \sqrt{3}) \\
& \equiv\left\{\begin{array}{lc}
(-1)^{\frac{C-1}{4}} \frac{D}{C}\left(\frac{D}{3}\right)(1 \pm \sqrt{3})(\bmod p) & \text { if } 24 \mid p-11, \\
(-1)^{\frac{C-1}{4}} \frac{D}{C}\left(\frac{C}{3}\right) \frac{D}{C}(1-\sqrt{3})(1+\sqrt{3}) \equiv(-1)^{\frac{C-1}{4}}\left(\frac{C}{3}\right) & (\bmod p) \\
& \text { if } 24 \mid p-19 .
\end{array}\right.
\end{aligned}
$$

So (ii) is true and the proof is complete.

We note that we prove Corollary 2.5 using only the quadratic reciprocity.

Corollary 2.6. Let $p \equiv 1,19(\bmod 24)$ be a prime and hence $p=C^{2}+$ $2 D^{2}=x^{2}+3 y^{2}$ for some $C, D, x, y \in \mathbb{Z}$.
(i) If $p \equiv 1(\bmod 24)$ and $C+D \equiv 1(\bmod 4)$, then $(-1)^{\frac{C^{2}-1}{8}}\left(\frac{C}{3}\right)=$ $(-1)^{\frac{y}{4}}$.
(ii) If $p \equiv 19(\bmod 24)$ and $C \equiv 1(\bmod 4)$, then $(-1)^{\frac{C-1}{4}}\left(\frac{C}{3}\right)=$ $(-1)^{\frac{x}{4}+1}$.

Proof. If $p \equiv 1(\bmod 24)$, then clearly $4 \mid y$. E. Lehmer $[L]$ showed that $(2+\sqrt{3})^{\frac{p-1}{4}} \equiv(-1)^{\frac{y}{4}}(\bmod p)$. If $p \equiv 19(\bmod 24)$, then clearly $4 \mid x$ and $p \equiv 7(\bmod 12)$. By [Lem, Ex. 6.30, p. 206] or [S4, Theorem 8.1(2) (with $m=4, n=2, d=3)]$ we have $(2+\sqrt{3})^{\frac{p+1}{4}} \equiv(-1)^{\frac{x}{4}+1}(\bmod p)$. Now comparing the above results with Corollary 2.5 we deduce the corollary.
3. Congruences for $\left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{4}}(\bmod p)$.

Lemma 3.1 (Western's formula ([HW, (2.9)],[Lem, pp.296-298]).

Let p and q be distinct primes of the form $8 k+1$. Suppose $q=a^{2}+b^{2}=$ $c^{2}+2 d^{2}$ with $a, b, c, d \in \mathbb{Z}$. Then for $j \in\{0,1, \ldots, 7\}$ we have

$$
\begin{aligned}
& p^{\frac{q-1}{8}} \equiv\left(\frac{(a-b) d}{a c}\right)^{j}(\bmod q) \\
& \quad \Longleftrightarrow q^{\frac{p-1}{8}}(a-b i)^{\frac{p-1}{4}}(c-d \sqrt{-2})^{\frac{p-1}{2}} \equiv\left(\frac{-1+i}{\sqrt{-2}}\right)^{j}(\bmod p)
\end{aligned}
$$

Theorem 3.1. Let p and q be distinct primes of the form $8 k+1$. Suppose $p=C^{2}+2 D^{2}=x^{2}+q y^{2}$ and $q=a^{2}+b^{2}=c^{2}+2 d^{2}$ with $a, b, c, d, C, D, x, y \in \mathbb{Z}$ and $a \equiv 1(\bmod 4)$. Then

$$
\left(\frac{b-i x / y}{a}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{b y}{4}}\left(\frac{d C-c D}{q}\right)\left(\frac{x+b y i}{a}\right)_{4}(\bmod p)
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}\left(2 b,-a^{2}\right) \Longleftrightarrow\left(\frac{x+b y i}{a}\right)_{4}=(-1)^{\frac{p-1}{8}+\frac{b y}{4}}\left(\frac{d C-c D}{q}\right)\right.
$$

Proof. It is easily seen that

$$
-2 i(a-b i)\left(b-i \sqrt{-a^{2}-b^{2}}\right)=\left(\sqrt{-a^{2}-b^{2}}-a+b i\right)^{2}
$$

Thus

$$
(-2 i)^{\frac{p-1}{4}}(a-b i)^{\frac{p-1}{4}}\left(b-i \sqrt{-a^{2}-b^{2}}\right)^{\frac{p-1}{4}}=\left(\sqrt{-a^{2}-b^{2}}-a+b i\right)^{\frac{p-1}{2}} .
$$

By [S6, Theorem 5.1(ii)] we have

$$
\left(\frac{x / y-a+b i}{p}\right)_{4}=\left(\frac{x-a y+b y i}{p}\right)_{4}=(-1)^{\frac{b y}{4}}\left(\frac{x+b y i}{a}\right)_{4}\left(\frac{x}{-a+b i}\right)_{4} .
$$

Since $p \equiv 1(\bmod 8)$, applying [S6, Lemma 6.1] we deduce

$$
\begin{aligned}
& \left(\frac{x}{y}-a+b i\right)^{\frac{p-1}{2}} \\
& \equiv(2 a)^{\frac{p-1}{4}}\left(-a^{2}-b^{2}\right)^{\frac{p-1}{8}} \cdot(-1)^{\frac{b y}{4}}\left(\frac{x+b y i}{a}\right)_{4}\left(\frac{x}{-a+b i}\right)_{4}(\bmod p) .
\end{aligned}
$$

Note that $(x / y)^{2} \equiv-a^{2}-b^{2}(\bmod p)$. From the above we derive

$$
\begin{aligned}
& (-1)^{\frac{p-1}{8}} 2^{\frac{p-1}{4}}(a-b i)^{\frac{p-1}{4}}(b-i x / y)^{\frac{p-1}{4}} \\
& \equiv(x / y-a+b i)^{\frac{p-1}{2}} \\
& \equiv(2 a)^{\frac{p-1}{4}}\left(-a^{2}-b^{2}\right)^{\frac{p-1}{8}}(-1)^{\frac{b y}{4}}\left(\frac{x+b y i}{a}\right)_{4}\left(\frac{x}{-a+b i}\right)_{4}(\bmod p)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \left(a^{2}+b^{2}\right)^{\frac{p-1}{8}}(a-b i)^{\frac{p-1}{4}}\left(b-i \frac{x}{y}\right)^{\frac{p-1}{4}} \tag{3.1}\\
& \equiv a^{\frac{p-1}{4}}\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}}(-1)^{\frac{b y}{4}}\left(\frac{x+b y i}{a}\right)_{4}\left(\frac{x}{-a+b i}\right)_{4}(\bmod p) .
\end{align*}
$$

Clearly $q \nmid x$. Suppose $x^{\frac{q-1}{4}} \equiv\left(\frac{b}{a}\right)^{k}(\bmod q)$ for $k \in \mathbb{Z}$. Then

$$
p^{\frac{q-1}{8}}=\left(x^{2}+q y^{2}\right)^{\frac{q-1}{8}} \equiv x^{\frac{q-1}{4}} \equiv\left(\frac{b}{a}\right)^{k} \equiv\left(\frac{(a-b) d}{a c}\right)^{2 k}(\bmod q)
$$

Hence, appealing to Lemma 3.1 we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{8}}(a-b i)^{\frac{p-1}{4}}(c-d \sqrt{-2})^{\frac{p-1}{2}} \equiv\left(\frac{-1+i}{\sqrt{-2}}\right)^{2 k}=i^{k}(\bmod p) .
$$

As $c^{2} D^{2}-d^{2} C^{2} \equiv c^{2} D^{2}-d^{2}\left(-2 D^{2}\right)=q D^{2}(\bmod p)$ and $c^{2} D^{2}-d^{2} C^{2} \equiv$ $-2 d^{2} D^{2}-d^{2} C^{2}=-p d^{2}(\bmod q)$, we see that $\left(c^{2} D^{2}-d^{2} C^{2}, p q\right)=1$. Set $D=2^{s} D_{0}$ and $c D-d C=2^{r} A$ with $2 \nmid A D_{0}$. Then $(A, p q)=1$. Thus,

$$
\begin{aligned}
& \left(\frac{c-d C / D}{p}\right) \\
& =\left(\frac{D}{p}\right)\left(\frac{c D-d C}{p}\right)=\left(\frac{D_{0}}{p}\right)\left(\frac{A}{p}\right)=\left(\frac{p}{D_{0}}\right)\left(\frac{p}{A}\right) \\
& =\left(\frac{C^{2}+2 D^{2}}{D_{0}}\right)\left(\frac{C^{2}+2 D^{2}}{A}\right)=\left(\frac{C^{2}}{D_{0}}\right)\left(\frac{q}{A}\right)\left(\frac{\left(c^{2}+2 d^{2}\right)\left(C^{2}+2 D^{2}\right)}{A}\right) \\
& =\left(\frac{q}{A}\right)\left(\frac{(c C+2 d D)^{2}+2(c D-d C)^{2}}{A}\right) \\
& =\left(\frac{q}{A}\right)=\left(\frac{A}{q}\right)=\left(\frac{c D-d C}{q}\right)
\end{aligned}
$$

Note that $\left(\frac{C}{D}\right)^{2} \equiv-2(\bmod p)$. From the above we deduce

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right)^{\frac{p-1}{8}}(a-b i)^{\frac{p-1}{4}} \\
& \equiv(c-d \sqrt{-2})^{-\frac{p-1}{2}} i^{k} \equiv\left(\frac{c-d C / D}{p}\right) i^{k}=\left(\frac{c D-d C}{q}\right) i^{k}(\bmod p)
\end{aligned}
$$

Substituting this into (3.1) we see that

$$
\begin{aligned}
& \left(\frac{b-i x / y}{a}\right)^{\frac{p-1}{4}} \\
& \equiv\left(\frac{c D-d C}{q}\right) i^{-k} q^{\frac{p-1}{4}}(-1)^{\frac{b y}{4}}\left(\frac{x+b y i}{a}\right)_{4}\left(\frac{x}{-a+b i}\right)_{4}(\bmod p) .
\end{aligned}
$$

From [S5, Corollary 4.6(i)] we know that $q^{\frac{p-1}{4}} \equiv\left(\frac{x}{q}\right)(\bmod p)$. As $x^{\frac{q-1}{4}} \equiv$ $\left(\frac{b}{a}\right)^{k}(\bmod q)$ we have $x^{\frac{q-1}{2}} \equiv(-1)^{k}(\bmod q)$ and so $\left(\frac{x}{q}\right)=(-1)^{k}$. Thus $q^{\frac{p-1}{4}} \equiv\left(\frac{x}{q}\right)=(-1)^{k}(\bmod p)$. Since $q=a^{2}+b^{2}$ and $a-b i$ is primary in $\mathbb{Z}[i]$, we have $x^{\frac{q-1}{4}} \equiv\left(\frac{b}{a}\right)^{k} \equiv(-i)^{k}=i^{-k}(\bmod a-b i)$ and so $\left(\frac{x}{-a+b i}\right)_{4}=$ $\left(\frac{x}{a-b i}\right)_{4}=i^{-k}$. Thus,

$$
q^{\frac{p-1}{4}}\left(\frac{x}{-a+b i}\right)_{4} i^{-k} \equiv(-1)^{k} \cdot i^{-k} \cdot i^{-k}=1(\bmod p)
$$

and therefore

$$
\left(\frac{b-i x / y}{a}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{b y}{4}}\left(\frac{c D-d C}{q}\right)\left(\frac{x+b y i}{a}\right)_{4}(\bmod p)
$$

Note that $\left(\frac{i x}{y}\right)^{2} \equiv a^{2}+b^{2}(\bmod p)$. From Lemma 2.3 and the above we deduce

$$
\begin{aligned}
p \mid & U_{\frac{p-1}{8}}\left(2 b,-a^{2}\right) \\
& \Longleftrightarrow\left(b+\sqrt{b^{2}+a^{2}}\right)^{\frac{p-1}{4}} \equiv\left(-a^{2}\right)^{\frac{p-1}{8}}(\bmod p) \\
& \Longleftrightarrow\left(\frac{b+\sqrt{a^{2}+b^{2}}}{a}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{p-1}{8}}(\bmod p) \\
& \Longleftrightarrow(-1)^{\frac{b y}{4}}\left(\frac{c D-d C}{q}\right)\left(\frac{x+b y i}{a}\right)_{4} \equiv(-1)^{\frac{p-1}{8}}(\bmod p) \\
& \Longleftrightarrow\left(\frac{x+b y i}{a}\right)_{4}=(-1)^{\frac{p-1}{8}+\frac{b y}{4}}\left(\frac{c D-d C}{q}\right) .
\end{aligned}
$$

This completes the proof.

Corollary 3.1. Let $p \neq 17$ be a prime of the form $8 k+1$ and so $p=$ $C^{2}+2 D^{2}$ for some $C, D \in \mathbb{Z}$. Then

$$
\begin{aligned}
& (4 \pm \sqrt{17})^{\frac{p-1}{4}} \\
& \equiv 1(\bmod p) \Longleftrightarrow p=x^{2}+17 y^{2}(x, y \in \mathbb{Z}) \text { and }(-1)^{y}=\left(\frac{2 C-3 D}{17}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
p & \left\lvert\, U_{\frac{p-1}{8}}(8,-1)\right. \\
& \Longleftrightarrow p=x^{2}+17 y^{2}(x, y \in \mathbb{Z}) \quad \text { and } \quad(-1)^{\frac{p-1}{8}+y}=\left(\frac{2 C-3 D}{17}\right) .
\end{aligned}
$$

Proof. If $\left(\frac{17}{p}\right)=-1$, then

$$
\begin{aligned}
(4 \pm \sqrt{17})^{p-1} & =\frac{(4 \pm \sqrt{17})^{p}}{4 \pm \sqrt{17}} \equiv \frac{4 \pm(\sqrt{17})^{p}}{4 \pm \sqrt{17}} \equiv \frac{4 \mp \sqrt{17}}{4 \pm \sqrt{17}} \\
& =-(4 \mp \sqrt{17})^{2} \not \equiv 1(\bmod p)
\end{aligned}
$$

and so $(4 \pm \sqrt{17})^{\frac{p-1}{2}} \not \equiv 1(\bmod p)$. If $\left(\frac{17}{p}\right)=1$, by $[\mathrm{Br}]$ or $[\mathrm{S} 5, \mathrm{p} .1324]$ we have

$$
(4 \pm \sqrt{17})^{\frac{p-1}{2}} \equiv 1(\bmod p) \Longleftrightarrow p=x^{2}+17 y^{2}(x, y \in \mathbb{Z}) .
$$

Assume $p=x^{2}+17 y^{2}$ for some $x, y \in \mathbb{Z}$. Taking $q=17, a=1, b=$ $4, c=3$ and $d=2$ in Theorem 3.1 we deduce

$$
(4 \pm \sqrt{17})^{\frac{p-1}{4}} \equiv(-1)^{y}\left(\frac{2 C-3 D}{17}\right)(\bmod p)
$$

By Lemma 2.3 we have

$$
p \left\lvert\, U_{\frac{p-1}{8}}(8,-1) \Longleftrightarrow(4+\sqrt{17})^{\frac{p-1}{4}} \equiv(-1)^{\frac{p-1}{8}}(\bmod p) .\right.
$$

Thus the result follows.
Corollary 3.2. Let $p \equiv 1(\bmod 8)$ be a prime such that $p=C^{2}+2 D^{2}=$ $x^{2}+257 y^{2} \neq 257$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
(16 \pm \sqrt{257})^{\frac{p-1}{4}} \equiv\left(\frac{4 C-15 D}{257}\right)(\bmod p)
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}(32,-1) \Longleftrightarrow\left(\frac{4 C-15 D}{257}\right)=(-1)^{\frac{p-1}{8}}\right.
$$

Proof. Taking $q=257, a=1, b=16, c=15$ and $d=4$ in Theorem 3.1 we obtain the result.

Corollary 3.3. Let $p \neq 73$ be a prime of the form $8 k+1$ such that $p=C^{2}+2 D^{2}=x^{2}+73 y^{2}$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
p\left|U_{\frac{p-1}{8}}(16,-9) \Longleftrightarrow 3\right| x y \text { and }(-1)^{\frac{p-1}{8}}\left(\frac{6 C-D}{73}\right)= \begin{cases}1 & \text { if } 3 \mid y \\ -1 & \text { if } 3 \mid x\end{cases}
$$

Proof. Taking $q=73, a=-3, b=8, c=1$ and $d=6$ in Theorem 3.1 we see that

$$
p \left\lvert\, U_{\frac{p-1}{8}}(16,-9) \Longleftrightarrow\left(\frac{x+8 y i}{3}\right)_{4}=\left(\frac{x+8 y i}{-3}\right)_{4}=(-1)^{\frac{p-1}{8}}\left(\frac{6 C-D}{73}\right) .\right.
$$

Since

$$
\left(\frac{x+8 y i}{3}\right)_{4}= \begin{cases}\left(\frac{x}{3}\right)_{4}=1 & \text { if } 3 \mid y \\ \left(\frac{8 y i}{3}\right)_{4}=\left(\frac{i}{3}\right)_{4}=-1 & \text { if } 3 \mid x \\ \left(\frac{1+8 i}{3}\right)_{4}=\left(\frac{i(1+i)}{3}\right)_{4}=i & \text { if } 3 \mid x-y \\ \left(\frac{1-8 i}{3}\right)_{4}=\left(\frac{1+i}{3}\right)_{4}=-i & \text { if } 3 \mid x+y\end{cases}
$$

from the above we deduce the result.
Corollary 3.4. Let $p \neq 41$ be a prime of the form $8 k+1$ such that $p=C^{2}+2 D^{2}=x^{2}+41 y^{2}$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{8}}(8,-25)\right. \\
& \quad \Longleftrightarrow 5 \mid x y \quad \text { and } \quad(-1)^{\frac{p-1}{8}+y}\left(\frac{4 C-3 D}{41}\right)= \begin{cases}1 & \text { if } 5 \mid y, \\
-1 & \text { if } 5 \mid x .\end{cases}
\end{aligned}
$$

Proof. Taking $q=41, a=5, b=4, c=3$ and $d=4$ in Theorem 3.1 we see that

$$
p \left\lvert\, U_{\frac{p-1}{8}}(8,-25) \Longleftrightarrow\left(\frac{x+4 y i}{5}\right)_{4}=(-1)^{\frac{p-1}{8}+y}\left(\frac{4 C-3 D}{41}\right)\right.
$$

Since $x \not \equiv \pm 2 y(\bmod 5)$ and

$$
\left(\frac{x+4 y i}{5}\right)_{4}= \begin{cases}\left(\frac{x}{5}\right)_{4}=1 & \text { if } 5 \mid y \\ \left(\frac{4 y i}{5}\right)_{4}=\left(\frac{i}{5}\right)_{4}=-1 & \text { if } 5 \mid x \\ \left(\frac{1+4 i}{5}\right)_{4}=\left(\frac{i(1+i)}{5}\right)_{4}=-i & \text { if } 5 \mid x-y \\ \left(\frac{1-4 i}{5}\right)_{4}=\left(\frac{1+i}{5}\right)_{4}=i & \text { if } 5 \mid x+y\end{cases}
$$

from the above we deduce the result.

Corollary 3.5. Let $p \neq 89$ be a prime of the form $8 k+1$ such that $p=C^{2}+2 D^{2}=x^{2}+89 y^{2}$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{8}}(16,-25)\right. \\
& \quad \Longleftrightarrow 5 \mid x y \quad \text { and } \quad(-1)^{\frac{p-1}{8}}\left(\frac{2 C-9 D}{89}\right)= \begin{cases}1 & \text { if } 5 \mid y, \\
-1 & \text { if } 5 \mid x .\end{cases}
\end{aligned}
$$

Proof. Taking $q=89, a=5, b=8, c=9$ and $d=2$ in Theorem 3.1 we see that

$$
p \left\lvert\, U_{\frac{p-1}{8}}(16,-25) \Longleftrightarrow\left(\frac{x+8 y i}{5}\right)_{4}=(-1)^{\frac{p-1}{8}}\left(\frac{2 C-9 D}{89}\right) .\right.
$$

Since $x \not \equiv \pm y(\bmod 5)$ and

$$
\left(\frac{x+8 y i}{5}\right)_{4}= \begin{cases}\left(\frac{x}{5}\right)_{4}=1 & \text { if } 5 \mid y \\ \left(\frac{8 y i}{5}\right)_{4}=\left(\frac{i}{5}\right)_{4}=-1 & \text { if } 5 \mid x \\ \left(\frac{1+4 i}{5}\right)_{4}=\left(\frac{i(1+i)}{5}\right)_{4}=-i & \text { if } 5 \mid x-2 y \\ \left(\frac{1-4 i}{5}\right)_{4}=\left(\frac{1+i}{5}\right)_{4}=i & \text { if } 5 \mid x+2 y\end{cases}
$$

the result follows.
Lemma 3.2 ([E], [S1, Proposition 1], [S2, Lemma 2.1]). Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}$ with $2 \nmid m$ and $\left(m, a^{2}+b^{2}\right)=1$. Then

$$
\left(\frac{a+b i}{m}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{m}\right) .
$$

Theorem 3.2. Let $A, B \in \mathbb{Z}$ be such that $2 \nmid A$ and $A^{4}+16 B^{2}$ is a prime, and let $p \equiv 1(\bmod 8)$ be a prime such that $p=x^{2}+\left(A^{4}+16 B^{2}\right) y^{2} \neq$ $A^{4}+16 B^{2}$ for $x, y \in \mathbb{Z}$. Assume $A^{4}+16 B^{2}=c^{2}+2 d^{2}$ and $p=C^{2}+2 D^{2}$ with $c, d, C, D \in \mathbb{Z}$. Then

$$
\left(4 B \pm \sqrt{A^{4}+16 B^{2}}\right)^{\frac{p-1}{4}} \equiv(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)(\bmod p)
$$

and

$$
p \left\lvert\, U_{\frac{p-1}{8}}\left(8 B,-A^{4}\right) \Longleftrightarrow(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)=(-1)^{\frac{p-1}{8}}\left(\frac{A}{p}\right) .\right.
$$

Proof. Putting $q=A^{4}+16 B^{2}, a=A^{2}$ and $b=4 B$ in Theorem 3.1 we see that

$$
\left(\frac{4 B-i x / y}{A^{2}}\right)^{\frac{p-1}{4}} \equiv(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)\left(\frac{x+4 B y i}{A^{2}}\right)_{4}(\bmod p) .
$$

From Lemma 3.2 we have

$$
\left(\frac{x+4 B y i}{A^{2}}\right)_{4}=\left(\frac{x^{2}+16 B^{2} y^{2}}{A}\right)=\left(\frac{p-A^{4} y^{2}}{A}\right)=\left(\frac{p}{A}\right)=\left(\frac{A}{p}\right) .
$$

Thus,

$$
\left(4 B-i \frac{x}{y}\right)^{\frac{p-1}{4}} \equiv(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)(\bmod p)
$$

and so

$$
\left(4 B+i \frac{x}{y}\right)^{\frac{p-1}{4}} \equiv(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)(\bmod p)
$$

Since $(i x / y)^{2} \equiv A^{4}+16 B^{2}(\bmod p)$, we deduce

$$
\left(4 B \pm \sqrt{A^{4}+16 B^{2}}\right)^{\frac{p-1}{4}} \equiv(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)(\bmod p) .
$$

Applying Lemma 2.3 we see that

$$
\begin{aligned}
& p \left\lvert\, U_{\frac{p-1}{8}}\left(8 B,-A^{4}\right)\right. \\
& \Longleftrightarrow(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right) \equiv\left(-A^{4}\right)^{\frac{p-1}{8}} \equiv(-1)^{\frac{p-1}{8}}\left(\frac{A}{p}\right)(\bmod p) \\
& \Longleftrightarrow(-1)^{B y}\left(\frac{d C-c D}{A^{4}+16 B^{2}}\right)=(-1)^{\frac{p-1}{8}}\left(\frac{A}{p}\right) .
\end{aligned}
$$

This proves the theorem.
Corollary 3.6. Let $p \equiv 1(\bmod 8)$ be a prime such that $p=C^{2}+2 D^{2}=$ $x^{2}+97 y^{2} \neq 97$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
(4 \pm \sqrt{97})^{\frac{p-1}{4}} \equiv(-1)^{y}\left(\frac{6 C-5 D}{97}\right)(\bmod p)
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}(8,-81) \Longleftrightarrow\left(\frac{6 C-5 D}{97}\right)=(-1)^{\frac{p-1}{8}+y}\left(\frac{p}{3}\right)\right.
$$

Proof. Taking $A=3$ and $B=1$ in Theorem 3.2 we obtain the result.
Corollary 3.7. Let $p \equiv 1(\bmod 8)$ be a prime such that $p=C^{2}+2 D^{2}=$ $x^{2}+337 y^{2} \neq 337$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
(16 \pm \sqrt{337})^{\frac{p-1}{4}} \equiv\left(\frac{12 C-7 D}{337}\right)(\bmod p)
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}(32,-81) \Longleftrightarrow\left(\frac{12 C-7 D}{337}\right)=(-1)^{\frac{p-1}{8}}\left(\frac{p}{3}\right)\right.
$$

Proof. Taking $A=3$ and $B=4$ in Theorem 3.2 we obtain the result.

Corollary 3.8. Let $p \equiv 1(\bmod 8)$ be a prime such that $p=C^{2}+2 D^{2}=$ $x^{2}+641 y^{2} \neq 641$ for $C, D, x, y \in \mathbb{Z}$. Then

$$
(4 \pm \sqrt{641})^{\frac{p-1}{4}} \equiv(-1)^{y}\left(\frac{10 C-21 D}{641}\right)(\bmod p)
$$

and so

$$
p \left\lvert\, U_{\frac{p-1}{8}}(8,-625) \Longleftrightarrow\left(\frac{10 C-21 D}{641}\right)=(-1)^{\frac{p-1}{8}+y}\left(\frac{p}{5}\right) .\right.
$$

Proof. Taking $A=5$ and $B=1$ in Theorem 3.2 we obtain the result.

4. Five conjectures.

Conjecture 4.1. Let $p \equiv 3(\bmod 8)$ be a prime and $k \in \mathbb{Z}$ with $2 \nmid k$. Suppose $p=x^{2}+\left(k^{2}+1\right) y^{2}$ for some $x, y \in \mathbb{Z}$. Then

$$
V_{\frac{p+1}{4}}(2 k,-1) \equiv \begin{cases}-(-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}} 2^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 5,7(\bmod 8), \\ (-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}} 2^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 1,3(\bmod 8) .\end{cases}
$$

In the case $k=1$ Conjecture 4.1 was proved by the author in $[\mathrm{S} 6]$ and C.N. Beli in [B].

Conjecture 4.2. Let $p \equiv 3(\bmod 4)$ be a prime and $k \in \mathbb{Z}$ with $2 \nmid k$. Suppose $2 p=x^{2}+\left(k^{2}+4\right) y^{2}$ for some $x, y \in \mathbb{Z}$.
(i) If $k \equiv 1,3(\bmod 8)$, then

$$
\begin{aligned}
& V_{\frac{p+1}{4}}(k,-1) \\
& \equiv \begin{cases}(-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}}(-2)^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 1,11(\bmod 16), \\
-(-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}}(-2)^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 3,9(\bmod 16) .\end{cases}
\end{aligned}
$$

(ii) If $k \equiv 5,7(\bmod 8)$, then

$$
V_{\frac{p+1}{4}}(k,-1) \equiv \begin{cases}(-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}} 2^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 5,15(\bmod 16) \\ -(-1)^{\frac{\left(\frac{p-1}{2} y\right)^{2}-1}{8}} 2^{\frac{p+1}{4}}(\bmod p) & \text { if } k \equiv 7,13(\bmod 16) .\end{cases}
$$

In the case $k=1$ Conjecture 4.2 was conjectured by the author in [S3,S6] and proved by C.N. Beli in [B].

Conjectures 4.1 and 4.2 have been checked for all $1 \leq k<100$ and $p<20,000$.

Inspired by [S6, Conjectures 9.1-9.9], we pose the following conjectures.

Conjecture 4.3. Let $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 8)$ be primes such that $p=c^{2}+d^{2}=x^{2}+q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid c d$. Suppose $c \equiv x \equiv 1(\bmod 4), y=2^{\beta} y_{0}$ and $y_{0} \equiv 1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
q^{\frac{p-1}{8}} \equiv \begin{cases} \pm(-1)^{\frac{y}{4}}(\bmod p) & \text { if } x \equiv \pm c(\bmod q), \\ \mp(-1)^{\frac{q-3}{8}+\frac{y}{4}} \frac{d}{c}(\bmod p) & \text { if } x \equiv \pm d(\bmod q) .\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
q^{\frac{p-5}{8}} \equiv \begin{cases} \pm \frac{y}{x}(\bmod p) & \text { if } x \equiv \pm c(\bmod q) \\ \mp(-1)^{\frac{q-3}{8}} \frac{d y}{c x}(\bmod p) & \text { if } x \equiv \pm d(\bmod q)\end{cases}
$$

Conjecture 4.4. Let $p \equiv 1(\bmod 4)$ and $q \equiv 7(\bmod 16)$ be primes such that $p=c^{2}+d^{2}=x^{2}+q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid c d$. Suppose $c \equiv x \equiv 1(\bmod 4), y=2^{\beta} y_{0}$ and $y_{0} \equiv 1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 8)$, then

$$
q^{\frac{p-1}{8}} \equiv \begin{cases}(-1)^{\frac{y}{4}}(\bmod p) & \text { if } q \mid d, \\ -(-1)^{\frac{y}{4}}(\bmod p) & \text { if } q \mid c .\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8)$, then

$$
q^{\frac{p-5}{8}} \equiv \begin{cases}\frac{y}{x}(\bmod p) & \text { if } q \mid d, \\ -\frac{y}{x}(\bmod p) & \text { if } q \mid c\end{cases}
$$

Conjecture 4.5. Let $p \equiv 1(\bmod 4)$ and $q \equiv 15(\bmod 16)$ be primes such that $p=c^{2}+d^{2}=x^{2}+q y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $q \mid c d$. Suppose $y=2^{\beta} y_{0}$ and $x \equiv y_{0} \equiv 1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 8)$, then $q^{\frac{p-1}{8}} \equiv(-1)^{\frac{y}{4}}(\bmod p)$.
(ii) If $p \equiv 5(\bmod 8)$, then $q^{\frac{p-5}{8}} \equiv \frac{y}{x}(\bmod p)$.

Conjectures 4.3-4.5 have been checked for all primes $p<200,000$ and $q<200$.
Added in proof. We have the following generalization of Conjectures 4.4 and 4.5.

Conjecture 4.6. Let q be a prime of the form $8 k+7$. Then there exist disjoint subsets S_{0}, S_{1}, S_{2} of $\{\infty\} \cup\left\{k \in \mathbb{Z} / q \mathbb{Z}:\left(\frac{k^{2}+1}{q}\right)=1\right\}$ such that for any primes $p=c^{2}+d^{2}=x^{2}+q y^{2}$ with $c, d, x, y \in \mathbb{Z}, x=2^{\alpha} x_{0}, 2^{\beta} y_{0}$ and $c \equiv x_{0} \equiv y_{0} \equiv 1(\bmod 4)$,

$$
q^{\frac{p-1}{8}} \equiv\left\{\begin{array}{ll}
(-1)^{\frac{y}{4}}(\bmod p) & \text { if } \frac{c}{d} \in S_{0}, \\
-(-1)^{\frac{y}{4}}(\bmod p) & \text { if } \frac{c}{d} \in S_{1}, \\
\pm(-1)^{\frac{y}{4}} \frac{d}{c}(\bmod p) & \text { if } \pm \frac{c}{d} \in S_{2}
\end{array} \quad \text { for } \quad p \equiv 1(\bmod 8),\right.
$$

and

$$
q^{\frac{p-5}{8}} \equiv\left\{\begin{array}{ll}
\frac{y}{x}(\bmod p) & \text { if } \frac{c}{d} \in S_{0}, \\
-\frac{y}{x}(\bmod p) & \text { if } \frac{c}{d} \in S_{1}, \\
\pm \frac{d y}{c x}(\bmod p) & \text { if } \pm \frac{c}{d} \in S_{2}
\end{array} \quad p \equiv 5(\bmod 8) .\right.
$$

Here we identify c / d with ∞ when $q \mid d$, and identify a with $a+q \mathbb{Z}$. Moreover, $\left|S_{0}\right|=\left|S_{1}\right|=\left|S_{2}\right|=\frac{q+1}{8}, \frac{a}{b} \in S_{0} \cup S_{1}$ implies $\left(\frac{a+b i}{q}\right)_{4}=1$, and $\frac{a}{b} \in S_{2}$ implies $\left(\frac{a+b i}{q}\right)_{4}=-1$.

For $q=23$ we have $S_{0}=\{\infty, \pm 10\}, S_{1}=\{0, \pm 7\}$ and $S_{2}=$ $\{1,5,-9\}$. For $q=31$ we have $S_{0}=\{0, \infty, \pm 1\}, S_{1}=\{ \pm 7, \pm 9\}$ and $S_{2}=\{-2,3,10,-15\}$. For $q=47$ we have $S_{0}=\{0, \infty, \pm 4, \pm 12\}, S_{1}=$ $\{ \pm 1, \pm 10, \pm 14\}$ and $S_{2}=\{-6,-7,8,-11,-17,-20\}$.

References

[B] C.N. Beli, Two conjectures by Zhi-Hong Sun, Acta Arith. 137 (2009), 99-131.
[Br] J. Brandler, Residuacity properties of real quadratic units, J. Number Theory 5 (1973), 271-286.
[E] R. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 10691081.
[HW] R.H. Hudson and K.S. Williams, An application of a formula of Western to the evaluation of certain Jacobsthal sums, Acta Arith. 41 (1982), 261-276.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second ed., Springer, New York, 1990.
[L] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[Lem] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
[S1] Z.H. Sun, Notes on quartic residue symbol and rational reciprocity laws, J. Nanjing Univ. Math. Biquarterly 9 (1992), 92-101.
[S2] Z.H. Sun, Supplements to the theory of quartic residues, Acta Arith. 97 (2001), 361-377.
[S3] Z.H. Sun, Values of Lucas sequences modulo primes, Rocky Mountain J. Math. 33 (2003), 1123-1145.
[S4] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory 113 (2005), 10-52.
[S5] Z.H. Sun, On the quadratic character of quadratic units, J. Number Theory 128 (2008), 1295-1335.
[S6] Z.H. Sun, Quartic, octic residues and Lucas sequences, J. Number Theory 129 (2009), 499-550.

School of the Mathematical Sciences
Huaiyin Normal University
Huaian, Jiangsu 223001, PR China
E-mail: zhihongsun@yahoo.com
http://www.hytc.edu.cn/xsjl/szh

[^0]: 2010 Mathematics Subject Classification: Primary 11A15, Secondary 11A07, 11B39, 11E25
 Key words and phrases: Congruence; Quartic Jacobi symbol; Lucas sequence; Binary quadratic form
 The author is supported by the Natural Sciences Foundation of China (grant No. 10971078).

