p－regular functions and congruences for Bernoulli and Euler numbers

Zhi－Hong Sun（孙智宏）
Huaiyin Normal University
Huaian，Jiangsu 223001，PR China http：／／www．hytc．edu．cn／xsjl／szh

Notation： \mathbb{Z}－the set of integers， \mathbb{N}－the set of positive integers，$[x]$－the greatest inte－ ger not exceeding $x,\{x\}$－the fractional part of $x,\left(\frac{a}{m}\right)$ —the Jacobi symbol， \mathbb{Z}_{p}－the set of rational p－adic integers．
［S1］Z．H．Sun，Congruences for Bernoulli num－ bers and Bernoulli polynomials，Discrete Math． 163（1997），153－163．
［S2］Z．H．Sun，Congruences concerning Bernoulli numbers and Bernoulli polynomials，Discrete Appl．Math．105（2000），193－223．
[S3] Z.H. Sun, Congruences involving Bernoulli polynomials, Discrete Math. 308(2008), 71112.
[S4] Z.H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128(2008), 280-312.
[S5] Z.H. Sun, Euler numbers modulo 2^{n}, Bull. Austral. Math. Soc. 82(2010), 221-231.
[S6] Z.H. Sun, Congruences for sequences similar to Euler numbers, J. Number Theory 132(2012), 675-700.
[S7] Z.H. Sun, Identities and congruences for a new sequence, Int. J. Number Theory 8(2012), 207-225.
[S8] Z.H. Sun, Some properties of a sequence analogous to Euler numbers, Bull. Austral. Math. Soc., to appear.
[S9] Z.H. Sun and L.L. Wang, An extension of Stern's congruences, Int. J. Number Theory 9(2013), 413-419.
§ 1. Definition of $\left\{B_{n}\right\},\left\{E_{n}\right\}$ and $\left\{U_{n}\right\}$
The Bernoulli numbers $B_{0}, B_{1}, B_{2}, \ldots$ are given by

$$
B_{0}=1, \sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0(n \geq 2) .
$$

The first few Bernoulli numbers are given below:

$$
\begin{aligned}
& B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \\
& B_{6}=\frac{1}{42}, \quad B_{8}=-\frac{1}{30}, \quad B_{10}=\frac{5}{66}, \\
& B_{12}=-\frac{691}{2730}, \quad B_{14}=\frac{7}{6}, \quad B_{16}=-\frac{3617}{510} .
\end{aligned}
$$

Basic properties of $\left\{B_{n}\right\}$:

$$
B_{2 n+1}=0 \quad \text { for } \quad n \geq 1
$$

von Staudt-Clausen Theorem (1844):

$$
B_{2 n}+\sum_{p-1 \mid 2 n} \frac{1}{p} \in \mathbb{Z}
$$

where p runs over all distinct primes satisfying $p-1 \mid 2 n$.
von Staudt-Clausen: $p B_{k(p-1)} \equiv-1(\bmod p)(k \geq$ $1)$.

Kummer (1850): If p is an odd prime and $p-1 \nmid$ b, then

$$
\frac{B_{k(p-1)+b}}{k(p-1)+b} \equiv \frac{B_{b}}{b}(\bmod p)
$$

The Euler numbers $\left\{E_{n}\right\}$ are given by

$$
E_{2 n-1}=0, E_{0}=1, \sum_{r=0}^{n}\binom{2 n}{2 r} E_{2 r}=0(n \geq 1)
$$

The first few Euler numbers are shown below:

$$
\begin{aligned}
& E_{0}=1, E_{2}=-1, E_{4}=5, E_{6}=-61 \\
& E_{8}=1385, E_{10}=-50521, E_{12}=2702765
\end{aligned}
$$

The sequence $\left\{U_{n}\right\}$ is defined by
$U_{0}=1 \quad$ and $\quad U_{n}=-2 \sum_{k=1}^{[n / 2]}\binom{n}{2 k} U_{n-2 k}(n \geq 1)$.
Clearly $U_{2 n-1}=0$ for $n \geq 1$.

\S 2. p-regular functions

Definition 2.1 Let p be a prime. If $f(0), f(1)$, $f(2), \ldots$ are all algebraic numbers which are integral for p, and for $n=1,2,3, \ldots$,

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) \equiv 0\left(\bmod p^{n}\right)
$$

we call that f is a p -regular function.
Example 2.1 Let p be a prime, $b \in\{0,1,2, \ldots\}$ and $m \in \mathbb{N}$ with $p \nmid m$. Then
$f(k)=m^{k(p-1)+b} \quad$ and $\quad g(k)=m^{k(p-1)+b}-1$ are p -regular functions.
(by Fermat's little theorem and the binomial theorem)

Example 2.2 ([S1]) Let p be an odd prime and $b \in\{0,1,2, \ldots\}$. Then

$$
f(k)=p\left(p-p^{k(p-1)+b}\right) B_{k(p-1)+b}
$$

is a p -regular function.
Example 2.3 ([S2]) Let p be an odd prime, $b \in \mathbb{N}$ and $p-1 \nmid b$. Then

$$
f(k)=\left(1-p^{k(p-1)+b-1}\right) \frac{B_{k(p-1)+b}}{k(p-1)+b}
$$

is a p -regular function.
Example 2.4 ([S3]) Let p be an odd prime and $b \in\{0,2,4, \ldots\}$. Then

$$
f(k)=\left(1-(-1)^{\frac{p-1}{2}} p^{k(p-1)+b}\right) E_{k(p-1)+b}
$$

is a p -regular function.
Example 2.5 ([S6]) Let p be an odd prime and $b \in\{0,2,4, \ldots\}$. Then

$$
f(k)=\left(1-\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) U_{k(p-1)+b}
$$

is a p -regular function.

Lemma 2.1 Let $n \geq 1$ and $k \geq 0$ be integers. For any function f,

$$
\begin{aligned}
f(k)= & \sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} f(r) \\
& +\sum_{r=n}^{k}\binom{k}{r}(-1)^{r} \sum_{s=0}^{r}\binom{r}{s}(-1)^{s} f(s) .
\end{aligned}
$$

Proof. As $\sum_{j=0}^{m}(-1)^{j}\binom{x}{j}=(-1)^{m}\binom{x-1}{m}$, we find

$$
\begin{aligned}
& \sum_{r=0}^{n-1}\binom{k}{r}(-1)^{r} \sum_{s=0}^{r}\binom{r}{s}(-1)^{s} f(s) \\
& =\sum_{s=0}^{n-1} \sum_{r=s}^{n-1}\binom{k}{r}\binom{r}{s}(-1)^{r-s} f(s) \\
& =\sum_{s=0}^{n-1}\binom{k}{s} \sum_{r=s}^{n-1}\binom{k-s}{r-s}(-1)^{r-s} f(s) \\
& =\sum_{s=0}^{n-1}\binom{k}{s} f(s) \sum_{j=0}^{n-1-s}\binom{k-s}{j}(-1)^{j} \\
& =\sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} f(r)
\end{aligned}
$$

By the binomial inversion formula,

$$
f(k)=\sum_{r=0}^{k}\binom{k}{r}(-1)^{r} \sum_{s=0}^{r}\binom{r}{s}(-1)^{s} f(s)
$$

Thus the result follows.

Theorem 2.1 Let p be a prime, $n \in \mathbb{N}, k \in$ $\{0,1,2, \ldots\}$ and let f be a p-regular function. Then
$f(k) \equiv \sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} f(r)\left(\bmod p^{n}\right)$.

Example: Let p be an odd prime, $k \in\{0,1,2, \ldots\}$, $n, b \in \mathbb{N}$ and $p-1 \nmid b$. Then

$$
\begin{aligned}
& \left(1-p^{k(p-1)+b-1}\right) \frac{B_{k(p-1)+b}}{k(p-1)+b} \\
& \equiv \sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} \\
& \quad \times\left(1-p^{r(p-1)+b-1}\right) \frac{B_{r(p-1)+b}}{r(p-1)+b}\left(\bmod p^{n}\right)
\end{aligned}
$$

Using the properties of Stirling numbers we deduce that:

Theorem 2.2 Let p be a prime. Then f is a p -regular function if and only if for each positive integer n, there are $a_{0}, a_{1}, \ldots, a_{n-1} \in$ $\left\{0,1, \ldots, p^{n}-1\right\}$ such that

$$
f(k) \equiv a_{n-1} k^{n-1}+\cdots+a_{1} k+a_{0}\left(\bmod p^{n}\right)
$$

for every $k=0,1,2, \ldots$. Moreover, we may assume $a_{s} \cdot s!/ p^{s} \in \mathbb{Z}_{p}$ for $s=0,1, \ldots, n-1$. If $p \geq n$ and f is a p -regular function, then a_{0}, \ldots, a_{n-1} are unique.

Example: For $k \in \mathbb{N}$,

$$
\begin{aligned}
& \frac{B_{4 k+2}}{4 k+2} \\
& \equiv 625 k^{4}+875 k^{3}-700 k^{2}+180 k-1042\left(\bmod 5^{5}\right) \\
& E_{4 k} \equiv-750 k^{3}+1375 k^{2}-620 k\left(\bmod 5^{5}\right)(k>1)
\end{aligned}
$$

Lemma 2.2. Let p be a prime. Let f be a p-regular function. Suppose $m, n \in \mathbb{N}$ and $t \in \mathbb{Z}$ with $t \geq 0$. Then

$$
\sum_{r=0}^{n}\binom{n}{r}(-1)^{r} f\left(p^{m-1} r t\right) \equiv 0\left(\bmod p^{m n}\right)
$$

Moreover, if $A_{k}=p^{-k} \sum_{r=0}^{k}\binom{k}{r}(-1)^{r} f(r)$, then

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r}(-1)^{r} f\left(p^{m-1} r t\right) \\
& \equiv\left\{\begin{array}{l}
p^{m n} t^{n} A_{n}\left(\bmod p^{m n+1}\right) \\
\text { if } p>2 \text { or } m=1 \\
2^{m n} t^{n} \sum_{r=0}^{n}\binom{n}{r} A_{r+n}\left(\bmod 2^{m n+1}\right) \\
\text { if } p=2 \text { and } m \geq 2
\end{array}\right.
\end{aligned}
$$

Theorem 2.3. Let p be a prime, $k, m, n, t \in \mathbb{N}$, and let f be a p-regular function. Then
$f\left(k t p^{m-1}\right)$
$\equiv \sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} f\left(r t p^{m-1}\right)\left(\bmod p^{m n}\right)$.
Moreover, setting $A_{s}=p^{-s} \sum_{r=0}^{s}\binom{s}{r}(-1)^{r} f(r)$ we then have

$$
\begin{aligned}
& f\left(k t p^{m-1}\right)-\sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r} f\left(r t p^{m-1}\right) \\
& \equiv\left\{\begin{array}{l}
p^{m n}\binom{k}{n}(-t)^{n} A_{n}\left(\bmod p^{m n+1}\right) \\
\text { if } p>2 \text { or } m=1, \\
2^{m n}\binom{k}{n}(-t)^{n} \sum_{r=0}^{n}\binom{n}{r} A_{r+n}\left(\bmod 2^{m n+1}\right) \\
\text { if } p=2 \text { and } m \geq 2 .
\end{array}\right.
\end{aligned}
$$

From Theorem 2.3 we deduce:

Theorem 2.4. Let p be a prime, $k, m, t \in \mathbb{N}$. Let f be a p-regular function. Then
(i) $([S 2]) f\left(k p^{m-1}\right) \equiv f(0)\left(\bmod p^{m}\right)$.
(ii) $f\left(k t p^{m-1}\right) \equiv k f\left(t p^{m-1}\right)-(k-1) f(0)\left(\bmod p^{2 m}\right)$.
(iii) We have

$$
\begin{gathered}
f\left(k t p^{m-1}\right) \equiv \frac{k(k-1)}{2} f\left(2 t p^{m-1}\right)-k(k-2) f\left(t p^{m-1}\right) \\
+\frac{(k-1)(k-2)}{2} f(0)\left(\bmod p^{3 m}\right)
\end{gathered}
$$

(iv) We have

$$
f\left(k p^{m-1}\right)
$$

$$
\equiv\left\{\begin{array}{l}
f(0)-k(f(0)-f(1)) p^{m-1}\left(\bmod p^{m+1}\right) \\
\quad \text { if } p>2 \text { or } m=1 \\
f(0)-2^{m-2} k(f(2)-4 f(1)+3 f(0))\left(\bmod 2^{m+}\right.
\end{array}\right.
$$

$$
\text { if } p=2 \text { and } m \geq 2
$$

Example:

$$
\begin{aligned}
E_{k \varphi\left(p^{m}\right)+b} & \equiv\left(1-k p^{m-1}\right)\left(1-(-1)^{\frac{p-1}{2}} p^{b}\right) E_{b} \\
& +k p^{m-1} E_{p-1+b}\left(\bmod p^{m+1}\right) \\
U_{k \varphi\left(p^{m}\right)+b} & \equiv\left(1-\left(\frac{p}{3}\right) p^{b}\right) U_{b}\left(\bmod p^{m}\right)
\end{aligned}
$$

where φ is Euler's totient function.
Lemma 2.3. For $n=0,1,2, \ldots$ and any two functions f and g we have

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) g(k)
$$

$$
=\sum_{s=0}^{n}\binom{n}{s}\left(\sum_{r=0}^{s}\binom{s}{r}(-1)^{r} F(n-s+r)\right) G(s)
$$

where $F(m)=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} f(k)$ and $G(m)=$ $\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} g(k)$.

Proof. We first claim that
$\sum_{r=0}^{n}\binom{n}{r}(-1)^{r} f(r+m)=\sum_{r=0}^{m}\binom{m}{r}(-1)^{r} F(r+n)$.

Clearly the assertion holds for $m=0$. Now assume that it is true for $m=k$. It is easily seen that

$$
\begin{aligned}
& \sum_{r=0}^{n}\binom{n}{r}(-1)^{r} f(r+k+1) \\
& =\sum_{s=0}^{n}\binom{n}{s}(-1)^{s} f(k+s)-\sum_{s=0}^{n+1}\binom{n+1}{s}(-1)^{s} f(k+s) \\
& =\sum_{s=0}^{k}\binom{k}{s}(-1)^{s} F(n+s)-\sum_{s=0}^{k}\binom{k}{s}(-1)^{s} F(n+1+s) \\
& =\sum_{s=0}^{k+1}\binom{k+1}{s}(-1)^{s} F(n+s) .
\end{aligned}
$$

So the assertion is true by induction.

From the binomial inversion formula we know that $g(k)=\sum_{s=0}^{k}\binom{k}{s}(-1)^{s} G(s)$. Thus, by the above assertion we have

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) g(k) \\
& =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) \sum_{s=0}^{k}\binom{k}{s}(-1)^{s} G(s) \\
& =\sum_{s=0}^{n}\left(\begin{array}{l}
n \\
k=s
\end{array}\binom{n}{k}\binom{k}{s}(-1)^{k-s} f(k)\right) G(s) \\
& =\sum_{s=0}^{n}\binom{n}{s}\left(\sum_{k=s}^{n}\binom{n-s}{k-s}(-1)^{k-s} f(k)\right) G(s) \\
& =\sum_{s=0}^{n}\binom{n}{s}\left(\begin{array}{l}
n-s \\
r=0
\end{array}\binom{n-s}{r}(-1)^{r} f(r+s)\right) G(s) \\
& =\sum_{s=0}^{n}\binom{n}{s}\left(\sum_{r=0}^{s}\binom{s}{r}(-1)^{r} F(n-s+r)\right) G(s)
\end{aligned}
$$

which completes the proof.

Theorem 2.5 (Product Theorem). Let p be a prime. If f and g are p-regular functions, then $f \cdot g$ is also a p-regular function.
§ 3. p-regular functions involving Bernoulli polynomials and generalized Bernoulli numbers

The Bernoulli polynomial $B_{n}(x)$ is given by

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}
$$

For $x \in \mathbb{Z}_{p}$ let $\langle x\rangle_{p}$ denote the unique number $n \in\{0,1, \ldots, p-1\}$ such that $x \equiv n(\bmod p)$.

Theorem 3.1 Let p be a prime and let b be a nonnegative integer.
(i) ([S2, 2000], [Young, 2001]) If $p-1 \nmid b, x \in$ \mathbb{Z}_{p} and $x^{\prime}=\left(x+\langle-x\rangle_{p}\right) / p$, then
$f(k)=\frac{B_{k(p-1)+b}(x)-p^{k(p-1)+b-1} B_{k(p-1)+b}\left(x^{\prime}\right)}{k(p-1)+b}$ is a p-regular function.
(ii) ([S2, (3.1), Theorem 3.1 and Remark 3.1]) If $a, b \in \mathbb{N}$ and $p \nmid a$, then
$f(k)=\left(1-p^{k(p-1)+b-1}\right)\left(a^{k(p-1)+b}-1\right) \frac{B_{k(p-1)+b}}{k(p-1)+b}$
is a p-regular function.

Let χ be a primitive Dirichlet character of conductor m. The generalized Bernoulli number $B_{n, \chi}$ is defined by

$$
\sum_{r=1}^{m} \frac{\chi(r) t \mathrm{e}^{r t}}{\mathrm{e}^{m t}-1}=\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!}
$$

Let χ_{0} be the trivial character. It is well known that

$$
\begin{aligned}
& B_{1, \chi_{0}}=\frac{1}{2}, B_{n, \chi_{0}}=B_{n}(n \neq 1) \\
& B_{n, \chi}=m^{n-1} \sum_{r=1}^{m} \chi(r) B_{n}\left(\frac{r}{m}\right)
\end{aligned}
$$

If χ is nontrivial and $n \in \mathbb{N}$, then clearly $\sum_{r=1}^{m} \chi(r)$
$=0$ and so

$$
\begin{aligned}
\frac{B_{n, \chi}}{n} & =m^{n-1} \sum_{r=1}^{m} \chi(r)\left(\frac{B_{n}\left(\frac{r}{m}\right)-B_{n}}{n}+\frac{B_{n}}{n}\right) \\
& =m^{n-1} \sum_{r=1}^{m} \chi(r) \frac{B_{n}\left(\frac{r}{m}\right)-B_{n}}{n}
\end{aligned}
$$

When p is a prime with $p \nmid m$, by [S1, Lemma 2.3] we have $\left(B_{n}\left(\frac{r}{m}\right)-B_{n}\right) / n \in \mathbb{Z}_{p}$. Thus $B_{n, \chi} / n$ is congruent to an algebraic integer modulo p.

Theorem 3.2. Let p be a prime and let be a nonnegative integer.
(i) ([Young, 1999], [Fox, 2002], [S2, 2000]) If $b, m \in \mathbb{N}, p \nmid m$ and χ is a nontrivial primitive Dirichlet character of conductor m, then

$$
f(k)=\left(1-\chi(p) p^{k(p-1)+b-1}\right) \frac{B_{k(p-1)+b, \chi}}{k(p-1)+b}
$$

is a p-regular function.
(ii) ([S2, Lemma 8.1(b)]) If $m \in \mathbb{N}, p \nmid m$ and χ is a nontrivial Dirichlet character of conductor m, then

$$
f(k)=\left(1-\chi(p) p^{k(p-1)+b-1}\right) p B_{k(p-1)+b, \chi}
$$

is a p-regular function.

Definition 3.1 For $a \neq 0$ define $\left\{E_{n}^{(a)}\right\}$ by
$\sum_{k=0}^{[n / 2]}\binom{n}{2 k} a^{2 k} E_{n-2 k}^{(a)}=(1-a)^{n} \quad(n=0,1,2, \ldots)$.
Clearly $E_{n}^{(1)}=E_{n}$.

Theorem 3.3 ([S6]). Let a be a nonzero integer and $b \in\{0,1,2, \ldots\}$. Then $f(k)=E_{2 k+b}^{(a)}$ is a 2 -regular function.

Theorem 3.4 ([S6]). Let p be an odd prime and let b be a nonnegative integer. Then $f_{2}(k)=\left(1-(-1)^{\frac{p-1}{2} b+\left[\frac{p-1}{4}\right]} p^{k(p-1)+b}\right) E_{k(p-1)+b}^{(2)}$ and
$f_{3}(k)=\left(1-(-1)^{\left[\frac{p+1}{6}\right]}\left(\frac{p}{3}\right)^{b+1} p^{k(p-1)+b}\right) E_{k(p-1)+b}^{(3)}$ are p-regular functions.
$\S 4$. Congruences for $\sum_{x=1}^{p-1} \frac{1}{x^{k}}\left(\bmod p^{3}\right)$ and $\sum_{x=1}^{\frac{p-1}{2}} \frac{1}{x^{k}}\left(\bmod p^{3}\right)$

Theorem 4.1 ([S2]) Let p be a prime greater than 3.
(a) If $k \in\{1,2, \ldots, p-4\}$, then

$$
\sum_{x=1}^{p-1} \frac{1}{x^{k}}
$$

$$
=\left\{\begin{array}{l}
\frac{k(k+1)}{2 \text { if } k \text { is odd, }} \frac{B_{p-2-k}}{p-2}\left(\bmod p^{3}\right) \\
k\left(\frac{B_{2 p-2-k}}{2 p-2-k}-2 \frac{B_{p-1-k}}{p-1-k}\right) p\left(\bmod p^{3}\right) \\
\text { if } k \text { is even. }
\end{array}\right.
$$

(b) $\sum_{x=1}^{p-1} \frac{1}{x^{p-3}} \equiv\left(\frac{1}{2}-3 B_{p+1}\right) p-\frac{4}{3} p^{2}\left(\bmod p^{3}\right)$.
(c) $\sum_{x=1}^{p-1} \frac{1}{x^{p-2}} \equiv-\left(2+p B_{p-1}\right) p+\frac{5}{2} p^{2}\left(\bmod p^{3}\right)$.
(d) $\sum_{x=1}^{p-1} \frac{1}{x^{p-1}}$
$\equiv p B_{2 p-2}-3 p B_{p-1}+3(p-1)\left(\bmod p^{3}\right)$.

Proof. For $m \in \mathbb{Z}$ it is clear that

$$
\begin{aligned}
& 1^{m}+2^{m}+\cdots+(p-1)^{m}=\frac{B_{m+1}(p)-B_{m+1}}{m+1} \\
& =\frac{1}{m+1} \sum_{r=1}^{m+1}\binom{m+1}{r} B_{m+1-r} p^{r} \\
& =p B_{m}+\frac{p^{2}}{2} m B_{m-1} \\
& \quad \quad+\sum_{r=3}^{m+1}\binom{m}{r-1} p B_{m+1-r} \cdot \frac{p^{r-4}}{r} \cdot p^{3} .
\end{aligned}
$$

Since $p B_{m+1-r}, \frac{p^{r-4}}{r} \in \mathbb{Z}_{p}$ for $r \geq 3$ we have (4.1)
$1^{m}+2^{m}+\cdots+(p-1)^{m} \equiv p B_{m}+\frac{p^{2}}{2} m B_{m-1}\left(\bmod p^{3}\right)$.

Let $k \in\{1,2, \ldots, p-1\}$. From (4.1) and Euler's theorem we see that

$$
\begin{aligned}
& \sum_{x=1}^{p-1} \frac{1}{x^{k}} \equiv \sum_{x=1}^{p-1} x^{\varphi\left(p^{3}\right)-k} \\
& \equiv p B_{\varphi\left(p^{3}\right)-k}+\frac{p^{2}}{2}\left(\varphi\left(p^{3}\right)-k\right) B_{\varphi\left(p^{3}\right)-k-1} \\
& \equiv p B_{\varphi\left(p^{3}\right)-k}-\frac{k}{2} p^{2} B_{\varphi\left(p^{3}\right)-k-1} \\
& = \begin{cases}p B_{\varphi\left(p^{3}\right)-k}\left(\bmod p^{3}\right) & \text { if } k \text { is even, } \\
-\frac{k}{2} p^{2} B_{\varphi\left(p^{3}\right)-k-1}\left(\bmod p^{3}\right) & \text { if } k \text { is odd. }\end{cases}
\end{aligned}
$$

For $k \in\{1,2, \ldots, p-2\}$ we see that

$$
\begin{aligned}
& \frac{B_{\varphi\left(p^{3}\right)-k}}{\varphi\left(p^{3}\right)-k}=\frac{B_{\left(p^{2}-1\right)(p-1)+p-1-k}}{\left(p^{2}-1\right)(p-1)+p-1-k} \\
& \equiv\left(p^{2}-1\right) \frac{B_{2 p-2-k}}{2 p-2-k}-\left(p^{2}-2\right)\left(1-p^{p-2-k}\right) \frac{B_{p-1-k}}{p-1-k} \\
& \equiv-\frac{B_{2 p-2-k}}{2 p-2-k}+2\left(1-p^{p-2-k}\right) \frac{B_{p-1-k}}{p-1-k}\left(\bmod p^{2}\right)
\end{aligned}
$$

Thus,

(4.2)
$p B_{\varphi\left(p^{3}\right)-k}$
$\equiv-k p\left(-\frac{B_{2 p-2-k}}{2 p-2-k}+2\left(1-p^{p-2-k}\right) \frac{B_{p-1-k}}{p-1-k}\right)$
$\equiv\left\{\begin{array}{l}k p\left(\frac{B_{2 p-2-k}}{2 p-2-k}-2 \frac{B_{p-1-k}}{p-1-k}\right)\left(\bmod p^{3}\right) \\ \text { if } k<p-3, \\ (p-3) p\left(\frac{B_{p+1}}{p+1}-2(1-p) \frac{B_{2}}{2}\right)\left(\bmod p^{3}\right) \\ \text { if } k=p-3 .\end{array}\right.$
When $k \in\{1,2, \ldots, p-3\}$, it follows from Summer's congruences that

$$
\begin{aligned}
\frac{B_{\varphi\left(p^{3}\right)-k-1}}{\varphi\left(p^{3}\right)-k-1} & =\frac{B_{\left(p^{2}-1\right)(p-1)+p-2-k}}{\left(p^{2}-1\right)(p-1)+p-2-k} \\
& \equiv \frac{B_{p-2-k}}{p-2-k}(\bmod p)
\end{aligned}
$$

Thus,
(4.3)

$$
-\frac{k}{2} p^{2} B_{\varphi\left(p^{3}\right)-k-1} \equiv-\frac{k}{2} p^{2}(-k-1) \frac{B_{p-2-k}}{p-2-k}\left(\bmod p^{3}\right)
$$

Combining the above we get

$$
\sum_{x=1}^{p-1} \frac{1}{x^{k}} \equiv\left\{\begin{array}{c}
k p\left(\frac{B_{2 p-2-k}}{2 p-2-k}-2 \frac{B_{p-1-k}}{p-1-k}\right)\left(\bmod p^{3}\right) \\
\text { if } k \in\{2,4, \ldots, p-5\} \\
\left(\frac{1}{2}-3 B_{p+1}\right) p-\frac{4}{3} p^{2}\left(\bmod p^{3}\right) \\
\text { if } k=p-3, \\
\frac{k(k+1)}{2} \frac{B_{p-2-k}}{p-2-k} p^{2}\left(\bmod p^{3}\right) \\
\text { if } k \in\{1,3, \ldots, p-4\}
\end{array}\right.
$$

This proves parts (a) and (b).
Now consider parts (c) and (d). Note that $p B_{r(p-1)} \equiv-1(\bmod p)$ for $r \geq 1$. From the above and [S1, Corollary 4.2] we see that

$$
\begin{aligned}
\sum_{x=1}^{p-1} \frac{1}{x^{p-2}} & \equiv-\frac{p-2}{2} p^{2} B_{\varphi\left(p^{3}\right)-(p-1)} \\
& \equiv-\frac{p-2}{2} p\left(\left(p^{2}-1\right) p B_{p-1}-\left(p^{2}-2\right)(p-1)\right) \\
& \equiv \frac{p-2}{2} p\left(p B_{p-1}+2-2 p\right) \\
& \equiv-p\left(p B_{p-1}+2\right)+\frac{5}{2} p^{2}\left(\bmod p^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{x=1}^{p-1} \frac{1}{x^{p-1}} \\
& \equiv p B_{\varphi\left(p^{3}\right)-(p-1)} \\
& \equiv\binom{p^{2}-1}{2} p B_{2 p-2}-\left(p^{2}-1\right)\left(p^{2}-3\right) p B_{p-1} \\
& \quad+\binom{p^{2}-2}{2}(p-1) \\
& \equiv \\
& \equiv\left(1-\frac{3 p^{2}}{2}\right) p B_{2 p-2}-\left(3-4 p^{2}\right) p B_{p-1} \\
& \quad+\left(3-\frac{5 p^{2}}{2}\right)(p-1) \\
& \equiv p B_{2 p-2}-3 p B_{p-1}+3(p-1)\left(\bmod p^{3}\right)
\end{aligned}
$$

This concludes the proof.

One can similarly prove that

Theorem 4.2 Let $p>5$ be a prime and $k \in$ $\{1,2, \ldots, p-5\}$. Then
$\sum_{x=1}^{p-1} \frac{1}{x^{k}}$
$\equiv\left\{\begin{array}{c}-k\left(\frac{B_{3 p-3-k}}{3 p-3-k}-3 \frac{B_{2 p-2-k}}{2 p-2-k}+3 \frac{B_{p-1-k}}{p-1-k}\right) p \\ -\binom{k+2}{3} \frac{p^{3} B_{p-3-k}}{p-3-k}\left(\bmod p^{4}\right) \quad \text { if } 2 \mid k, \\ -\binom{k+1}{2}\left(\frac{B_{2 p-3-k}}{2 p-3-k}-2 \frac{B_{p-2-k}}{p-2-k}\right) p^{2}\left(\bmod p^{4}\right) \\ \text { if } 2 \nmid k .\end{array}\right.$

Theorem 4.3 ([S2]). Let $p>5$ be a prime.
(a) If $k \in\{2,4, \ldots, p-5\}$, then
$\sum_{x=1}^{\frac{p-1}{2}} \frac{1}{x^{k}}$
$\equiv \frac{k\left(2^{k+1}-1\right)}{2} p\left(\frac{B_{2 p-2-k}}{2 p-2-k}-2 \frac{B_{p-1-k}}{p-1-k}\right)\left(\bmod p^{3}\right)$.
(b) If $k \in\{3,5, \cdots, p-4\}$, then
$\sum_{x=1}^{\frac{p-1}{2}} \frac{1}{x^{k}} \equiv\left(2^{k}-2\right)\left(2 \frac{B_{p-k}}{p-k}-\frac{B_{2 p-1-k}}{2 p-1-k}\right)\left(\bmod p^{2}\right)$.
(c) If $q_{p}(2)=\left(2^{p-1}-1\right) / p$, then
$\sum_{x=1}^{\frac{p-1}{2}} \frac{1}{x}$
$\equiv-2 q_{p}(2)+p q_{p}^{2}(2)-\frac{2}{3} p^{2} q_{p}^{3}(2)-\frac{7}{12} p^{2} B_{p-3}\left(\bmod p^{3}\right)$.

Theorem 4.4 ([S4]). Let $p>3$ be a prime and $q_{p}(a)=\left(a^{p-1}-1\right) / p$. Then

$$
\equiv \frac{3}{4} q_{p}(2)-\frac{3}{8} p q_{p}(2)^{2}+\frac{1}{4} p^{2} q_{p}(2)^{3}
$$

$$
-\frac{p^{2}}{192} B_{p-3}\left(\bmod p^{3}\right),
$$

$$
\sum_{\substack{k=1 \\(\text { mod } 6)}}^{p-1} \frac{1}{k}
$$

$$
\begin{aligned}
\equiv & \frac{1}{3} q_{p}(2)+\frac{1}{4} q_{p}(3)-p\left(\frac{1}{6} q_{p}(2)^{2}+\frac{1}{8} q_{p}(3)^{2}\right) \\
& +p^{2}\left(\frac{1}{9} q_{p}(2)^{3}+\frac{1}{12} q_{p}(3)^{3}-\frac{1}{648} B_{p-3}\right)\left(\bmod p^{3}\right) .
\end{aligned}
$$

§5. A congruence for $(p-1)!\left(\bmod p^{3}\right)$

Let p be a prime greater than 3. The classical Wilson's theorem states that

$$
(p-1)!\equiv-1(\bmod p) .
$$

In 1900 J.W.L.Glaisher showed that

$$
(p-1)!\equiv p B_{p-1}-p\left(\bmod p^{2}\right) .
$$

Here we give a congruence for ($p-1$)! modulo p^{3}.

Theorem 5.1 ([S2]). For any prime $p>3$ we have
$(p-1)!\equiv \frac{p B_{2 p-2}}{2 p-2}-\frac{p B_{p-1}}{p-1}-\frac{1}{2}\left(\frac{p B_{p-1}}{p-1}\right)^{2}\left(\bmod p^{3}\right)$.

The proof is based on the following Newton's formula.

Newton's formula: Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are complex numbers. If

$$
\begin{aligned}
& S_{m}=x_{1}^{m}+x_{2}^{m}+\cdots+x_{n}^{m}, \\
& A_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}},
\end{aligned}
$$

for $k=0,1, \ldots, n$ we have

$$
\begin{aligned}
& S_{k}-A_{1} S_{k-1}+A_{2} S_{k-2}+\cdots \\
& \quad+(-1)^{k-1} A_{k-1} S_{1}+(-1)^{k} k A_{k}=0 .
\end{aligned}
$$

§6. Congruences involving Bernoulli and Euler polynomials

The Euler polynomials $\left\{E_{n}(x)\right\}$ are given by

$$
E_{n}(x)+\sum_{r=0}^{n}\binom{n}{r} E_{r}(x)=2 x^{n} \quad(n \geq 0)
$$

It is known that

$$
\begin{aligned}
E_{n}(x) & =\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n}{r}(2 x-1)^{n-r} E_{r} \\
& =\frac{2}{n+1}\left(B_{n+1}(x)-2^{n+1} B_{n+1}\left(\frac{x}{2}\right)\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \sum_{x=0}^{p-1} x^{k}=\frac{B_{k+1}(p)-B_{k+1}}{k+1} \\
& \sum_{x=0}^{p-1}(-1)^{x} x^{k}=-\frac{(-1)^{p} E_{k}(p)-E_{k}(0)}{2}
\end{aligned}
$$

Theorem 6.1 ([S3]). Let $p, m \in \mathbb{N}$ and $k, r \in$ \mathbb{Z} with $k \geq 0$. Then

$$
\begin{aligned}
& \sum_{\substack{x=0 \\
x \equiv \\
x(\bmod m)}}^{p-1} x^{k} \\
= & \frac{m^{k}}{k+1}\left(B_{k+1}\left(\frac{p}{m}+\left\{\frac{r-p}{m}\right\}\right)-B_{k+1}\left(\left\{\frac{r}{m}\right\}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{\substack{x=0 \\
x \equiv r}}^{p-1}(-1)^{\frac{x-r}{m}} x^{k} \\
=- & \frac{m^{k}}{2}\left((-1)^{\left[\frac{r-p}{m}\right]} E_{k}\left(\frac{p}{m}+\left\{\frac{r-p}{m}\right\}\right)\right. \\
& \left.-(-1)^{\left[\frac{r}{m}\right]} E_{k}\left(\left\{\frac{r}{m}\right\}\right)\right) .
\end{aligned}
$$

Proof. For any real number t and nonnegative integer n it is well known that

$$
\begin{aligned}
& B_{n}(t+1)-B_{n}(t)=n t^{n-1} \quad(n \neq 0) \\
& E_{n}(t+1)+E_{n}(t)=2 t^{n}
\end{aligned}
$$

Hence, for $x \in \mathbb{Z}$ we have

$$
\begin{aligned}
& B_{k+1}\left(\frac{x+1}{m}+\left\{\frac{r-x-1}{m}\right\}\right)-B_{k+1}\left(\frac{x}{m}+\left\{\frac{r-x}{m}\right\}\right) \\
& = \begin{cases}0 & \text { if } m \nmid x-r \\
(k+1)\left(\frac{x}{m}\right)^{k} & \text { if } m \mid x-r\end{cases}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& B_{k+1}\left(\frac{p}{m}+\left\{\frac{r-p}{m}\right\}\right)-B_{k+1}\left(\left\{\frac{r}{m}\right\}\right) \\
& =\sum_{x=0}^{p-1}\left(B_{k+1}\left(\frac{x+1}{m}+\left\{\frac{r-x-1}{m}\right\}\right)\right. \\
& \left.\quad-B_{k+1}\left(\frac{x}{m}+\left\{\frac{r-x}{m}\right\}\right)\right) \\
& =\frac{k+1}{m^{k}} \sum_{x=0}^{p-1} x^{k} . \\
& x \equiv r(\bmod m)
\end{aligned}
$$

Similarly, if $x \in \mathbb{Z}$, then

$$
\begin{aligned}
& (-1)^{\left[\frac{r-x-1}{m}\right]} E_{k}\left(\frac{x+1}{m}+\left\{\frac{r-x-1}{m}\right\}\right) \\
& -(-1)^{\left[\frac{r-x}{m}\right]} E_{k}\left(\frac{x}{m}+\left\{\frac{r-x}{m}\right\}\right) \\
& = \begin{cases}0 & \text { if } m \nmid x-r, \\
-(-1)^{\frac{r-x}{m}} \cdot 2\left(\frac{x}{m}\right)^{k} & \text { if } m \mid x-r .\end{cases}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& (-1)^{\left[\frac{r-p}{m}\right]} E_{k}\left(\frac{p}{m}+\left\{\frac{r-p}{m}\right\}\right) \\
& \quad-(-1)^{\left[\frac{r}{m}\right]} E_{k}\left(\left\{\frac{r}{m}\right\}\right) \\
& =\sum_{x=0}^{p-1}\left\{(-1)^{\left.\frac{r-x-1}{m}\right]} E_{k}\left(\frac{x+1}{m}+\left\{\frac{r-x-1}{m}\right\}\right)\right. \\
& \left.\quad-(-1)^{\left[\frac{r-x}{m}\right]} E_{k}\left(\frac{x}{m}+\left\{\frac{r-x}{m}\right\}\right)\right\} \\
& =-\frac{2}{m^{k}} \sum_{\substack{x=0}}^{p-1}(-1)^{\frac{x-r}{m}} x^{k} . \\
& \quad x \equiv(\bmod m)
\end{aligned}
$$

This completes the proof.
Corollary 6.1 Let p be an odd prime and $k \in$ $\{0,1, \ldots, p-2\}$. Let $r \in \mathbb{Z}$ and $m \in \mathbb{N}$ with $p \nmid m$. Then

$$
\begin{aligned}
& \sum_{\substack{x=0 \\
x \equiv r(\bmod m)}}^{p} x^{k} \\
\equiv & \frac{m^{k}}{k+1}\left(B_{k+1}\left(\left\{\frac{r-p}{m}\right\}\right)-B_{k+1}\left(\left\{\frac{r}{m}\right\}\right)\right)(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{\substack{x=0 \\
x \equiv}}^{p-1}(-1)^{\frac{x-r}{m}} x^{k} \\
\equiv & -\frac{m^{k}}{2}\left((-1)^{\left[\frac{r-p}{m}\right]} E_{k}\left(\left\{\frac{r-p}{m}\right\}\right)\right. \\
& \left.-(-1)^{\left[\frac{r}{m}\right]} E_{k}\left(\left\{\frac{r}{m}\right\}\right)\right)(\bmod p) .
\end{aligned}
$$

Proof. If $x_{1}, x_{2} \in \mathbb{Z}_{p}$ and $x_{1} \equiv x_{2}(\bmod p)$, then $\frac{B_{k+1}\left(x_{1}\right)-B_{k+1}\left(x_{2}\right)}{k+1} \equiv 0(\bmod p)$ and $E_{k}\left(x_{1}\right) \equiv$ $E_{k}\left(x_{2}\right)(\bmod p)$. Thus the result follows from Theorem 6.1.

In the case $k=p-2$, Corollary 6.1 is due to Zhi-Wei Sun. Inspired by Zhi-Wei Sun's work, I established Theorem 6.1 and Corollary 6.1.

Corollary 6.2 Let p be an odd prime. Let $k \in$ $\{0,1, \ldots, p-2\}$ and $m, s \in \mathbb{N}$ with $p \nmid m$. Then

$$
\begin{aligned}
& \frac{(-1)^{k}}{k+1}\left(B_{k+1}\left(\left\{\frac{(s-1) p}{m}\right\}\right)-B_{k+1}\left(\left\{\frac{s p}{m}\right\}\right)\right) \\
& \equiv \sum_{\frac{(s-1) p}{m}<r \leq \frac{s p}{m}} r^{k}(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
& (-1)^{\left[\frac{(s-1) p}{m}\right]} E_{k}\left(\left\{\frac{(s-1) p}{m}\right\}\right)-(-1)^{\left[\frac{s p}{m}\right]} E_{k}\left(\left\{\frac{s p}{m}\right\}\right) \\
& \equiv 2(-1)^{k-1} \sum_{\frac{(s-1) p}{m}<r \leq \frac{s p}{m}}(-1)^{r} r^{k}(\bmod p) .
\end{aligned}
$$

Theorem 6.2. Let $m, s \in \mathbb{N}$ and let p be an odd prime not dividing m. Then

$$
\begin{aligned}
& (-1)^{s} \frac{m}{p} \sum_{k \equiv s p(m=1}^{p-1}\binom{p}{k} \equiv \sum_{\frac{(s-1) p}{m}<k<\frac{s p}{m}} \frac{(-1)^{k m}}{k} \\
& \equiv\left\{\begin{array}{l}
B_{p-1}\left(\left\{\frac{(s-1) p}{m}\right\}\right)-B_{p-1}\left(\left\{\frac{s p}{m}\right\}\right)(\bmod p) \text { if } 2 \mid m, \\
\frac{1}{2}\left((-1)^{\left[\frac{(s-1) p}{m}\right]} E_{p-2}\left(\left\{\frac{(s-1) p}{m}\right\}\right)\right. \\
\left.\quad-(-1)^{\left[\frac{s p}{m}\right]} E_{p-2}\left(\left\{\frac{s p}{m}\right\}\right)\right)(\bmod p) \text { if } 2 \nmid m .
\end{array}\right.
\end{aligned}
$$

Corollary 6.3. Let $m, n \in \mathbb{N}$ and let p be an odd prime not dividing m.
(i) If $2 \mid m$, then

$$
\begin{aligned}
& B_{p-1}\left(\left\{\frac{n p}{m}\right\}\right)-B_{p-1} \\
& \equiv \frac{m}{p} \sum_{s=1}^{n}(-1)^{s-1} \sum_{\substack{k=1 \\
k \equiv s p(\bmod m)}}^{p-1}\binom{p}{k}(\bmod p) .
\end{aligned}
$$

(ii) If $2 \nmid m$, then

$$
\begin{aligned}
& (-1)^{\left[\frac{n p}{m}\right]} E_{p-2}\left(\left\{\frac{n p}{m}\right\}\right)+\frac{2^{p}-2}{p} \\
& \equiv \frac{2 m}{p} \sum_{s=1}^{n}(-1)^{s-1} \sum_{\substack{k=1 \\
k \equiv s p(\bmod m)}}^{p-1}\binom{p}{k}(\bmod p) .
\end{aligned}
$$

In the cases $m=3,4,5,6,8,9$ the formulae for $\underset{k \equiv r}{\substack{\sum_{k=0}^{p}(\bmod m)}}\binom{p}{k}$ were given by me (published in 1992-1993), in the case $m=10$ the formula was published by Z.H.Sun and Z.W.Sun in 1992, and for the case $m=12$, the formula was given by Zhi-Wei Sun (published in 2002).

§7. Extension of Stern's congruence for Euler numbers

For $k, m \in \mathbb{N}$ and $b \in\{0,2,4, \ldots\}$. The Stern's congruence states that
(7.1) $\quad E_{2^{m} k+b} \equiv E_{b}+2^{m} k\left(\bmod 2^{m+1}\right)$.

In 1875 Stern gave a brief sketch of a proof of (7.1). Then Frobenius amplified Stern's sketch in 1910.

There are many modern proofs of (7.1). (Ernvall(1979), Wagstaff(2002), Zhi-Wei Sun(2005), Zhi-Hong Sun(2008))

Let $b \in\{0,2,4, \ldots\}$ and $k, m \in \mathbb{N}$. In $[S 5,2010]$ I showed that
$E_{2^{m} k+b} \equiv E_{b}+2^{m} k\left(\bmod 2^{m+2}\right) \quad$ for $\quad m \geq 2$, $E_{2^{m} k+b} \equiv E_{b}+5 \cdot 2^{m} k\left(\bmod 2^{m+3}\right) \quad$ for $\quad m \geq 3$,
and for $m \geq 4$,
$E_{2^{m} k+b}$
$\equiv \begin{cases}E_{b}+5 \cdot 2^{m} k\left(\bmod 2^{m+4}\right) & \text { if } b \equiv 0,6(\bmod 8), \\ E_{b}-3 \cdot 2^{m} k\left(\bmod 2^{m+4}\right) & \text { if } b \equiv 2,4(\bmod 8) .\end{cases}$

In [S9], Z.H.Sun and L.L.Wang (IJNT, 2013) established a congruence for $E_{2^{m} k+b}\left(\bmod 2^{m+7}\right)$.
In particular, for $m \geq 7$,
$E_{2^{m} k+b} \equiv E_{b}+2^{m} k\left(7(b+1)^{2}-18\right)\left(\bmod 2^{m+7}\right)$.
For $a \neq 0$ recall that $\left\{E_{n}^{(a)}\right\}$ is defined by

$$
\sum_{k=0}^{[n / 2]}\binom{n}{2 k} a^{2 k} E_{n-2 k}^{(a)}=(1-a)^{n} \quad(n=0,1,2, \ldots)
$$

From [S6] we know that

$$
\begin{aligned}
E_{n}^{(a)} & =(2 a)^{n} E_{n}\left(\frac{1}{2 a}\right)=\sum_{k=0}^{[n / 2]}\binom{n}{2 k}(1-a)^{n-2 k} a^{2 k} E_{2 k} \\
& =\sum_{k=0}^{n}\binom{n}{k} 2^{k+1}\left(1-2^{k+1}\right) \frac{B_{k+1}}{k+1} a^{k} .
\end{aligned}
$$

Theorem 7.1([S6, 2012]). Let a be a nonzero integer, $k, m \in \mathbb{N}, m \geq 2$ and $b \in\{0,1,2, \ldots\}$. Then

$$
\begin{aligned}
& E_{2^{m} k+b}^{(a)}-E_{b}^{(a)} \\
& \equiv\left\{\begin{array}{c}
2^{m} k\left(a^{3}\left((b-1)^{2}+5\right)-a+2^{m} k a^{3}(b-1)\right) \\
\left(\bmod 2^{m+4+3 \alpha}\right) \text { if } 2^{\alpha} \mid a \text { and } \alpha \geq 1, \\
2^{m} k a\left((b+1)^{2}+4-2^{m} k(b+1)\left(\bmod 2^{m+4}\right)\right. \\
\text { if } 2 \nmid a \text { and } 2 \mid b, \\
2^{m} k\left(a^{2}-1\right)\left(\bmod 2^{m+4}\right) \quad \text { if } 2 \nmid a b .
\end{array}\right.
\end{aligned}
$$

As $E_{n}^{(1)}=E_{n}$, the theorem is a vast generalization of Stern's congruence.
$\S 8$. $(-1)^{n} U_{2 n}$ and $(-1)^{n} E_{2 n}^{(a)}$ are realizable

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences satisfying
$a_{1}=b_{1}, \quad b_{n}+a_{1} b_{n-1}+\cdots+a_{n-1} b_{1}=n a_{n}(n>1)$,
we say that $\left(a_{n}, b_{n}\right)$ is a Newton-Euler pair. If $\left(a_{n}, b_{n}\right)$ is a Newton-Euler pair and $a_{n} \in \mathbb{Z}$ for all $n=1,2,3, \ldots$, we say that $\left\{b_{n}\right\}$ is a NewtonEuler sequence.

Let $\left\{b_{n}\right\}$ be a Newton-Euler sequence. Then clearly $b_{n} \in \mathbb{Z}$ for all $n=1,2,3, \ldots$...
Z.H. Sun, On the properties of Newton-Euler pairs, J. Number Theory 114(2005), 88-123.

Lemma 8.1. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers. Then the following statements are equivalent:
(i) $\left\{b_{n}\right\}$ is a Newton-Euler sequence.
(ii) $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) b_{d} \equiv 0(\bmod n)$ for every $n \in \mathbb{N}$.
(iii) For any prime p and $\alpha, m \in \mathbb{N}$ with $p \nmid m$ we have $b_{m p^{\alpha}} \equiv b_{m p^{\alpha-1}}\left(\bmod p^{\alpha}\right)$.
(iv) For any $n, t \in \mathbb{N}$ and prime p with $p^{t} \| n$ we have $b_{n} \equiv b_{\frac{n}{p}}\left(\bmod p^{t}\right)$.
(v) There exists a sequence $\left\{c_{n}\right\}$ of integers such that $b_{n}=\sum_{d \mid n} d c_{d}$ for any $n \in \mathbb{N}$.
(vi) For any $n \in \mathbb{N}$ we have
$\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n} \frac{b_{1}^{k_{1}} b_{2}^{k_{2}} \cdots b_{n}^{k_{n}}}{1^{k_{1}} \cdot k_{1}!\cdot 2^{k_{2}} \cdot k_{2}!\cdots n^{k_{n}} \cdot k_{n}!} \in \mathbb{Z}$.
(vii) For any $n \in \mathbb{N}$ we have

$$
\frac{1}{n!}\left|\begin{array}{ccccc}
b_{1} & b_{2} & b_{3} & \cdots & b_{n} \\
-1 & b_{1} & b_{2} & \cdots & b_{n-1} \\
& -2 & b_{1} & \cdots & b_{n-2} \\
& & \ddots & \cdots & \vdots \\
& & & -(n-1) & b_{1}
\end{array}\right| \in \mathbb{Z}
$$

Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative integers. If there is a set X and a map $T: X \rightarrow X$ such that b_{n} is the number of fixed points of T^{n}, following Puri and Ward we say that $\left\{b_{n}\right\}$ is realizable.

Puri and Ward (2001) proved that a sequence $\left\{b_{n}\right\}$ of nonnegative integers is realizable if and only if for any $n \in \mathbb{N}, \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) b_{d}$ is a nonnegative integer. Thus, using Möbius inversion formula we see that a sequence $\left\{b_{n}\right\}$ is realizable if and only if there exists a sequence $\left\{c_{n}\right\}$ of nonnegative integers such that $b_{n}=\sum_{d \mid n} d c_{d}$ for any $n \in \mathbb{N}$.
J. Arias de Reyna (Acta Arith. 119(2005), 39-52) showed that $\left\{E_{2 n}\right\}$ is a Newton-Euler sequence and $\left\{\left|E_{2 n}\right|\right\}$ is realizable.

In [S6, S7] I proved the following results.

Theorem 8.1 ([S7, 2012]). $\left\{U_{2 n}\right\}$ is a NewtonEuler sequence and $\left\{(-1)^{n} U_{2 n}\right\}$ is realizable.

Theorem 8.2 ([S6, 2012]). Let $a \in \mathbb{N}$. Then $\left\{(-1)^{n} E_{2 n}^{(a)}\right\}$ is realizable.
§9. Congruences involving $\left\{U_{n}\right\}$

In [S7], Z.H. Sun introduced the sequence $\left\{U_{n}\right\}$ as below:

$$
U_{0}=1, \quad U_{n}=-2 \sum_{k=1}^{[n / 2]}\binom{n}{2 k} U_{n-2 k} \quad(n \geq 1)
$$

Since $U_{1}=0$. By induction, $U_{2 n-1}=0$ for $n \geq 1$.

The first few values of $U_{2 n}$ are shown below: $U_{2}=-2, \quad U_{4}=22, \quad U_{6}=-602, \quad U_{8}=30742$, $U_{10}=-2523002, \quad U_{12}=303692662$.

Theorem 9.1 For $n \in \mathbb{N}$ we have

$$
\begin{aligned}
U_{2 n} & =3^{2 n} E_{2 n}\left(\frac{1}{3}\right)=-2\left(2^{2 n+1}+1\right) 3^{2 n} \frac{B_{2 n+1}\left(\frac{1}{3}\right)}{2 n+1} \\
& =-\frac{2\left(2^{2 n+1}+1\right) 6^{2 n}}{2^{2 n}+1} \cdot \frac{B_{2 n+1}\left(\frac{1}{6}\right)}{2 n+1}
\end{aligned}
$$

For $d \in \mathbb{Z}$ with $d<0$ and $d \equiv 0,1(\bmod 4)$ let $h(d)$ denote the class number of the form class group consisting of classes of primitive, integral binary quadratic forms of discriminant d.

Theorem 9.2 ([S7]). Let p be a prime of the form $4 k+1$. Then

$$
U_{\frac{p-1}{2}} \equiv\left(1+2(-1)^{\frac{p-1}{4}}\right) h(-3 p)(\bmod p)
$$

and so $p \nmid U_{\frac{p-1}{2}}$.

Recall that the Fermat quotient $q_{p}(a)=\left(a^{p-1}-\right.$ 1) $/ p$.

Theorem 9.3 ([S7]). Let p be a prime greater than 5. Then
(i) $\sum_{k=1}^{[p / 6]} \frac{1}{k} \equiv-2 q_{p}(2)-\frac{3}{2} q_{p}(3)+p\left(q_{p}(2)^{2}+\frac{3}{4} q_{p}(3)^{2}\right)-$ $\frac{5 p}{2}\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$,
(ii) $\sum_{k=1}^{[p / 3]} \frac{1}{k} \equiv-\frac{3}{2} q_{p}(3)+\frac{3}{4} p q_{p}(3)^{2}-p\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$,
(iii) $\sum_{k=1}^{[2 p / 3]} \frac{(-1)^{k-1}}{k} \equiv 9 \sum_{\substack{k=1 \\ 3 \mid k+p}}^{p-1} \frac{1}{k} \equiv 3 p\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$.
(iv) We have
$(-1)^{\left[\frac{p}{6}\right]}\binom{p-1}{\left[\frac{p}{6}\right]}$
$\equiv 1+p\left(2 q_{p}(2)+\frac{3}{2} q_{p}(3)\right)+p^{2}\left(q_{p}(2)^{2}+3 q_{p}(2) q_{p}(3)\right.$

$$
\left.+\frac{3}{8} q_{p}(3)^{2}-5\left(\frac{p}{3}\right) U_{p-3}\right)\left(\bmod p^{3}\right)
$$

and
$(-1)^{\left[\frac{p}{3}\right]}\binom{p-1}{\left[\frac{p}{3}\right]}$
$\equiv 1+\frac{3}{2} p q_{p}(3)+\frac{3}{8} p^{2} q_{p}(3)^{2}-\frac{p^{2}}{2}\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{3}\right)$.

Theorem 9.4. Let $p>3$ be a prime and $k \in\{2,4, \ldots, p-3\}$. Then

$$
\sum_{x=1}^{[p / 6]} \frac{1}{x^{k}} \equiv 6^{k} \sum_{\substack{x=1 \\ 6 \mid x-p}}^{p-1} \frac{1}{x^{k}} \equiv \frac{6^{k}\left(2^{k}+1\right)}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod
$$

and
$\sum_{x=1}^{[p / 3]} \frac{1}{x^{k}} \equiv 3^{k} \sum_{\substack{x=1 \\ 3 \mid x-p}}^{p-1} \frac{1}{x^{k}} \equiv \frac{6^{k}}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod$

Theorem 9.5. Let $p>3$ be a prime and $k \in\{2,4, \ldots, p-3\}$. Then

$$
\sum_{x=1}^{[p / 3]}(-1)^{x-1} \frac{1}{x^{k}} \equiv-\frac{3^{k}}{2}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

and
$\sum_{x=1}^{\left[\frac{p+3}{6}\right]} \frac{1}{(2 x-1)^{k}} \equiv-\frac{3^{k}}{2^{k+1}+4}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)$.

By [S7],
(9.1)
$B_{p-2}\left(\frac{1}{3}\right) \equiv 6 U_{p-3} \quad(\bmod p) \quad$ for any prime $\quad p>3$.
S. Mattarei and R. Tauraso (Congruences for central binomial sums and finite polylogarithms, J. Number Theory 133(2013), 131-157) proved that for any prime $p>3$,

$$
\sum_{k=0}^{p-1}\binom{2 k}{k} \equiv\left(\frac{p}{3}\right)-\frac{p^{2}}{3} B_{p-2}\left(\frac{1}{3}\right) \quad\left(\bmod p^{3}\right)
$$

Thus,
(9.2) $\sum_{k=0}^{p-1}\binom{2 k}{k} \equiv\left(\frac{p}{3}\right)-2 p^{2} U_{p-3} \quad\left(\bmod p^{3}\right)$
for any prime $p>3$. The congruence

$$
\sum_{k=0}^{p-1}\binom{2 k}{k} \equiv\left(\frac{p}{3}\right)\left(\bmod p^{2}\right)
$$

was found and proved by Z.W. Sun and R. Tauraso (Adv. in Appl. Math. 45(2010),125148).

Suppose that p is a prime of the form $3 k+1$ and so $4 p=L^{2}+27 M^{2}$ for some integers L and M. Assume $L \equiv 1(\bmod 3)$. From (9.1) and the work of J. B. Cosgrave and K. Dilcher (Mod p^{3} analogues of theorems of Gauss and Jacobi on binomial coefficients, Acta Arith. 142(2010), 103-118) we have (9.3)

$$
\begin{aligned}
& \binom{\frac{2(p-1)}{3}}{\frac{p-1}{3}} \equiv\left(-L+\frac{p}{L}+\frac{p^{2}}{L^{3}}\right)\left(1+p^{2} U_{p-3}\right) \\
& \equiv-L+\frac{p}{L}+p^{2}\left(\frac{1}{L^{3}}-L U_{p-3}\right) \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

