IDENTITIES AND CONGRUENCES FOR A NEW SEQUENCE

Zhi-Hong Sun
School of Mathematical Sciences, Huaiyin Normal University
Huaian, Jiangsu 223001, People’s Republic of China
zhihongsun@yahoo.com

Received 1 October 2010
Accepted 20 June 2011
Published 27 January 2012
(Int. J. Number Theory 8(2012), 207-225)

Abstract

Let $[x]$ be the greatest integer not exceeding x. In the paper we introduce the sequence $\left\{U_{n}\right\}$ given by $U_{0}=1$ and $U_{n}=-2 \sum_{k=1}^{[n / 2]}\binom{n}{2 k} U_{n-2 k} \quad(n \geq 1)$, and establish many recursive formulas and congruences involving $\left\{U_{n}\right\}$.

Keywords: Congruence; Euler polynomial; identity; p-regular function
Mathematics Subject Classification 2000: 11A07, 11B68

1. Introduction

The Euler numbers $\left\{E_{n}\right\}$ are defined by

$$
E_{0}=1 \quad \text { and } \quad E_{n}=-\sum_{k=1}^{[n / 2]}\binom{n}{2 k} E_{n-2 k} \quad(n \geq 1)
$$

where $[x]$ is the greatest integer not exceeding x. There are many well-known identities and congruences involving Euler numbers. In the paper we introduce the sequence $\left\{U_{n}\right\}$ similar to Euler numbers as below:

$$
\begin{equation*}
U_{0}=1, \quad U_{n}=-2 \sum_{k=1}^{[n / 2]}\binom{n}{2 k} U_{n-2 k} \quad(n \geq 1) \tag{1.1}
\end{equation*}
$$

[^0]Since $U_{1}=0$, by induction we have $U_{2 n-1}=0$ for $n \geq 1$. In Section 2 we establish many recursive relations for $\left\{U_{n}\right\}$. In Section 3, we deduce some congruences involving $\left\{U_{n}\right\}$. As examples, for a prime $p>3$ and $k \in\{2,4, \ldots, p-3\}$ we have

$$
\sum_{x=1}^{[p / 6]} \frac{1}{x^{k}} \equiv \frac{6^{k}\left(2^{k}+1\right)}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p),
$$

where $\left(\frac{a}{m}\right)$ is the Legendre-Jacobi-Kronecker symbol; for a prime $p \equiv 1(\bmod 4)$ we have

$$
U_{\frac{p-1}{2}} \equiv\left(1+2(-1)^{\frac{p-1}{4}}\right) h(-3 p)(\bmod p)
$$

where $h(d)$ is the class number of the form class group consisting of classes of primitive, integral binary quadratic forms of discriminant d.

Let \mathbb{N} be the set of positive integers. For $m \in \mathbb{N}$ let \mathbb{Z}_{m} be the set of rational numbers whose denominator is coprime to m. For a prime p, in [6] the author introduced the notion of p-regular functions. If $f(k) \in \mathbb{Z}_{p}$ for $k=0,1,2, \ldots$ and $\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} f(k) \equiv 0\left(\bmod p^{n}\right)$ for all $n \in \mathbb{N}$, then f is called a p-regular function. If f and g are p-regular functions, from [6, Theorem 2.3] we know that $f \cdot g$ is also a p-regular function. Thus all p-regular functions form a ring.

Let p be an odd prime, and let $b \in\{0,2,4, \ldots\}$. In Section 4 we show that $f(k)=(1-$ $\left.\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) U_{k(p-1)+b}$ is a p-regular function. Using the properties of p-regular functions in $[6,8]$, we deduce many congruences for $\left\{U_{2 n}\right\}\left(\bmod p^{m}\right)$. For example, if $\varphi(n)$ is Euler's totient function, for $k, m \in \mathbb{N}$ we have

$$
U_{k \varphi\left(p^{m}\right)+b} \equiv\left(1-\left(\frac{p}{3}\right) p^{b}\right) U_{b}\left(\bmod p^{m}\right)
$$

In Section 4 we also show that $U_{2 n} \equiv-16 n-42(\bmod 128)$ for $n \geq 3$.
In Section 5 we show that there is a set X and a map $T: X \rightarrow X$ such that $(-1)^{n} U_{2 n}$ is the number of fixed points of T^{n}.

In addition to the above notation, we also use throughout this paper the following notation: \mathbb{Z} - the set of integers, $\{x\}$ - the fractional part of $x, \operatorname{ord}_{p} n$ - the nonnegative integer α such that $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n$ (that is $\left.p^{\alpha} \| n\right), \mu(n)$-the Möbius function.

2. Some identities involving $\left\{U_{n}\right\}$

Let $\left\{U_{n}\right\}$ be defined by (1.1). Then clearly $U_{n} \in \mathbb{Z}$. The first few values of $U_{2 n}$ are shown below:

$$
\begin{aligned}
U_{2} & =-2, U_{4}=22, U_{6}=-602, U_{8}=30742, U_{10}=-2523002 \\
U_{12} & =303692662, U_{14}=-50402079002, U_{16}=11030684333782 .
\end{aligned}
$$

Lemma 2.1. We have

$$
\sum_{n=0}^{\infty} U_{n} \frac{t^{n}}{n!}=\frac{1}{e^{t}+e^{-t}-1} \quad\left(|t|<\frac{\pi}{3}\right)
$$

and

$$
\sum_{n=0}^{\infty}(-1)^{n} U_{2 n} \frac{t^{2 n}}{(2 n)!}=\frac{1}{2 \cos t-1} \quad\left(|t|<\frac{\pi}{3}\right)
$$

Proof. By (1.1) we have

$$
\begin{aligned}
\left(e^{t}+e^{-t}-1\right)\left(\sum_{n=0}^{\infty} U_{n} \frac{t^{n}}{n!}\right) & =\left(1+2 \sum_{k=1}^{\infty} \frac{t^{2 k}}{(2 k)!}\right)\left(\sum_{m=0}^{\infty} U_{m} \frac{t^{m}}{m!}\right) \\
& =1+\sum_{n=1}^{\infty}\left(U_{n}+2 \sum_{k=1}^{[n / 2]}\binom{n}{2 k} U_{n-2 k}\right) \frac{t^{n}}{n!}=1 .
\end{aligned}
$$

Thus,

$$
\sum_{n=0}^{\infty} U_{2 n} \frac{t^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} U_{n} \frac{t^{n}}{n!}=\frac{1}{e^{t}+e^{-t}-1}
$$

Replacing t with it and noting that $\mathrm{e}^{i t}+\mathrm{e}^{-i t}=2 \cos t$ we deduce the remaining result.

The Bernoulli numbers $\left\{B_{n}\right\}$ and Bernoulli polynomials $\left\{B_{n}(x)\right\}$ are defined by

$$
B_{0}=1, \sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0(n \geq 2) \quad \text { and } \quad B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}(n \geq 0) .
$$

The Euler polynomials $\left\{E_{n}(x)\right\}$ are defined by

$$
\begin{equation*}
\frac{2 \mathrm{e}^{x t}}{\mathrm{e}^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}(|t|<\pi) \tag{2.1}
\end{equation*}
$$

which is equivalent to (see [3])

$$
\begin{equation*}
E_{n}(x)+\sum_{r=0}^{n}\binom{n}{r} E_{r}(x)=2 x^{n}(n \geq 0) \tag{2.2}
\end{equation*}
$$

It is well known that (see [3])

$$
\begin{align*}
E_{n}(x) & =\frac{1}{2^{n}} \sum_{r=0}^{n}\binom{n}{r}(2 x-1)^{n-r} E_{r} \\
& =\frac{2}{n+1}\left(B_{n+1}(x)-2^{n+1} B_{n+1}\left(\frac{x}{2}\right)\right) \tag{2.3}\\
& =\frac{2^{n+1}}{n+1}\left(B_{n+1}\left(\frac{x+1}{2}\right)-B_{n+1}\left(\frac{x}{2}\right)\right) .
\end{align*}
$$

In particular,

$$
\begin{equation*}
E_{n}=2^{n} E_{n}\left(\frac{1}{2}\right) \quad \text { and } \quad E_{n}(0)=\frac{2\left(1-2^{n+1}\right) B_{n+1}}{n+1} \tag{2.4}
\end{equation*}
$$

It is also known that (see [3])

$$
\begin{equation*}
B_{2 n+3}=0, B_{n}(1-x)=(-1)^{n} B_{n}(x) \quad \text { and } \quad E_{n}(1-x)=(-1)^{n} E_{n}(x) \tag{2.5}
\end{equation*}
$$

Lemma 2.2. For $n \in \mathbb{N}$ we have

$$
\left.E_{n}\left(\frac{1}{3}\right)=\frac{2}{n+1}\left((-2)^{n+1}-1\right)\right) B_{n+1}\left(\frac{1}{3}\right)=\frac{2^{n+1}\left((-2)^{n+1}-1\right)}{(n+1)\left((-2)^{n}+1\right)} B_{n+1}\left(\frac{1}{6}\right)
$$

Proof. By (2.3) we have $E_{n}\left(\frac{1}{3}\right)=\frac{2}{n+1}\left(B_{n+1}\left(\frac{1}{3}\right)-2^{n+1} B_{n+1}\left(\frac{1}{6}\right)\right)$. From Raabe's theorem (see $[8,(2.9)]$) we have $B_{n+1}\left(\frac{1}{6}\right)+B_{n+1}\left(\frac{1}{6}+\frac{1}{2}\right)=2^{-n} B_{n+1}\left(\frac{1}{3}\right)$. As $B_{n+1}\left(\frac{1}{6}+\frac{1}{2}\right)=B_{n+1}\left(\frac{2}{3}\right)=$ $(-1)^{n+1} B_{n+1}\left(\frac{1}{3}\right)$, we see that

$$
B_{n+1}\left(\frac{1}{6}\right)=\left(2^{-n}-(-1)^{n+1}\right) B_{n+1}\left(\frac{1}{3}\right) .
$$

Thus,

$$
\begin{aligned}
E_{n}\left(\frac{1}{3}\right) & =\frac{2}{n+1}\left(B_{n+1}\left(\frac{1}{3}\right)-2^{n+1} B_{n+1}\left(\frac{1}{6}\right)\right) \\
& =\frac{2}{n+1}\left(1-2^{n+1}\left(2^{-n}-(-1)^{n+1}\right)\right) B_{n+1}\left(\frac{1}{3}\right) \\
& =\frac{2}{n+1} \cdot \frac{(-2)^{n+1}-1}{2^{-n}+(-1)^{n}} B_{n+1}\left(\frac{1}{6}\right) .
\end{aligned}
$$

So the lemma is proved.
Theorem 2.1. For $n \in \mathbb{N}$ we have

$$
U_{2 n}=3^{2 n} E_{2 n}\left(\frac{1}{3}\right)=-2\left(2^{2 n+1}+1\right) 3^{2 n} \frac{B_{2 n+1}\left(\frac{1}{3}\right)}{2 n+1}=-\frac{2\left(2^{2 n+1}+1\right) 6^{2 n}}{2^{2 n}+1} \cdot \frac{B_{2 n+1}\left(\frac{1}{6}\right)}{2 n+1}
$$

Proof. Using (2.1) and Lemma 2.1 we see that

$$
\begin{aligned}
2 \sum_{n=0}^{\infty} E_{2 n}\left(\frac{1}{3}\right) \frac{(3 t)^{2 n}}{(2 n)!} & =\sum_{n=0}^{\infty} E_{n}\left(\frac{1}{3}\right) \frac{(3 t)^{n}}{n!}+\sum_{n=0}^{\infty} E_{n}\left(\frac{1}{3}\right) \frac{(-3 t)^{n}}{n!} \\
& =\frac{2 e^{t}}{e^{3 t}+1}+\frac{2 e^{-t}}{e^{-3 t}+1}=\frac{2 e^{t}+2 e^{2 t}}{e^{3 t}+1}=\frac{2 e^{t}}{e^{2 t}-e^{t}+1} \\
& =\frac{2}{e^{t}+e^{-t}-1}=2 \sum_{n=0}^{\infty} U_{n} \frac{t^{n}}{n!}=2 \sum_{n=0}^{\infty} U_{2 n} \frac{t^{2 n}}{(2 n)!} .
\end{aligned}
$$

Thus $U_{2 n}=3^{2 n} E_{2 n}\left(\frac{1}{3}\right)$. Now applying Lemma 2.2 we deduce the remaining result.
Theorem 2.2. For two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ we have the following inversion formula:

$$
\begin{aligned}
& b_{n}=2 \sum_{k=0}^{[n / 2]}\binom{n}{2 k} a_{n-2 k}-a_{n} \quad(n=0,1,2, \ldots) \\
& \Longleftrightarrow a_{n}=\sum_{k=0}^{[n / 2]}\binom{n}{2 k} U_{2 k} b_{n-2 k} \quad(n=0,1,2, \ldots) .
\end{aligned}
$$

Proof. It is clear that

$$
\begin{aligned}
\left(e^{t}+e^{-t}-1\right)\left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}\right) & =\left(-1+2 \sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!}\right)\left(\sum_{m=0}^{\infty} a_{m} \frac{t^{m}}{m!}\right) \\
& =\sum_{n=0}^{\infty}\left(2 \sum_{k=0}^{[n / 2]}\binom{n}{2 k} a_{n-2 k}-a_{n}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Thus, using Lemma 2.1 and the fact $U_{2 n-1}=0$ we see that

$$
\begin{aligned}
b_{n} & =2 \sum_{k=0}^{[n / 2]}\binom{n}{2 k} a_{n-2 k}-a_{n} \quad(n=0,1,2, \ldots) \\
& \Longleftrightarrow\left(e^{t}+e^{-t}-1\right)\left(\sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}\right)=\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{n!} \\
& \Longleftrightarrow \sum_{n=0}^{\infty} a_{n} \frac{t^{n}}{n!}=\left(\sum_{n=0}^{\infty} b_{n} \frac{t^{n}}{n!}\right)\left(\sum_{k=0}^{\infty} U_{2 k} \frac{t^{2 k}}{(2 k)!}\right) \\
& \Longleftrightarrow a_{n}=\sum_{k=0}^{[n / 2]}\binom{n}{2 k} U_{2 k} b_{n-2 k} \quad(n=0,1,2, \ldots) .
\end{aligned}
$$

This proves the theorem.
Theorem 2.3. Let n be a nonnegative integer. For any complex number x we have
(i)

$$
\sum_{k=0}^{[n / 2]}\binom{n}{2 k} U_{2 k}\left((x-1)^{n-2 k}-x^{n-2 k}+(x+1)^{n-2 k}\right)=x^{n}
$$

(ii)

$$
\sum_{k=0}^{[n / 2]}\binom{n}{2 k} U_{2 k}\left(x^{n-2 k}+(x+3)^{n-2 k}\right)=(x+1)^{n}+(x+2)^{n}
$$

(iii)

$$
\begin{aligned}
& \sum_{k=0}^{[n / 2]}\binom{n}{2 k} U_{2 k}\left((x+3)^{n-2 k}-(x-3)^{n-2 k}\right) \\
& \quad=(x+2)^{n}+(x+1)^{n}-(x-1)^{n}-(x-2)^{n}
\end{aligned}
$$

Proof. From the binomial theorem we see that

$$
2 \sum_{k=0}^{[n / 2]}\binom{n}{2 k} x^{n-2 k}-x^{n}=(x-1)^{n}+(x+1)^{n}-x^{n}
$$

Thus, applying Theorem 2.2 we deduce (i). Since

$$
x^{m}-(x+1)^{m}+(x+2)^{m}+(x+1)^{m}-(x+2)^{m}+(x+3)^{m}=x^{m}+(x+3)^{m}
$$

from (i) we deduce (ii). As $x^{m}+(x+3)^{m}-\left((x-3)^{m}+x^{m}\right)=(x+3)^{m}-(x-3)^{m}$, from (ii) we deduce (iii). So the theorem is proved.

Theorem 2.4. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{[n / 2]}\binom{n}{2 k}\left(2^{n-2 k}-1\right) U_{2 k}=1-U_{n} \tag{i}
\end{equation*}
$$

(ii)

$$
\sum_{k=0}^{[(n-1) / 2]}\binom{n}{2 k} 6^{n-2 k} U_{2 k}=5^{n}+4^{n}-2^{n}-1,
$$

(iii)

$$
U_{2 n}=1+2^{2 n}-\sum_{k=0}^{n}\binom{2 n}{2 k} 3^{2 n-2 k} U_{2 k}
$$

(iv)

$$
U_{2 n}=2(-1)^{n}-4 \sum_{k=1}^{[n / 2]}\binom{2 n}{4 k}\left((-4)^{k}-1\right) U_{2 n-4 k}
$$

$$
\begin{equation*}
U_{2 n}=4^{n-1}+\frac{1+V_{2 n}}{4}-\frac{3}{4} \sum_{k=1}^{[n / 3]}\binom{2 n}{6 k} 3^{6 k} U_{2 n-6 k}, \tag{v}
\end{equation*}
$$

where V_{m} is given by $V_{0}=2, V_{1}=1$ and $V_{m+1}=V_{m}-7 V_{m-1}(m \geq 1)$.
Proof. Taking $x=1$ in Theorem 2.3(i) and noting that $U_{n}=0$ for odd n we obtain (i). Taking $x=3$ in Theorem 2.3(iii) we deduce (ii). Taking $x=0$ in Theorem 2.3(ii) and then replacing n with $2 n$ we derive (iii). Set $i=\sqrt{-1}$. By Theorem 2.3(i) we have

$$
\sum_{k=0}^{n}\binom{2 n}{2 k} U_{2 k}\left((i-1)^{2 n-2 k}-i^{2 n-2 k}+(i+1)^{2 n-2 k}\right)=i^{2 n}
$$

That is,

$$
\sum_{k=0}^{n}\binom{2 n}{2 k} U_{2 k}\left((-2 i)^{n-k}-(-1)^{n-k}+(2 i)^{n-k}\right)=(-1)^{n}
$$

Hence

$$
\sum_{\substack{k=0 \\ 2 \mid n-k}}^{n}\binom{2 n}{2 k} U_{2 k}\left(2^{n+1-k}(-1)^{\frac{n-k}{2}}-1\right)+\sum_{\substack{k=0 \\ 2 \nmid n-k}}^{n}\binom{2 n}{2 k} U_{2 k}=(-1)^{n} .
$$

Therefore,

$$
\sum_{\substack{k=0 \\ 2 \mid n-k}}^{n}\binom{2 n}{2 k} U_{2 k}\left(2^{n+1-k}(-1)^{\frac{n-k}{2}}-2\right)=(-1)^{n}-\sum_{k=0}^{n}\binom{2 n}{2 k} U_{2 k}=(-1)^{n}-\frac{1}{2} U_{2 n}
$$

and so

$$
2 \sum_{\substack{r=0 \\ 2 \mid r}}^{n}\binom{2 n}{2 r} U_{2 n-2 r}\left((-1)^{\frac{r}{2}} 2^{r}-1\right)=(-1)^{n}-\frac{1}{2} U_{2 n} .
$$

This yields (iv).
Set $\omega=(-1+\sqrt{-3}) / 2$. From Theorem 2.3(ii) we have

$$
\sum_{k=0}^{n}\binom{2 n}{2 k} U_{2 k}\left((3 \omega)^{2 n-2 k}+(3 \omega+3)^{2 n-2 k}\right)=(3 \omega+1)^{2 n}+(3 \omega+2)^{2 n}
$$

It is easily seen that $V_{m}=\left(\frac{1+3 \sqrt{-3}}{2}\right)^{m}+\left(\frac{1-3 \sqrt{-3}}{2}\right)^{m}=(2+3 \omega)^{m}+(-1-3 \omega)^{m}$ and

$$
\omega^{2 n-2 k}+(\omega+1)^{2 n-2 k}=\omega^{2 n-2 k}+\left(\omega^{2}\right)^{2 n-2 k}= \begin{cases}2 & \text { if } 3 \mid n-k, \\ \omega+\omega^{2}=-1 & \text { if } 3 \nmid n-k .\end{cases}
$$

Thus

$$
\begin{aligned}
& 3 \sum_{\substack{k=0 \\
3 \mid n-k}}^{n}\binom{2 n}{2 k} 3^{2 n-2 k} U_{2 k}-\sum_{k=0}^{n}\binom{2 n}{2 k} 3^{2 n-2 k} U_{2 k} \\
& =\sum_{k=0}^{n}\binom{2 n}{2 k} U_{2 k}\left((3 \omega)^{2 n-2 k}+(3 \omega+3)^{2 n-2 k}\right) \\
& =(3 \omega+1)^{2 n}+(3 \omega+2)^{2 n}=V_{2 n}
\end{aligned}
$$

Hence, applying (iii) we deduce

$$
\begin{aligned}
& 3 \sum_{\substack{k=0 \\
3 \mid k}}^{n}\binom{2 n}{2 k} 3^{2 k} U_{2 n-2 k} \\
& =3 \sum_{\substack{k=0 \\
3 \mid n-k}}^{n}\binom{2 n}{2 k} 3^{2 n-2 k} U_{2 k}=\sum_{k=0}^{n}\binom{2 n}{2 k} 3^{2 n-2 k} U_{2 k}+V_{2 n} \\
& =1+2^{2 n}-U_{2 n}+V_{2 n} .
\end{aligned}
$$

This yields (v). The proof is now complete.
Lemma 2.3 ([3, p.30]). For $n \in \mathbb{N}$ and $0 \leq x \leq 1$ we have

$$
E_{n}(x)=4 \cdot \frac{n!}{\pi^{n+1}} \sum_{m=0}^{\infty} \frac{\sin \left((2 m+1) \pi x-\frac{n \pi}{2}\right)}{(2 m+1)^{n+1}}
$$

Theorem 2.5. Let $n \in \mathbb{N}$. Then

$$
\sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 n+1}}-\frac{1}{(6 k+5)^{2 n+1}}\right)=(-1)^{n} \frac{U_{2 n} \cdot \pi^{2 n+1}}{2 \sqrt{3} \cdot 3^{2 n} \cdot(2 n)!}
$$

Proof. From Lemma 2.3 and Theorem 2.1 we see that

$$
\begin{aligned}
& (-1)^{n} \frac{U_{2 n} \cdot \pi^{2 n+1}}{4 \cdot 3^{2 n} \cdot(2 n)!} \\
& =(-1)^{n} \frac{E_{2 n}\left(\frac{1}{3}\right) \pi^{2 n+1}}{4 \cdot(2 n)!}=(-1)^{n} \sum_{m=0}^{\infty} \frac{\sin \left(\frac{2 m+1}{3} \pi-n \pi\right)}{(2 m+1)^{2 n+1}} \\
& =\sum_{m=0}^{\infty} \frac{\sin \frac{2 m+1}{3} \pi}{(2 m+1)^{2 n+1}}=\frac{\sqrt{3}}{2} \sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 n+1}}-\frac{1}{(6 k+5)^{2 n+1}}\right) .
\end{aligned}
$$

This yields the result.
Corollary 2.1. For $n \in \mathbb{N}$ we have $(-1)^{n} U_{2 n}>0$.

3. Congruences involving $\left\{U_{2 n}\right\}$

Theorem 3.1. Let p be a prime of the form $4 k+1$. Then

$$
U_{\frac{p-1}{2}} \equiv\left(1+2(-1)^{\frac{p-1}{4}}\right) h(-3 p)(\bmod p) .
$$

Proof. From Theorem 2.1 we see that

$$
\begin{aligned}
U_{\frac{p-1}{2}} & =-2\left(2^{\frac{p+1}{2}}+1\right) 3^{\frac{p-1}{2}} \frac{B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)}{\frac{p+1}{2}} \equiv-4\left(2\left(\frac{2}{p}\right)+1\right)\left(\frac{3}{p}\right) B_{\frac{p+1}{2}}\left(\frac{1}{3}\right) \\
& = \begin{cases}-12 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 1(\bmod 24) \\
-4 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 5(\bmod 24), \\
4 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 13(\bmod 24), \\
12 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 17(\bmod 24) .\end{cases}
\end{aligned}
$$

By [8, Theorem 3.2(i)] we have

$$
h(-3 p) \equiv \begin{cases}-4 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 1(\bmod 12), \\ 4 B_{\frac{p+1}{2}}\left(\frac{1}{3}\right)(\bmod p) & \text { if } p \equiv 5(\bmod 12)\end{cases}
$$

Now combining the above we deduce the result.
Corollary 3.1. Let p be a prime of the form $4 k+1$. Then $p \nmid U_{\frac{p-1}{2}}$.
Proof. From [10, p.40] we know that $h(-3 p)=2 \sum_{a=1}^{[p / 3]}\left(\frac{p}{a}\right)$. Thus $1 \leq h(-3 p)<p$. Now the result follows from Theorem 3.1.

For an odd prime p and $a \in \mathbb{Z}$ with $p \nmid a$ let $q_{p}(a)=\left(a^{p-1}-1\right) / p$ denote the corresponding Fermat quotient.

Theorem 3.2. Let p be a prime greater than 5. Then
(i) $\sum_{k=1}^{[p / 6]} \frac{1}{k} \equiv-2 q_{p}(2)-\frac{3}{2} q_{p}(3)+p\left(q_{p}(2)^{2}+\frac{3}{4} q_{p}(3)^{2}\right)-\frac{5 p}{2}\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$,
(ii) $\sum_{k=1}^{[p / 3]} \frac{1}{k} \equiv-\frac{3}{2} q_{p}(3)+\frac{3}{4} p q_{p}(3)^{2}-p\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$,
(iii) $\sum_{k=1}^{[2 p / 3]} \frac{(-1)^{k-1}}{k} \equiv 9 \sum_{\substack{k=1 \\ 3 \mid k+p}}^{p-1} \frac{1}{k} \equiv 3 p\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{2}\right)$.
(iv) We have

$$
(-1)^{\left[\frac{p}{6}\right]}\binom{p-1}{\left[\frac{p}{6}\right]} \equiv 1+p\left(2 q_{p}(2)+\frac{3}{2} q_{p}(3)\right)+p^{2}\left(q_{p}(2)^{2}+3 q_{p}(2) q_{p}(3)\right.
$$

$$
\left.+\frac{3}{8} q_{p}(3)^{2}-5\left(\frac{p}{3}\right) U_{p-3}\right)\left(\bmod p^{3}\right)
$$

and

$$
(-1)^{\left[\frac{p}{3}\right]}\binom{p-1}{\left[\frac{p}{3}\right]} \equiv 1+\frac{3}{2} p q_{p}(3)+\frac{3}{8} p^{2} q_{p}(3)^{2}-\frac{p^{2}}{2}\left(\frac{p}{3}\right) U_{p-3}\left(\bmod p^{3}\right)
$$

Proof. From Theorem 2.1 and Fermat's little theorem we have

$$
U_{p-3}=-\frac{2\left(2^{p-2}+1\right) \cdot 6^{p-3}}{2^{p-3}+1} \cdot \frac{B_{p-2}\left(\frac{1}{6}\right)}{p-2} \equiv \frac{1}{30} B_{p-2}\left(\frac{1}{6}\right)(\bmod p)
$$

Now applying [9, Theorem 3.9] we deduce the result.
Theorem 3.3. Let $p>3$ be a prime and $k \in\{2,4, \ldots, p-3\}$. Then

$$
\sum_{x=1}^{[p / 6]} \frac{1}{x^{k}} \equiv 6^{k} \sum_{\substack{x=1 \\ 6 \mid x-p}}^{p-1} \frac{1}{x^{k}} \equiv \frac{6^{k}\left(2^{k}+1\right)}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

and

$$
\sum_{x=1}^{[p / 3]} \frac{1}{x^{k}} \equiv 3^{k} \sum_{\substack{x=1 \\ 3 \mid x-p}}^{p-1} \frac{1}{x^{k}} \equiv \frac{6^{k}}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

Proof. Let $m \in\{3,6\}$. As $B_{p-k}\left(\frac{m-1}{m}\right)=(-1)^{p-k} B_{p-k}\left(\frac{1}{m}\right)=-B_{p-k}\left(\frac{1}{m}\right)$, we see that $B_{p-k}\left(\left\{\frac{p}{m}\right\}\right)=\left(\frac{p}{3}\right) B_{p-k}\left(\frac{1}{m}\right)$. Now putting $s=1$ and substituting k with $p-1-k$ in [8, Corollary 2.2] we see that for $k \in\{2,4, \ldots, p-3\}$,

$$
\sum_{x=1}^{[p / m]} \frac{1}{x^{k}} \equiv \sum_{x=1}^{[p / m]} x^{p-1-k} \equiv \frac{B_{p-k}(0)-B_{p-k}\left(\left\{\frac{p}{m}\right\}\right)}{p-k}=-\left(\frac{p}{3}\right) \frac{B_{p-k}\left(\frac{1}{m}\right)}{p-k}(\bmod p) .
$$

By [8, (2.6)] we have

$$
\sum_{\substack{x=1 \\ m \mid x-p}}^{p-1} \frac{1}{x^{k}} \equiv \sum_{\substack{x=1 \\ m \mid x-p}}^{p-1} x^{p-1-k} \equiv(-m)^{p-1-k} \sum_{x=1}^{[p / m]} x^{p-1-k} \equiv \frac{1}{m^{k}} \sum_{x=1}^{[p / m]} \frac{1}{x^{k}}(\bmod p)
$$

From Theorem 2.1 we know that

$$
\frac{B_{p-k}\left(\frac{1}{6}\right)}{p-k}=-\frac{1+2^{p-1-k}}{2\left(2^{p-k}+1\right) 6^{p-1-k}} U_{p-1-k} \equiv-\frac{1+2^{-k}}{2\left(2^{1-k}+1\right) 6^{-k}} U_{p-1-k}(\bmod p)
$$

and

$$
\frac{B_{p-k}\left(\frac{1}{3}\right)}{p-k}=-\frac{U_{p-1-k}}{2 \cdot 3^{p-1-k}\left(2^{p-k}+1\right)} \equiv-\frac{U_{p-1-k}}{2 \cdot 3^{-k}\left(2^{1-k}+1\right)}(\bmod p)
$$

Now putting all the above together we deduce the result.

Corollary 3.2. Let $p>3$ be a prime and $k \in\{2,4, \ldots, p-3\}$. Then

$$
\sum_{x=[p / 6]+1}^{[p / 3]} \frac{1}{x^{k}} \equiv-\frac{12^{k}}{4\left(2^{k-1}+1\right)}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

and

$$
\sum_{x=1}^{[p / 3]} \frac{1}{x^{k}} \equiv \frac{1}{2^{k}+1} \sum_{x=1}^{[p / 6]} \frac{1}{x^{k}} \equiv-\frac{1}{2^{k}} \sum_{x=[p / 6]+1}^{[p / 3]} \frac{1}{x^{k}}(\bmod p)
$$

Remark 3.1 For a prime $p>5$ the congruence $\sum_{x=1}^{[p / 3]} \frac{1}{x^{2}} \equiv \frac{1}{5} \sum_{x=1}^{[p / 6]} \frac{1}{x^{2}}(\bmod p)$ was first found by Schwindt. See [5].

Theorem 3.4. Let $p>3$ be a prime and $k \in\{2,4, \ldots, p-3\}$. Then

$$
\sum_{x=1}^{[p / 3]}(-1)^{x-1} \frac{1}{x^{k}} \equiv-\frac{3^{k}}{2}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

and

$$
\sum_{x=1}^{\left[\frac{p+3}{6}\right]} \frac{1}{(2 x-1)^{k}} \equiv-\frac{3^{k}}{2^{k+1}+4}\left(\frac{p}{3}\right) U_{p-1-k}(\bmod p)
$$

Proof. Putting $m=3$ and $s=1$ in [8, Corollary 2.2] and then replacing k with $p-1-k$ we see that

$$
\begin{aligned}
& E_{p-1-k}(0)-(-1)^{\left[\frac{p}{3}\right]} E_{p-1-k}\left(\left\{\frac{p}{3}\right\}\right) \\
& \equiv 2(-1)^{p-1-k-1} \sum_{x=1}^{[p / 3]}(-1)^{x} x^{p-1-k} \equiv 2 \sum_{x=1}^{[p / 3]}(-1)^{x-1} \frac{1}{x^{k}}(\bmod p) .
\end{aligned}
$$

By (2.4) and (2.5) we have

$$
E_{p-1-k}(0)=\frac{2\left(1-2^{p-k}\right) B_{p-k}}{p-k}=0
$$

From (2.5) and Theorem 2.1 we have

$$
E_{p-1-k}\left(\left\{\frac{p}{3}\right\}\right)=E_{p-1-k}\left(\frac{1}{3}\right)=3^{k+1-p} U_{p-1-k} \equiv 3^{k} U_{p-1-k}(\bmod p)
$$

Observe that $(-1)^{\left[\frac{p}{3}\right]}=\left(\frac{p}{3}\right)$. From the above we deduce the first part. Since

$$
\sum_{x=1}^{\left[\frac{p}{3}\right]}(-1)^{x-1} \frac{1}{x^{k}}=-\sum_{x=1}^{\left[\frac{p}{6}\right]} \frac{1}{(2 x)^{k}}+\sum_{x=1}^{\left[\frac{p+3}{6}\right]} \frac{1}{(2 x-1)^{k}}
$$

applying the first part and Theorem 3.3 we deduce the remaining result.
Corollary 3.3. Let p be a prime of the form $4 k+1$. Then

$$
U_{\frac{p-1}{2}} \equiv-2\left(2+(-1)^{\frac{p-1}{4}}\right) \sum_{x=1}^{\left[\frac{p+3}{6}\right]}\left(\frac{p}{2 x-1}\right)(\bmod p) .
$$

Proof. Taking $k=(p-1) / 2$ in Theorem 3.4 and applying Euler's criterion we obtain

$$
\sum_{x=1}^{\left[\frac{p+3}{6}\right]}\left(\frac{2 x-1}{p}\right) \equiv-\frac{\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)}{4+2\left(\frac{2}{p}\right)} U_{\frac{p-1}{2}}=-\frac{1}{4+2(-1)^{\frac{p-1}{4}}} U_{\frac{p-1}{2}}(\bmod p)
$$

This yields the result.

4. Congruences for $U_{k(p-1)+b}\left(\bmod p^{n}\right)$

Theorem 4.1. Let $n \in \mathbb{N}$ with $n \geq 3$, and let α be a nonnegative integer such that $2^{\alpha} \mid n$. Then $U_{2 n} \equiv \frac{2}{3}\left(\bmod 2^{\alpha+4}\right)$. Moreover,

$$
U_{2 n} \equiv \begin{cases}48 n+\frac{2}{3}\left(\bmod 2^{\alpha+7}\right) & \text { if } 2 \mid n \\ 48 n+22\left(\bmod 2^{7}\right) & \text { if } 2 \nmid n .\end{cases}
$$

Proof. From Theorem 2.4(i) we have

$$
\sum_{k=0}^{n}\binom{2 n}{2 k}\left(2^{2 n-2 k}-1\right) U_{2 k}=1-U_{2 n}
$$

Thus, using (1.1) we see that

$$
\sum_{k=0}^{n}\binom{2 n}{2 k} 2^{2 n-2 k} U_{2 k}=1+\sum_{k=0}^{n-1}\binom{2 n}{2 k} U_{2 k}=1-\frac{1}{2} U_{2 n}
$$

Hence

$$
U_{2 n}=2-2 \sum_{r=0}^{n}\binom{2 n}{2 r} 2^{2 r} U_{2 n-2 r}
$$

and so

$$
\begin{equation*}
U_{2 n}=\frac{2}{3}\left(1-\sum_{r=1}^{n}\binom{2 n}{2 r} 4^{r} U_{2 n-2 r}\right)=\frac{2}{3}-\frac{2 n}{3} \sum_{r=1}^{n}\binom{2 n-1}{2 r-1} \frac{4^{r}}{r} U_{2 n-2 r} . \tag{4.1}
\end{equation*}
$$

From the definition of $U_{2 n}$ we know that $2 \mid U_{2 m}$ for $m \geq 1$. Thus, for $1 \leq r \leq n$ and $n \geq 2$ we have $\frac{4^{r}}{r} U_{2 n-2 r} \equiv 0(\bmod 8)$ and so $2 n \cdot \frac{4^{r}}{r} U_{2 n-2 r} \equiv 0\left(\bmod 2^{\alpha+4}\right)$. Therefore, by (4.1) we have $U_{2 n} \equiv \frac{2}{3}\left(\bmod 2^{\alpha+4}\right)$ and hence $U_{2 n} \equiv 6(\bmod 16)$ for $n \geq 2$.

Since $\frac{4^{n-3}}{n} \in \mathbb{Z}_{2}$ for $n \geq 3$, we see that $\frac{2 n}{3} \cdot \frac{4^{n}}{n}=\frac{2^{7} n}{3} \cdot \frac{4^{n-3}}{n} \equiv 0\left(\bmod 2^{\alpha+7}\right)$. Thus, using (4.1) and the fact $U_{2 m} \equiv 6(\bmod 16)$ for $m \geq 2$ we see that for $n \geq 3$,

$$
\begin{aligned}
U_{2 n}-\frac{2}{3} & =-\frac{2 n}{3}\left(4 \sum_{r=1}^{n-2}\binom{2 n-1}{2 r-1} \frac{4^{r-1}}{r} U_{2 n-2 r}-2 \cdot 2^{2 n-2}(2 n-1)+\frac{4^{n}}{n}\right) \\
& \equiv-\frac{2 n}{3} \cdot 4 \sum_{r=1}^{n-1}\binom{2 n-1}{2 r-1} \frac{4^{r-1}}{r} \cdot 6
\end{aligned}
$$

$$
\begin{aligned}
& =-16 n\left(2 n-1+2\binom{2 n-1}{3}+\sum_{r=3}^{n-1}\binom{2 n-1}{2 r-1} \frac{4^{r-1}}{r}\right) \\
& \equiv-16 n\left(2 n-1+2\binom{2 n-1}{3}\right)\left(\bmod 2^{\alpha+7}\right) .
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
2 n-1+2\binom{2 n-1}{3} & \equiv 9\left(2 n-1+2\binom{2 n-1}{3}\right) \\
& =3(2 n-1)\left(2 n+(2 n-3)^{2}\right) \equiv 3(2 n-1)(2 n+1) \\
& =3(2 n-1)^{2}+6(2 n-1) \equiv 4 n-3(\bmod 8) .
\end{aligned}
$$

Thus,

$$
U_{2 n}-\frac{2}{3} \equiv-16 n(4 n-3) \equiv 48 n+32\left(1-(-1)^{n}\right)\left(\bmod 2^{\alpha+7}\right)
$$

This yields the result.
Corollary 4.1. Let $n \in \mathbb{N}$ and $n \geq 3$. Then

$$
U_{2 n} \equiv 6(\bmod 16) \quad \text { and } \quad U_{2 n} \equiv-16 n-42(\bmod 128) .
$$

Theorem 4.2. Let p be an odd prime and $b \in\{0,2,4, \ldots\}$. Then $f(k)=(1-$ $\left.\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) U_{k(p-1)+b}$ is a p-regular function.

Proof. Suppose $n \in \mathbb{N}$. From Theorem 2.1 and (2.3) we have

$$
\begin{aligned}
2^{2 k+b} U_{2 k+b} & =2^{2 k+b} \cdot 3^{2 k+b} E_{2 k+b}\left(\frac{1}{3}\right)=3^{2 k+b} \sum_{r=0}^{2 k+b}\binom{2 k+b}{r}\left(-\frac{1}{3}\right)^{2 k+b-r} E_{r} \\
& =\sum_{r=0}^{2 k+b}\binom{2 k+b}{r}(-3)^{r} E_{r} \equiv \sum_{r=0}^{n-1}\binom{2 k+b}{r}(-3)^{r} E_{r} \\
& =\sum_{r=0}^{n-1}(2 k+b)(2 k+b-1) \cdots(2 k+b-r+1) \frac{(-3)^{r}}{r!} E_{r}\left(\bmod 3^{n}\right) .
\end{aligned}
$$

Since $E_{r} \in \mathbb{Z}$ and $3^{r} / r!\in \mathbb{Z}_{3}$, there are $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{Z}_{3}$ such that

$$
2^{2 k+b} U_{2 k+b} \equiv a_{n-1} k^{n-1}+\cdots+a_{1} k+a_{0}\left(\bmod 3^{n}\right) \quad \text { for every } k=0,1,2, \ldots .
$$

Hence, using [6, Theorem 2.1] we see that $2^{2 k+b} U_{2 k+b}$ is a 3-regular function. As

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} 2^{-2 k-b}=2^{-b}\left(1-\frac{1}{4}\right)^{n} \equiv 0\left(\bmod 3^{n}\right)
$$

we see that $2^{-2 k-b}$ is also a 3-regular function. Hence, using the above and the product theorem of p-regular functions (see [6, Theorem 2.3]) we deduce that $f(k)=U_{2 k+b}$ is a 3-regular function. Therefore, the result is true for $p=3$.

Now let us consider the case $p>3$. For $x \in \mathbb{Z}_{p}$ let $\langle x\rangle_{p}$ be the least nonnegative residue of x modulo p. Since $2 \mid b$ we have $p-1 \nmid b+1$. From [6, Theorem 3.2] we know that

$$
f_{1}(k)=\frac{B_{k(p-1)+b+1}\left(\frac{1}{3}\right)-p^{k(p-1)+b} B_{k(p-1)+b+1}\left(\frac{\frac{1}{3}+\left\langle-\frac{1}{3}\right\rangle_{p}}{p}\right)}{k(p-1)+b+1}
$$

is a p-regular function. As

$$
\frac{\frac{1}{3}+\left\langle-\frac{1}{3}\right\rangle_{p}}{p}= \begin{cases}\frac{\frac{1}{3}+\frac{p-1}{3}}{p}=\frac{1}{3} & \text { if } p \equiv 1(\bmod 3), \\ \frac{\frac{1}{3}+\frac{2 p-1}{3}}{p}=\frac{2}{3} & \text { if } p \equiv 2(\bmod 3)\end{cases}
$$

and $B_{k(p-1)+b+1}\left(\frac{2}{3}\right)=(-1)^{k(p-1)+b+1} B_{k(p-1)+b+1}\left(\frac{1}{3}\right)=-B_{k(p-1)+b+1}\left(\frac{1}{3}\right)$, we see that

$$
f_{1}(k)=\left(1-\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) \frac{B_{k(p-1)+b+1}\left(\frac{1}{3}\right)}{k(p-1)+b+1} .
$$

By Theorem 2.1 and the above we have

$$
\begin{aligned}
f(k) & =\left(1-\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) \cdot(-2)\left(2^{k(p-1)+b+1}+1\right) 3^{k(p-1)+b} \frac{B_{k(p-1)+b+1}\left(\frac{1}{3}\right)}{k(p-1)+b+1} \\
& =-2\left(2^{k(p-1)+b+1}+1\right) 3^{k(p-1)+b} f_{1}(k) .
\end{aligned}
$$

Since
$\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}\left(2^{k(p-1)+b+1}+1\right) 3^{k(p-1)+b}=2 \cdot 6^{b}\left(1-6^{p-1}\right)^{n}+3^{b}\left(1-3^{p-1}\right)^{n} \equiv 0\left(\bmod p^{n}\right)$,
using the above and the product theorem of p-regular functions (see [6, Theorem 2.3]) we deduce that $f(k)$ is a p-regular function, which completes the proof.

From Theorem 4.2 and [8, Theorem 4.3 (with $t=1$ and $d=0$)] we deduce the following result.

Theorem 4.3. Let p be an odd prime, $k, m, n \in \mathbb{N}$ and $b \in\{0,2,4, \ldots\}$. Then

$$
\begin{aligned}
& \left(1-\left(\frac{p}{3}\right) p^{k \varphi\left(p^{m}\right)+b}\right) U_{k \varphi\left(p^{m}\right)+b} \\
& \equiv \sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{k-1-r}{n-1-r}\binom{k}{r}\left(1-\left(\frac{p}{3}\right) p^{r \varphi\left(p^{m}\right)+b}\right) U_{r \varphi\left(p^{m}\right)+b}\left(\bmod p^{m n}\right) .
\end{aligned}
$$

In particular, for $n=1$ we have $U_{k \varphi\left(p^{m}\right)+b} \equiv\left(1-\left(\frac{p}{3}\right) p^{b}\right) U_{b}\left(\bmod p^{m}\right)$.
From Theorem 4.2 and [6, Theorem 2.1] we deduce the following result.
Theorem 4.4. Let p be an odd prime, $n \in \mathbb{N}, p \geq n$ and $b \in\{0,2,4, \ldots\}$. Then there are unique integers $a_{0}, a_{1}, \ldots, a_{n-1} \in\left\{0, \pm 1, \pm 2, \ldots, \pm \frac{p^{n}-1}{2}\right\}$ such that

$$
\left(1-\left(\frac{p}{3}\right) p^{k(p-1)+b}\right) U_{k(p-1)+b} \equiv a_{n-1} k^{n-1}+\cdots+a_{1} k+a_{0}\left(\bmod p^{n}\right)
$$

```
for every k=0,1,2,\ldots..Moreover, ord}\mp@subsup{\boldsymbol{or}}{~}{}\mp@subsup{a}{s}{}\geqs-\mp@subsup{\operatorname{ord}}{p}{}s! for s=0,1,\ldots,n-1
```

Corollary 4.2. Let $k \in \mathbb{N}$. Then
(i) $U_{2 k} \equiv-3 k+1(\bmod 27)$;
(ii) $U_{4 k} \equiv 1250 k^{4}+500 k^{3}+725 k^{2}-1205 k+2(\bmod 3125)(k \geq 2)$;
(iii) $U_{4 k+2} \equiv 1250 k^{4}-1125 k^{3}-675 k^{2}-52(\bmod 3125)$.

From Theorem 4.2 and [8, Corollary 4.2(iv)] we deduce:
Theorem 4.5. Let p be an odd prime, $k, m \in \mathbb{N}$ and $b \in\{0,2,4, \ldots\}$. Then

$$
U_{k \varphi\left(p^{m}\right)+b} \equiv\left(1-k p^{m-1}\right)\left(1-\left(\frac{p}{3}\right) p^{b}\right) U_{b}+k p^{m-1}\left(1-\left(\frac{p}{3}\right) p^{p-1+b}\right) U_{p-1+b}\left(\bmod p^{m+1}\right) .
$$

5. $\left\{(-1)^{n} U_{2 n}\right\}$ is realizable

If $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are two sequences satisfying $a_{1}=b_{1}$ and $b_{n}+a_{1} b_{n-1}+\cdots+$ $a_{n-1} b_{1}=n a_{n}(n>1)$, following [7] we say that $\left(a_{n}, b_{n}\right)$ is a Newton-Euler pair. If (a_{n}, b_{n}) is a Newton-Euler pair and $a_{n} \in \mathbb{Z}$ for all $n=1,2,3, \ldots$, then we say that $\left\{b_{n}\right\}$ is a NewtonEuler sequence.

Let $\left\{b_{n}\right\}$ be a Newton-Euler sequence. Then clearly $b_{n} \in \mathbb{Z}$ for all $n=1,2,3, \ldots$. In [2], $\left\{-b_{n}\right\}$ is called a Newton sequence generated by $\left\{-a_{n}\right\}$.

Lemma 5.1. Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers. Then the following statements are equivalent:
(i) $\left\{b_{n}\right\}$ is a Newton-Euler sequence.
(ii) $\sum_{d \mid n} \mu\left(\frac{n}{d}\right) b_{d} \equiv 0(\bmod n)$ for every $n \in \mathbb{N}$.
(iii) For any prime p and $\alpha, m \in \mathbb{N}$ with $p \nmid m$ we have $b_{m p^{\alpha}} \equiv b_{m p^{\alpha-1}}\left(\bmod p^{\alpha}\right)$.
(iv) For any $n, t \in \mathbb{N}$ and prime p with $p^{t} \| n$ we have $b_{n} \equiv b_{\frac{n}{p}}\left(\bmod p^{t}\right)$.
(v) There exists a sequence $\left\{c_{n}\right\}$ of integers such that $b_{n}=\sum_{d \mid n}^{p} d c_{d}$ for any $n \in \mathbb{N}$.
(vi) For any $n \in \mathbb{N}$ we have

$$
\sum_{k_{1}+2 k_{2}+\cdots+n k_{n}=n} \frac{b_{1}^{k_{1}} b_{2}^{k_{2}} \cdots b_{n}^{k_{n}}}{1^{k_{1}} \cdot k_{1}!\cdot 2^{k_{2}} \cdot k_{2}!\cdots n^{k_{n}} \cdot k_{n}!} \in \mathbb{Z}
$$

(vii) For any $n \in \mathbb{N}$ we have

$$
\frac{1}{n!}\left|\begin{array}{ccccc}
b_{1} & b_{2} & b_{3} & \ldots & b_{n} \\
-1 & b_{1} & b_{2} & \cdots & b_{n-1} \\
& -2 & b_{1} & \cdots & b_{n-2} \\
& & \ddots & \ddots & \vdots \\
& & & -(n-1) & b_{1}
\end{array}\right| \in \mathbb{Z}
$$

Proof. From [1, Theorem 3] or [2] we know that (i), (ii) and (iii) are equivalent. Clearly (iii) is equivalent (iv). Using Möbius inversion formula we see that (ii) and (v) are equivalent. By [7, Theorems 2.2 and 2.3], (i),(vi) and (vii) are equivalent. So the lemma is proved.

Let $\left\{b_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative integers. If there is a set X and a map $T: X \rightarrow X$ such that b_{n} is the number of fixed points of T^{n}, following $[1,4]$ we say that $\left\{b_{n}\right\}$ is realizable.

In [4], Puri and Ward proved that a sequence $\left\{b_{n}\right\}$ of nonnegative integers is realizable if and only if for any $n \in \mathbb{N}, \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) b_{d}$ is a nonnegative integer. Thus, using Möbius inversion formula we see that a sequence $\left\{b_{n}\right\}$ is realizable if and only if there exists a sequence $\left\{c_{n}\right\}$ of nonnegative integers such that $b_{n}=\sum_{d \mid n} d c_{d}$ for any $n \in \mathbb{N}$. In [1] J. Arias de Reyna showed that $\left\{E_{2 n}\right\}$ is a Newton-Euler sequence and $\left\{\left|E_{2 n}\right|\right\}$ is realizable.

Now we state the following result.
Theorem 5.1. $\left\{U_{2 n}\right\}$ is a Newton-Euler sequence and $\left\{(-1)^{n} U_{2 n}\right\}$ is realizable.
Proof. Suppose $n \in \mathbb{N}$ and $\alpha=\operatorname{ord}_{2} n$. If $2 \mid n$, by Theorem 4.1 we have $U_{2 n} \equiv \frac{2}{3}\left(\bmod 2^{\alpha+4}\right)$ and $U_{n} \equiv \frac{2}{3}\left(\bmod 2^{\alpha+3}\right)$ for $n \geq 6$. Thus $U_{2 n} \equiv \frac{2}{3} \equiv U_{n}\left(\bmod 2^{\alpha}\right)$ for $n \geq 6$. For $n=2,4$ we also have $U_{2 n} \equiv U_{n}\left(\bmod 2^{\alpha}\right)$. If $2 \nmid n$, by (1.1) we have $U_{2 n} \equiv 0=U_{n}\left(\bmod 2^{0}\right)$.

Now assume that p is an odd prime divisor of n and $n=p^{t} n_{0}$ with $p \nmid n_{0}$. Using Theorem 4.3 and the fact $2 n_{0} p^{t-1} \geq t$ we see that

$$
U_{2 n}=U_{2 n_{0} p^{t}}=U_{2 n_{0} \varphi\left(p^{t}\right)+2 n_{0} p^{t-1}} \equiv U_{2 n_{0} p^{t-1}}\left(\bmod p^{t}\right) .
$$

By the above, for any prime divisor p of n we have $U_{2 n} \equiv U_{2 n / p}\left(\bmod p^{t}\right)$, where $p^{t} \| n$. Hence, it follows from Lemma 5.1 that $\left\{U_{2 n}\right\}$ is a Newton-Euler sequence.

By Corollary 2.1 we have $(-1)^{n} U_{2 n}>0$. Suppose that p is a prime divisor of n and $p^{t} \| n$. If p is odd, then $(-1)^{n}=(-1)^{\frac{n}{p}}$. If $p=2$ and $4 \mid n$, we have $(-1)^{n}=(-1)^{\frac{n}{2}}$. If $p=2$ and $2 \| n$, then $(-1)^{n} \equiv(-1)^{\frac{n}{2}}(\bmod 2)$. Thus, we always have $(-1)^{n} \equiv(-1)^{\frac{n}{p}}\left(\bmod p^{t}\right)$. By the previous argument, we also have $U_{2 n} \equiv U_{2 n / p}\left(\bmod p^{t}\right)$. Therefore, $(-1)^{n} U_{2 n} \equiv$ $(-1)^{\frac{n}{p}} U_{2 n / p}\left(\bmod p^{t}\right)$. Hence, by Lemma 5.1 we have $\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)(-1)^{d} U_{2 d} \in \mathbb{Z}$. Now it remains to show that $\sum_{d \mid n} \mu\left(\frac{n}{d}\right)(-1)^{d} U_{2 d} \geq 0$.

For $m \in \mathbb{N}$, by Theorem 2.5 we have

$$
(-1)^{m} U_{2 m}=\frac{2 \sqrt{3} \cdot 3^{2 m} \cdot(2 m)!}{\pi^{2 m+1}} \sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 m+1}}-\frac{1}{(6 k+5)^{2 m+1}}\right) .
$$

Since

$$
\sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 m+1}}-\frac{1}{(6 k+5)^{2 m+1}}\right)=1-\sum_{k=0}^{\infty}\left(\frac{1}{(6 k+5)^{2 m+1}}-\frac{1}{(6 k+7)^{2 m+1}}\right)<1
$$

and

$$
\sum_{k=0}^{\infty}\left(\frac{1}{(6 k+1)^{2 m+1}}-\frac{1}{(6 k+5)^{2 m+1}}\right)>1-\frac{1}{5^{2 m+1}}>1-\frac{1}{5}=\frac{4}{5}
$$

we see that

$$
\frac{4}{5} \cdot \frac{2 \sqrt{3} \cdot 3^{2 m} \cdot(2 m)!}{\pi^{2 m+1}}<(-1)^{m} U_{2 m}<\frac{2 \sqrt{3} \cdot 3^{2 m} \cdot(2 m)!}{\pi^{2 m+1}}
$$

Hence

$$
\begin{aligned}
\sum_{d \mid n} \mu\left(\frac{n}{d}\right)(-1)^{d} U_{2 d} & =(-1)^{n} U_{2 n}+\sum_{d \mid n, d \leq \frac{n}{2}} \mu\left(\frac{n}{d}\right)(-1)^{d} U_{2 d} \\
& \geq(-1)^{n} U_{2 n}-\sum_{1 \leq d \leq \frac{n}{2}}(-1)^{d} U_{2 d}
\end{aligned}
$$

$$
\begin{aligned}
& >\frac{4}{5} \cdot \frac{2 \sqrt{3} \cdot 3^{2 n} \cdot(2 n)!}{\pi^{2 n+1}}-\sum_{1 \leq d \leq \frac{n}{2}} \frac{2 \sqrt{3} \cdot 3^{2 d} \cdot(2 d)!}{\pi^{2 d+1}} \\
& >\frac{4}{5} \cdot \frac{2 \sqrt{3} \cdot 3^{2 n} \cdot(2 n)!}{\pi^{2 n+1}}-\sum_{d=1}^{\infty} \frac{2 \sqrt{3} \cdot 3^{2 d} \cdot n!}{\pi^{2 d+1}} \\
& =\frac{8 \sqrt{3}}{5 \pi} \cdot n!\left\{\left(\frac{9}{\pi^{2}}\right)^{n}(n+1)(n+2) \cdots(2 n)-\frac{5}{4} \cdot \frac{9 / \pi^{2}}{1-9 / \pi^{2}}\right\} .
\end{aligned}
$$

For $m \in \mathbb{N}$ it is clear that

$$
\begin{aligned}
\left(\frac{9}{\pi^{2}}\right)^{m+1}(m+2)(m+3) \cdots(2 m+2) & =\frac{9}{\pi^{2}}(4 m+2) \cdot\left(\frac{9}{\pi^{2}}\right)^{m}(m+1)(m+2) \cdots(2 m) \\
& >\left(\frac{9}{\pi^{2}}\right)^{m}(m+1)(m+2) \cdots(2 m) .
\end{aligned}
$$

Thus, for $n \geq 3$ we have

$$
\left(\frac{9}{\pi^{2}}\right)^{n}(n+1)(n+2) \cdots(2 n) \geq\left(\frac{9}{\pi^{2}}\right)^{3} \cdot 4 \cdot 5 \cdot 6>\frac{5}{4} \cdot \frac{9 / \pi^{2}}{1-9 / \pi^{2}}
$$

and so $\sum_{d \mid n} \mu\left(\frac{n}{d}\right)(-1)^{d} U_{2 d}>0$. This inequality is also true for $n=1,2$. Thus, $\left\{(-1)^{n} U_{2 n}\right\}$ is realizable. This completes the proof.

Let $\left\{a_{n}\right\}$ be defined by

$$
a_{1}=-2 \quad \text { and } \quad n a_{n}=U_{2 n}+a_{1} U_{2 n-2}+\cdots+a_{n-1} U_{2} \quad(n=2,3,4, \ldots) .
$$

By Theorem 5.1 we have $a_{n} \in \mathbb{Z}$ for all $n \in \mathbb{N}$. The first few values of a_{n} are shown below:
$a_{2}=13, a_{3}=-224, a_{4}=8170, a_{5}=-522716, a_{6}=51749722, a_{7}=-7309866728$.

References

[1] J. Arias de Reyna, Dynamical zeta functions and Kummer congruences, Acta Arith. 119 (2005), 39-52.
[2] B.S. Du, S.S. Huang and M.C. Li, Generalized Fermat, double Fermat and Newton sequences, J. Number Theory98 (2003), 172-183.
[3] W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (3rd edition), Springer, New York, 1966, 25-32.
[4] Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seq. 4(2001) Art. 01.2.1, 18 pp.
[5] P. Ribenboim, Thirteen Lectures on Fermat's Last Theorem, Springer, New York, 1979, 139-159.
[6] Z.H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105(2000), 193-223.
[7] Z.H. Sun, On the properties of Newton-Euler pairs, J. Number Theory 114(2005), 88123.
[8] Z.H. Sun, Congruences involving Bernoulli polynomials, Discrete Math. 308(2008), 71-112.
[9] Z.H. Sun, Congruences involving Bernoulli and Euler numbers, J. Number Theory 128 (2008), 280-312.
[10] J. Urbanowicz and K.S. Williams, Congruences for L-Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

[^0]: Website: http://www.hytc.edu.cn/xsjl/szh
 The author is supported by the National Natural Sciences Foundation of China (No. 10971078).

