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Abstract

Let [x] be the greatest integer not exceeding x. In the paper we introduce the sequence
{Un} given by U0 = 1 and Un = −2∑[n/2]

k=1

( n
2k

)
Un−2k (n ≥ 1), and establish many recursive

formulas and congruences involving {Un}.
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1. Introduction
The Euler numbers {En} are defined by

E0 = 1 and En =−
[n/2]

∑
k=1

(
n
2k

)
En−2k (n≥ 1),

where [x] is the greatest integer not exceeding x. There are many well-known identities and
congruences involving Euler numbers. In the paper we introduce the sequence {Un} similar to
Euler numbers as below:

(1.1) U0 = 1, Un =−2
[n/2]

∑
k=1

(
n
2k

)
Un−2k (n≥ 1).
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Since U1 = 0, by induction we have U2n−1 = 0 for n ≥ 1. In Section 2 we establish many
recursive relations for {Un}. In Section 3, we deduce some congruences involving {Un}. As
examples, for a prime p > 3 and k ∈ {2,4, . . . , p−3} we have

[p/6]

∑
x=1

1
xk ≡

6k(2k +1)
4(2k−1 +1)

( p
3

)
Up−1−k (mod p),

where ( a
m ) is the Legendre-Jacobi-Kronecker symbol; for a prime p≡ 1 (mod 4) we have

U p−1
2
≡ (1+2(−1)

p−1
4 )h(−3p) (mod p),

where h(d) is the class number of the form class group consisting of classes of primitive,
integral binary quadratic forms of discriminant d.

Let N be the set of positive integers. For m ∈ N let Zm be the set of rational numbers
whose denominator is coprime to m. For a prime p, in [6] the author introduced the notion of
p-regular functions. If f (k) ∈ Zp for k = 0,1,2, . . . and ∑n

k=0
(n

k

)
(−1)k f (k) ≡ 0 (mod pn) for

all n ∈ N, then f is called a p-regular function. If f and g are p-regular functions, from [6,
Theorem 2.3] we know that f ·g is also a p-regular function. Thus all p-regular functions form
a ring.

Let p be an odd prime, and let b ∈ {0,2,4, . . .}. In Section 4 we show that f (k) =
(

1−(
p
3

)
pk(p−1)+b

)
Uk(p−1)+b is a p-regular function. Using the properties of p-regular functions

in [6,8], we deduce many congruences for {U2n} (mod pm). For example, if ϕ(n) is Euler’s
totient function, for k,m ∈ N we have

Ukϕ(pm)+b ≡ (1− (
p
3
)pb)Ub (mod pm).

In Section 4 we also show that U2n ≡−16n−42 (mod 128) for n≥ 3.
In Section 5 we show that there is a set X and a map T : X → X such that (−1)nU2n is the

number of fixed points of T n.
In addition to the above notation, we also use throughout this paper the following notation:

Z the set of integers, {x} the fractional part of x, ordpn the nonnegative integer α such
that pα | n but pα+1 - n (that is pα ‖ n), µ(n) the Möbius function.

2. Some identities involving {Un}
Let {Un} be defined by (1.1). Then clearly Un ∈ Z. The first few values of U2n are shown

below:

U2 =−2, U4 = 22, U6 =−602, U8 = 30742, U10 =−2523002,

U12 = 303692662, U14 =−50402079002, U16 = 11030684333782.

Lemma 2.1. We have
∞

∑
n=0

Un
tn

n!
=

1
et + e−t −1

(|t|< π
3
)
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and
∞

∑
n=0

(−1)nU2n
t2n

(2n)!
=

1
2cos t−1

(|t|< π
3
)
.

Proof. By (1.1) we have

(et + e−t −1)
( ∞

∑
n=0

Un
tn

n!

)
=

(
1+2

∞

∑
k=1

t2k

(2k)!

)( ∞

∑
m=0

Um
tm

m!

)

= 1+
∞

∑
n=1

(
Un +2

[n/2]

∑
k=1

(
n
2k

)
Un−2k

) tn

n!
= 1.

Thus,
∞

∑
n=0

U2n
t2n

(2n)!
=

∞

∑
n=0

Un
tn

n!
=

1
et + e−t −1

.

Replacing t with it and noting that eit + e−it = 2cos t we deduce the remaining result.

The Bernoulli numbers {Bn} and Bernoulli polynomials {Bn(x)} are defined by

B0 = 1,
n−1

∑
k=0

(
n
k

)
Bk = 0 (n≥ 2) and Bn(x) =

n

∑
k=0

(
n
k

)
Bkxn−k (n≥ 0).

The Euler polynomials {En(x)} are defined by

(2.1)
2ext

et +1
=

∞

∑
n=0

En(x)
tn

n!
(|t|< π),

which is equivalent to (see [3])

(2.2) En(x)+
n

∑
r=0

(
n
r

)
Er(x) = 2xn (n≥ 0).

It is well known that (see [3])

(2.3)

En(x) =
1
2n

n

∑
r=0

(
n
r

)
(2x−1)n−rEr

=
2

n+1

(
Bn+1(x)−2n+1Bn+1

( x
2

))

=
2n+1

n+1

(
Bn+1

(x+1
2

)
−Bn+1

( x
2

))
.

In particular,

(2.4) En = 2nEn

(1
2

)
and En(0) =

2(1−2n+1)Bn+1

n+1
.
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It is also known that (see [3])

(2.5) B2n+3 = 0, Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x).

Lemma 2.2. For n ∈ N we have

En

(1
3

)
=

2
n+1

(
(−2)n+1−1)

)
Bn+1

(1
3

)
=

2n+1((−2)n+1−1)
(n+1)((−2)n +1)

Bn+1

(1
6

)
.

Proof. By (2.3) we have En( 1
3 ) = 2

n+1

(
Bn+1( 1

3 )−2n+1Bn+1( 1
6 )

)
. From Raabe’s theorem (see

[8,(2.9)]) we have Bn+1( 1
6 ) + Bn+1( 1

6 + 1
2 ) = 2−nBn+1( 1

3 ). As Bn+1( 1
6 + 1

2 ) = Bn+1( 2
3 ) =

(−1)n+1Bn+1( 1
3 ), we see that

Bn+1

(1
6

)
=

(
2−n− (−1)n+1)Bn+1

(1
3

)
.

Thus,

En

(1
3

)
=

2
n+1

(
Bn+1

(1
3

)
−2n+1Bn+1

(1
6

))

=
2

n+1

(
1−2n+1(2−n− (−1)n+1)

)
Bn+1

(1
3

)

=
2

n+1
· (−2)n+1−1

2−n +(−1)n Bn+1

(1
6

)
.

So the lemma is proved.

Theorem 2.1. For n ∈ N we have

U2n = 32nE2n

(1
3

)
=−2

(
22n+1 +1

)
32n B2n+1( 1

3 )
2n+1

=−2(22n+1 +1)62n

22n +1
· B2n+1( 1

6 )
2n+1

.

Proof. Using (2.1) and Lemma 2.1 we see that

2
∞

∑
n=0

E2n

(1
3

) (3t)2n

(2n)!
=

∞

∑
n=0

En

(1
3

) (3t)n

n!
+

∞

∑
n=0

En

(1
3

) (−3t)n

n!

=
2et

e3t +1
+

2e−t

e−3t +1
=

2et +2e2t

e3t +1
=

2et

e2t − et +1

=
2

et + e−t −1
= 2

∞

∑
n=0

Un
tn

n!
= 2

∞

∑
n=0

U2n
t2n

(2n)!
.

Thus U2n = 32nE2n( 1
3 ). Now applying Lemma 2.2 we deduce the remaining result.

Theorem 2.2. For two sequences {an} and {bn} we have the following inversion formula:

bn = 2
[n/2]

∑
k=0

(
n
2k

)
an−2k−an (n = 0,1,2, . . .)

⇐⇒ an =
[n/2]

∑
k=0

(
n
2k

)
U2kbn−2k (n = 0,1,2, . . .).
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Proof. It is clear that

(et + e−t −1)
( ∞

∑
n=0

an
tn

n!

)
=

(
−1+2

∞

∑
k=0

t2k

(2k)!

)( ∞

∑
m=0

am
tm

m!

)

=
∞

∑
n=0

(
2

[n/2]

∑
k=0

(
n
2k

)
an−2k−an

) tn

n!
.

Thus, using Lemma 2.1 and the fact U2n−1 = 0 we see that

bn = 2
[n/2]

∑
k=0

(
n
2k

)
an−2k−an (n = 0,1,2, . . .)

⇐⇒ (et + e−t −1)
( ∞

∑
n=0

an
tn

n!

)
=

∞

∑
n=0

bn
tn

n!

⇐⇒
∞

∑
n=0

an
tn

n!
=

( ∞

∑
n=0

bn
tn

n!

)( ∞

∑
k=0

U2k
t2k

(2k)!

)

⇐⇒ an =
[n/2]

∑
k=0

(
n
2k

)
U2kbn−2k (n = 0,1,2, . . .).

This proves the theorem.

Theorem 2.3. Let n be a nonnegative integer. For any complex number x we have

[n/2]

∑
k=0

(
n
2k

)
U2k((x−1)n−2k− xn−2k +(x+1)n−2k) = xn,(i)

[n/2]

∑
k=0

(
n
2k

)
U2k(xn−2k +(x+3)n−2k) = (x+1)n +(x+2)n,(ii)

[n/2]

∑
k=0

(
n
2k

)
U2k((x+3)n−2k− (x−3)n−2k)(iii)

= (x+2)n +(x+1)n− (x−1)n− (x−2)n.

Proof. From the binomial theorem we see that

2
[n/2]

∑
k=0

(
n
2k

)
xn−2k− xn = (x−1)n +(x+1)n− xn.

Thus, applying Theorem 2.2 we deduce (i). Since

xm− (x+1)m +(x+2)m +(x+1)m− (x+2)m +(x+3)m = xm +(x+3)m,

from (i) we deduce (ii). As xm +(x + 3)m− ((x− 3)m + xm) = (x + 3)m− (x− 3)m, from (ii)
we deduce (iii). So the theorem is proved.
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Theorem 2.4. For n ∈ N we have

[n/2]

∑
k=0

(
n
2k

)
(2n−2k−1)U2k = 1−Un,(i)

[(n−1)/2]

∑
k=0

(
n
2k

)
6n−2kU2k = 5n +4n−2n−1,(ii)

U2n = 1+22n−
n

∑
k=0

(
2n
2k

)
32n−2kU2k,(iii)

U2n = 2(−1)n−4
[n/2]

∑
k=1

(
2n
4k

)
((−4)k−1)U2n−4k,(iv)

U2n = 4n−1 +
1+V2n

4
− 3

4

[n/3]

∑
k=1

(
2n
6k

)
36kU2n−6k,(v)

where Vm is given by V0 = 2, V1 = 1 and Vm+1 = Vm−7Vm−1 (m≥ 1).

Proof. Taking x = 1 in Theorem 2.3(i) and noting that Un = 0 for odd n we obtain (i). Taking
x = 3 in Theorem 2.3(iii) we deduce (ii). Taking x = 0 in Theorem 2.3(ii) and then replacing n
with 2n we derive (iii). Set i =

√−1. By Theorem 2.3(i) we have

n

∑
k=0

(
2n
2k

)
U2k

(
(i−1)2n−2k− i2n−2k +(i+1)2n−2k) = i2n.

That is,
n

∑
k=0

(
2n
2k

)
U2k

(
(−2i)n−k− (−1)n−k +(2i)n−k) = (−1)n.

Hence
n

∑
k=0

2|n−k

(
2n
2k

)
U2k

(
2n+1−k(−1)

n−k
2 −1

)
+

n

∑
k=0

2-n−k

(
2n
2k

)
U2k = (−1)n.

Therefore,

n

∑
k=0

2|n−k

(
2n
2k

)
U2k

(
2n+1−k(−1)

n−k
2 −2

)
= (−1)n−

n

∑
k=0

(
2n
2k

)
U2k = (−1)n− 1

2
U2n

and so

2
n

∑
r=0
2|r

(
2n
2r

)
U2n−2r

(
(−1)

r
2 2r−1

)
= (−1)n− 1

2
U2n.

This yields (iv).
Set ω = (−1+

√−3)/2. From Theorem 2.3(ii) we have

n

∑
k=0

(
2n
2k

)
U2k

(
(3ω)2n−2k +(3ω+3)2n−2k

)
= (3ω+1)2n +(3ω+2)2n.
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It is easily seen that Vm =
( 1+3

√−3
2

)m +
( 1−3

√−3
2

)m = (2+3ω)m +(−1−3ω)m and

ω2n−2k +(ω+1)2n−2k = ω2n−2k +(ω2)2n−2k =
{

2 if 3 | n− k,

ω+ω2 =−1 if 3 - n− k.

Thus

3
n

∑
k=0

3|n−k

(
2n
2k

)
32n−2kU2k−

n

∑
k=0

(
2n
2k

)
32n−2kU2k

=
n

∑
k=0

(
2n
2k

)
U2k

(
(3ω)2n−2k +(3ω+3)2n−2k

)

= (3ω+1)2n +(3ω+2)2n = V2n.

Hence, applying (iii) we deduce

3
n

∑
k=0
3|k

(
2n
2k

)
32kU2n−2k

= 3
n

∑
k=0

3|n−k

(
2n
2k

)
32n−2kU2k =

n

∑
k=0

(
2n
2k

)
32n−2kU2k +V2n

= 1+22n−U2n +V2n.

This yields (v). The proof is now complete.

Lemma 2.3 ([3, p.30]). For n ∈ N and 0≤ x≤ 1 we have

En(x) = 4 · n!
πn+1

∞

∑
m=0

sin((2m+1)πx− nπ
2 )

(2m+1)n+1 .

Theorem 2.5. Let n ∈ N. Then

∞

∑
k=0

( 1
(6k +1)2n+1 −

1
(6k +5)2n+1

)
= (−1)n U2n ·π2n+1

2
√

3 ·32n · (2n)!
.

Proof. From Lemma 2.3 and Theorem 2.1 we see that

(−1)n U2n ·π2n+1

4 ·32n · (2n)!

= (−1)n E2n
( 1

3

)
π2n+1

4 · (2n)!
= (−1)n

∞

∑
m=0

sin( 2m+1
3 π−nπ)

(2m+1)2n+1

=
∞

∑
m=0

sin 2m+1
3 π

(2m+1)2n+1 =
√

3
2

∞

∑
k=0

( 1
(6k +1)2n+1 −

1
(6k +5)2n+1

)
.

This yields the result.

Corollary 2.1. For n ∈ N we have (−1)nU2n > 0.
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3. Congruences involving {U2n}
Theorem 3.1. Let p be a prime of the form 4k +1. Then

U p−1
2
≡ (

1+2(−1)
p−1

4
)
h(−3p) (mod p).

Proof. From Theorem 2.1 we see that

U p−1
2

=−2(2
p+1

2 +1)3
p−1

2
B p+1

2
( 1

3 )
p+1

2

≡−4
(

2
( 2

p

)
+1

)( 3
p

)
B p+1

2

(1
3

)

=





−12B p+1
2

(1
3
)

(mod p) if p≡ 1 (mod 24)

−4B p+1
2

(1
3
)

(mod p) if p≡ 5 (mod 24),

4B p+1
2

(1
3
)

(mod p) if p≡ 13 (mod 24),

12B p+1
2

(1
3
)

(mod p) if p≡ 17 (mod 24).

By [8, Theorem 3.2(i)] we have

h(−3p)≡




−4B p+1

2

(1
3
)

(mod p) if p≡ 1 (mod 12),

4B p+1
2

(1
3
)

(mod p) if p≡ 5 (mod 12).

Now combining the above we deduce the result.

Corollary 3.1. Let p be a prime of the form 4k +1. Then p -U p−1
2

.

Proof. From [10, p.40] we know that h(−3p) = 2∑[p/3]
a=1

( p
a

)
. Thus 1≤ h(−3p) < p. Now the

result follows from Theorem 3.1.

For an odd prime p and a∈Z with p - a let qp(a) = (ap−1−1)/p denote the corresponding
Fermat quotient.

Theorem 3.2. Let p be a prime greater than 5. Then

(i)
[p/6]
∑

k=1

1
k ≡−2qp(2)− 3

2 qp(3)+ p
(
qp(2)2 + 3

4 qp(3)2
)− 5p

2

( p
3

)
Up−3 (mod p2),

(ii)
[p/3]
∑

k=1

1
k ≡− 3

2 qp(3)+ 3
4 pqp(3)2− p

( p
3

)
Up−3 (mod p2),

(iii)
[2p/3]

∑
k=1

(−1)k−1

k ≡ 9
p−1
∑

k=1
3|k+p

1
k ≡ 3p

( p
3

)
Up−3 (mod p2).

(iv) We have

(−1)[
p
6 ]

(
p−1
[ p

6 ]

)
≡ 1+ p

(
2qp(2)+

3
2

qp(3)
)

+ p2
(

qp(2)2 +3qp(2)qp(3)

8



+
3
8

qp(3)2−5
( p

3

)
Up−3

)
(mod p3)

and

(−1)[
p
3 ]

(
p−1
[ p

3 ]

)
≡ 1+

3
2

pqp(3)+
3
8

p2qp(3)2− p2

2

( p
3

)
Up−3 (mod p3).

Proof. From Theorem 2.1 and Fermat’s little theorem we have

Up−3 =−2(2p−2 +1) ·6p−3

2p−3 +1
· Bp−2( 1

6 )
p−2

≡ 1
30

Bp−2

(1
6

)
(mod p).

Now applying [9, Theorem 3.9] we deduce the result.

Theorem 3.3. Let p > 3 be a prime and k ∈ {2,4, . . . , p−3}. Then

[p/6]

∑
x=1

1
xk ≡ 6k

p−1

∑
x=1

6|x−p

1
xk ≡

6k(2k +1)
4(2k−1 +1)

( p
3

)
Up−1−k (mod p)

and
[p/3]

∑
x=1

1
xk ≡ 3k

p−1

∑
x=1

3|x−p

1
xk ≡

6k

4(2k−1 +1)

( p
3

)
Up−1−k (mod p).

Proof. Let m ∈ {3,6}. As Bp−k(m−1
m ) = (−1)p−kBp−k( 1

m ) = −Bp−k( 1
m ), we see that

Bp−k({ p
m}) = ( p

3 )Bp−k( 1
m ). Now putting s = 1 and substituting k with p−1−k in [8, Corollary

2.2] we see that for k ∈ {2,4, . . . , p−3},

[p/m]

∑
x=1

1
xk ≡

[p/m]

∑
x=1

xp−1−k ≡ Bp−k(0)−Bp−k({ p
m})

p− k
=−

( p
3

)Bp−k( 1
m )

p− k
(mod p).

By [8, (2.6)] we have

p−1

∑
x=1

m|x−p

1
xk ≡

p−1

∑
x=1

m|x−p

xp−1−k ≡ (−m)p−1−k
[p/m]

∑
x=1

xp−1−k ≡ 1
mk

[p/m]

∑
x=1

1
xk (mod p).

From Theorem 2.1 we know that

Bp−k( 1
6 )

p− k
=− 1+2p−1−k

2(2p−k +1)6p−1−k Up−1−k ≡− 1+2−k

2(21−k +1)6−k Up−1−k (mod p)

and
Bp−k( 1

3 )
p− k

=− Up−1−k

2 ·3p−1−k(2p−k +1)
≡− Up−1−k

2 ·3−k(21−k +1)
(mod p).

Now putting all the above together we deduce the result.
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Corollary 3.2. Let p > 3 be a prime and k ∈ {2,4, . . . , p−3}. Then

[p/3]

∑
x=[p/6]+1

1
xk ≡−

12k

4(2k−1 +1)

( p
3

)
Up−1−k (mod p)

and
[p/3]

∑
x=1

1
xk ≡

1
2k +1

[p/6]

∑
x=1

1
xk ≡−

1
2k

[p/3]

∑
x=[p/6]+1

1
xk (mod p).

Remark 3.1 For a prime p > 5 the congruence ∑[p/3]
x=1

1
x2 ≡ 1

5 ∑[p/6]
x=1

1
x2 (mod p) was first

found by Schwindt. See [5].
Theorem 3.4. Let p > 3 be a prime and k ∈ {2,4, . . . , p−3}. Then

[p/3]

∑
x=1

(−1)x−1 1
xk ≡−

3k

2

( p
3

)
Up−1−k (mod p)

and
[ p+3

6 ]

∑
x=1

1
(2x−1)k ≡−

3k

2k+1 +4

( p
3

)
Up−1−k (mod p).

Proof. Putting m = 3 and s = 1 in [8, Corollary 2.2] and then replacing k with p− 1− k we
see that

Ep−1−k(0)− (−1)[
p
3 ]Ep−1−k

({ p
3

})

≡ 2(−1)p−1−k−1
[p/3]

∑
x=1

(−1)xxp−1−k ≡ 2
[p/3]

∑
x=1

(−1)x−1 1
xk (mod p).

By (2.4) and (2.5) we have

Ep−1−k(0) =
2(1−2p−k)Bp−k

p− k
= 0.

From (2.5) and Theorem 2.1 we have

Ep−1−k

({ p
3

})
= Ep−1−k

(1
3

)
= 3k+1−pUp−1−k ≡ 3kUp−1−k (mod p).

Observe that (−1)[
p
3 ] = ( p

3 ). From the above we deduce the first part. Since

[ p
3 ]

∑
x=1

(−1)x−1 1
xk =−

[ p
6 ]

∑
x=1

1
(2x)k +

[ p+3
6 ]

∑
x=1

1
(2x−1)k ,

applying the first part and Theorem 3.3 we deduce the remaining result.

Corollary 3.3. Let p be a prime of the form 4k +1. Then

U p−1
2
≡−2

(
2+(−1)

p−1
4

) [ p+3
6 ]

∑
x=1

( p
2x−1

)
(mod p).
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Proof. Taking k = (p−1)/2 in Theorem 3.4 and applying Euler’s criterion we obtain

[ p+3
6 ]

∑
x=1

(2x−1
p

)
≡−

( 3
p )( p

3 )

4+2( 2
p )

U p−1
2

=− 1

4+2(−1)
p−1

4

U p−1
2

(mod p).

This yields the result.

4. Congruences for Uk(p−1)+b (mod pn)

Theorem 4.1. Let n ∈ N with n≥ 3, and let α be a nonnegative integer such that 2α | n. Then
U2n ≡ 2

3 (mod 2α+4). Moreover,

U2n ≡




48n+
2
3

(mod 2α+7) if 2 | n,

48n+22 (mod 27) if 2 - n.

Proof. From Theorem 2.4(i) we have

n

∑
k=0

(
2n
2k

)(
22n−2k−1

)
U2k = 1−U2n.

Thus, using (1.1) we see that

n

∑
k=0

(
2n
2k

)
22n−2kU2k = 1+

n−1

∑
k=0

(
2n
2k

)
U2k = 1− 1

2
U2n.

Hence

U2n = 2−2
n

∑
r=0

(
2n
2r

)
22rU2n−2r

and so

(4.1) U2n =
2
3

(
1−

n

∑
r=1

(
2n
2r

)
4rU2n−2r

)
=

2
3
− 2n

3

n

∑
r=1

(
2n−1
2r−1

)
4r

r
U2n−2r.

From the definition of U2n we know that 2 |U2m for m≥ 1. Thus, for 1≤ r ≤ n and n≥ 2 we
have 4r

r U2n−2r ≡ 0 (mod 8) and so 2n · 4r

r U2n−2r ≡ 0 (mod 2α+4). Therefore, by (4.1) we have
U2n ≡ 2

3 (mod 2α+4) and hence U2n ≡ 6 (mod 16) for n≥ 2.

Since 4n−3

n ∈ Z2 for n ≥ 3, we see that 2n
3 · 4n

n = 27n
3 · 4n−3

n ≡ 0 (mod 2α+7). Thus, using
(4.1) and the fact U2m ≡ 6 (mod 16) for m≥ 2 we see that for n≥ 3,

U2n− 2
3

=−2n
3

(
4

n−2

∑
r=1

(
2n−1
2r−1

)
4r−1

r
U2n−2r−2 ·22n−2(2n−1)+

4n

n

)

≡−2n
3
·4

n−1

∑
r=1

(
2n−1
2r−1

)
4r−1

r
·6

11



=−16n
(

2n−1+2
(

2n−1
3

)
+

n−1

∑
r=3

(
2n−1
2r−1

)
4r−1

r

)

≡−16n
(

2n−1+2
(

2n−1
3

))
(mod 2α+7).

It is clear that

2n−1+2
(

2n−1
3

)
≡ 9

(
2n−1+2

(
2n−1

3

))

= 3(2n−1)(2n+(2n−3)2)≡ 3(2n−1)(2n+1)
= 3(2n−1)2 +6(2n−1)≡ 4n−3 (mod 8).

Thus,

U2n− 2
3
≡−16n(4n−3)≡ 48n+32(1− (−1)n) (mod 2α+7).

This yields the result.

Corollary 4.1. Let n ∈ N and n≥ 3. Then

U2n ≡ 6 (mod 16) and U2n ≡−16n−42 (mod 128).

Theorem 4.2. Let p be an odd prime and b ∈ {0,2,4, . . .}. Then f (k) = (1 −( p
3

)
pk(p−1)+b)Uk(p−1)+b is a p-regular function.

Proof. Suppose n ∈ N. From Theorem 2.1 and (2.3) we have

22k+bU2k+b = 22k+b ·32k+bE2k+b

(1
3

)
= 32k+b

2k+b

∑
r=0

(
2k +b

r

)(
− 1

3

)2k+b−r
Er

=
2k+b

∑
r=0

(
2k +b

r

)
(−3)rEr ≡

n−1

∑
r=0

(
2k +b

r

)
(−3)rEr

=
n−1

∑
r=0

(2k +b)(2k +b−1) · · ·(2k +b− r +1)
(−3)r

r!
Er (mod 3n).

Since Er ∈ Z and 3r/r! ∈ Z3, there are a0,a1, . . . ,an−1 ∈ Z3 such that

22k+bU2k+b ≡ an−1kn−1 + · · ·+a1k +a0 (mod 3n) for every k = 0,1,2, . . ..

Hence, using [6, Theorem 2.1] we see that 22k+bU2k+b is a 3-regular function. As

n

∑
k=0

(
n
k

)
(−1)k2−2k−b = 2−b

(
1− 1

4

)n
≡ 0 (mod 3n),

we see that 2−2k−b is also a 3-regular function. Hence, using the above and the product theorem
of p-regular functions (see [6, Theorem 2.3]) we deduce that f (k) = U2k+b is a 3-regular
function. Therefore, the result is true for p = 3.
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Now let us consider the case p > 3. For x ∈ Zp let 〈x〉p be the least nonnegative residue of
x modulo p. Since 2 | b we have p−1 - b+1. From [6, Theorem 3.2] we know that

f1(k) =
Bk(p−1)+b+1( 1

3 )− pk(p−1)+bBk(p−1)+b+1
( 1

3 +〈− 1
3 〉p

p

)

k(p−1)+b+1

is a p-regular function. As

1
3 + 〈− 1

3 〉p

p
=





1
3 + p−1

3
p

=
1
3

if p≡ 1 (mod 3),

1
3 + 2p−1

3
p

=
2
3

if p≡ 2 (mod 3)

and Bk(p−1)+b+1( 2
3 ) = (−1)k(p−1)+b+1Bk(p−1)+b+1( 1

3 ) =−Bk(p−1)+b+1( 1
3 ), we see that

f1(k) =
(

1−
( p

3

)
pk(p−1)+b

) Bk(p−1)+b+1( 1
3 )

k(p−1)+b+1
.

By Theorem 2.1 and the above we have

f (k) =
(

1−
( p

3

)
pk(p−1)+b

)
· (−2)

(
2k(p−1)+b+1 +1

)
3k(p−1)+b Bk(p−1)+b+1( 1

3 )
k(p−1)+b+1

=−2
(
2k(p−1)+b+1 +1

)
3k(p−1)+b f1(k).

Since
n

∑
k=0

(
n
k

)
(−1)k(2k(p−1)+b+1 +1

)
3k(p−1)+b = 2 ·6b(1−6p−1)n +3b(1−3p−1)n ≡ 0 (mod pn),

using the above and the product theorem of p-regular functions (see [6, Theorem 2.3]) we
deduce that f (k) is a p-regular function, which completes the proof.

From Theorem 4.2 and [8, Theorem 4.3 (with t = 1 and d = 0)] we deduce the following
result.

Theorem 4.3. Let p be an odd prime, k,m,n ∈ N and b ∈ {0,2,4, . . .}. Then
(

1−
( p

3

)
pkϕ(pm)+b

)
Ukϕ(pm)+b

≡
n−1

∑
r=0

(−1)n−1−r
(

k−1− r
n−1− r

)(
k
r

)(
1−

( p
3

)
prϕ(pm)+b

)
Urϕ(pm)+b (mod pmn).

In particular, for n = 1 we have Ukϕ(pm)+b ≡ (1− ( p
3

)
pb)Ub (mod pm).

From Theorem 4.2 and [6, Theorem 2.1] we deduce the following result.
Theorem 4.4. Let p be an odd prime, n ∈ N, p ≥ n and b ∈ {0,2,4, . . .}. Then there are

unique integers a0,a1, . . . ,an−1 ∈ {0,±1,±2, . . . , ± pn−1
2 } such that

(
1−

( p
3

)
pk(p−1)+b

)
Uk(p−1)+b ≡ an−1kn−1 + · · ·+a1k +a0 (mod pn)
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for every k = 0,1,2, . . . . Moreover, ordpas ≥ s−ordps! for s = 0,1, . . . ,n−1.
Corollary 4.2. Let k ∈ N. Then
(i) U2k ≡−3k +1 (mod 27);
(ii) U4k ≡ 1250k4 +500k3 +725k2−1205k +2 (mod 3125) (k ≥ 2);
(iii) U4k+2 ≡ 1250k4−1125k3−675k2−52 (mod 3125).
From Theorem 4.2 and [8, Corollary 4.2(iv)] we deduce:
Theorem 4.5. Let p be an odd prime, k,m ∈ N and b ∈ {0,2,4, . . .}. Then

Ukϕ(pm)+b ≡ (1− kpm−1)
(

1− ( p
3
)

pb
)

Ub + kpm−1
(

1− ( p
3
)

pp−1+b
)

Up−1+b (mod pm+1).

5. {(−1)nU2n} is realizable
If {an}∞

n=1 and {bn}∞
n=1 are two sequences satisfying a1 = b1 and bn + a1bn−1 + · · ·+

an−1b1 = nan (n > 1), following [7] we say that (an,bn) is a Newton-Euler pair. If (an,bn)
is a Newton-Euler pair and an ∈ Z for all n = 1,2,3, . . ., then we say that {bn} is a Newton-
Euler sequence.

Let {bn} be a Newton-Euler sequence. Then clearly bn ∈ Z for all n = 1,2,3, . . .. In [2],
{−bn} is called a Newton sequence generated by {−an}.

Lemma 5.1. Let {bn}∞
n=1 be a sequence of integers. Then the following statements are

equivalent:
(i) {bn} is a Newton-Euler sequence.
(ii) ∑d|n µ

( n
d

)
bd ≡ 0 (mod n) for every n ∈ N.

(iii) For any prime p and α,m ∈ N with p - m we have bmpα ≡ bmpα−1 (mod pα).
(iv) For any n, t ∈ N and prime p with pt ‖ n we have bn ≡ b n

p
(mod pt).

(v) There exists a sequence {cn} of integers such that bn = ∑d|n dcd for any n ∈ N.
(vi) For any n ∈ N we have

∑
k1+2k2+···+nkn=n

bk1
1 bk2

2 · · ·bkn
n

1k1 · k1! ·2k2 · k2! · · ·nkn · kn!
∈ Z.

(vii) For any n ∈ N we have

1
n!

∣∣∣∣∣∣∣∣∣∣

b1 b2 b3 . . . bn
−1 b1 b2 . . . bn−1

−2 b1 . . . bn−2
. . .

. . .
...

−(n−1) b1

∣∣∣∣∣∣∣∣∣∣

∈ Z.

Proof. From [1, Theorem 3] or [2] we know that (i), (ii) and (iii) are equivalent. Clearly (iii)
is equivalent (iv). Using Möbius inversion formula we see that (ii) and (v) are equivalent. By
[7, Theorems 2.2 and 2.3], (i),(vi) and (vii) are equivalent. So the lemma is proved.

Let {bn}∞
n=1 be a sequence of nonnegative integers. If there is a set X and a map T : X → X

such that bn is the number of fixed points of T n, following [1,4] we say that {bn} is realizable.
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In [4], Puri and Ward proved that a sequence {bn} of nonnegative integers is realizable if
and only if for any n∈N, 1

n ∑d|n µ( n
d )bd is a nonnegative integer. Thus, using Möbius inversion

formula we see that a sequence {bn} is realizable if and only if there exists a sequence {cn} of
nonnegative integers such that bn = ∑d|n dcd for any n ∈ N. In [1] J. Arias de Reyna showed
that {E2n} is a Newton-Euler sequence and {|E2n|} is realizable.

Now we state the following result.
Theorem 5.1. {U2n} is a Newton-Euler sequence and {(−1)nU2n} is realizable.

Proof. Suppose n ∈ N and α = ord2n. If 2 | n, by Theorem 4.1 we have U2n ≡ 2
3 (mod 2α+4)

and Un ≡ 2
3 (mod 2α+3) for n ≥ 6. Thus U2n ≡ 2

3 ≡Un (mod 2α) for n ≥ 6. For n = 2,4 we
also have U2n ≡Un (mod 2α). If 2 - n, by (1.1) we have U2n ≡ 0 = Un (mod 20).

Now assume that p is an odd prime divisor of n and n = ptn0 with p - n0. Using Theorem
4.3 and the fact 2n0 pt−1 ≥ t we see that

U2n = U2n0 pt = U2n0ϕ(pt )+2n0 pt−1 ≡U2n0 pt−1 (mod pt).

By the above, for any prime divisor p of n we have U2n ≡U2n/p (mod pt), where pt ‖ n.
Hence, it follows from Lemma 5.1 that {U2n} is a Newton-Euler sequence.

By Corollary 2.1 we have (−1)nU2n > 0. Suppose that p is a prime divisor of n and pt ‖ n.
If p is odd, then (−1)n = (−1)

n
p . If p = 2 and 4 | n, we have (−1)n = (−1)

n
2 . If p = 2

and 2 ‖ n, then (−1)n ≡ (−1)
n
2 (mod 2). Thus, we always have (−1)n ≡ (−1)

n
p (mod pt).

By the previous argument, we also have U2n ≡ U2n/p (mod pt). Therefore, (−1)nU2n ≡
(−1)

n
p U2n/p (mod pt). Hence, by Lemma 5.1 we have 1

n ∑d|n µ( n
d )(−1)dU2d ∈ Z. Now it

remains to show that ∑d|n µ( n
d )(−1)dU2d ≥ 0.

For m ∈ N, by Theorem 2.5 we have

(−1)mU2m =
2
√

3 ·32m · (2m)!
π2m+1

∞

∑
k=0

( 1
(6k +1)2m+1 −

1
(6k +5)2m+1

)
.

Since

∞

∑
k=0

( 1
(6k +1)2m+1 −

1
(6k +5)2m+1

)
= 1−

∞

∑
k=0

( 1
(6k +5)2m+1 −

1
(6k +7)2m+1

)
< 1

and
∞

∑
k=0

( 1
(6k +1)2m+1 −

1
(6k +5)2m+1

)
> 1− 1

52m+1 > 1− 1
5

=
4
5
,

we see that
4
5
· 2
√

3 ·32m · (2m)!
π2m+1 < (−1)mU2m <

2
√

3 ·32m · (2m)!
π2m+1 .

Hence

∑
d|n

µ
( n

d

)
(−1)dU2d = (−1)nU2n + ∑

d|n,d≤ n
2

µ
( n

d

)
(−1)dU2d

≥ (−1)nU2n− ∑
1≤d≤ n

2

(−1)dU2d
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>
4
5
· 2
√

3 ·32n · (2n)!
π2n+1 − ∑

1≤d≤ n
2

2
√

3 ·32d · (2d)!
π2d+1

>
4
5
· 2
√

3 ·32n · (2n)!
π2n+1 −

∞

∑
d=1

2
√

3 ·32d ·n!
π2d+1

=
8
√

3
5π

·n!
{( 9

π2

)n
(n+1)(n+2) · · ·(2n)− 5

4
· 9/π2

1−9/π2

}
.

For m ∈ N it is clear that
( 9

π2

)m+1
(m+2)(m+3) · · ·(2m+2) =

9
π2 (4m+2) ·

( 9
π2

)m
(m+1)(m+2) · · ·(2m)

>
( 9

π2

)m
(m+1)(m+2) · · ·(2m).

Thus, for n≥ 3 we have

( 9
π2

)n
(n+1)(n+2) · · ·(2n)≥

( 9
π2

)3
·4 ·5 ·6 >

5
4
· 9/π2

1−9/π2

and so ∑d|n µ( n
d )(−1)dU2d > 0. This inequality is also true for n = 1,2. Thus, {(−1)nU2n} is

realizable. This completes the proof.

Let {an} be defined by

a1 =−2 and nan = U2n +a1U2n−2 + · · ·+an−1U2 (n = 2,3,4, . . .).

By Theorem 5.1 we have an ∈ Z for all n ∈ N. The first few values of an are shown below:

a2 = 13, a3 =−224, a4 = 8170, a5 =−522716, a6 = 51749722, a7 =−7309866728.
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