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On the properties of Newton-Euler pairs
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ABSTRACT. If {a,}2 ; and {b,}$2 ; are two sequences such that a; = by and b, +
a1bp—1+ -+ an—1b1 = nan (n > 1), then we say that (an,bn) is a Newton-Euler pair.
In the paper we establish many formulas for Newton-Euler pairs, and then make use of
them to obtain new results concerning some special sequences such as p(n), o(n) and
By, where p(n) is the number of partitions of n, o(n) is the sum of divisors of n, and
B,, is the n—th Bernoulli number.
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1. Introduction.

Let aq,... ,a,, be complex numbers and a,, = 0 for n > m. If 2™ +a;2™ ' +-- - +
1T + Gy = (x —x1) - (x — ) and s, = 27 + -+ + 2%, the famous Newton’s
formula (cf. [T]) states that s, + a18p—1 + -+ + an—151 = —na, or 0 according as

n<mormn>m.

Suppose that p(n) is the number of partitions of n and that o(n) is the sum of
positive divisors of n. Euler showed that (cf. [P, Chapter 6]) o(n) + p(1)o(n — 1) +
-+ p(n—1)o(1) =np(n) (n>1).

Inspired by Newton’s and Euler’s work, we introduce the following so-called Newton-
Euler pairs.

Definition 1.1. If {a,}52, and {b,}>2, are two sequences satisfying a1 = b1 and
bp +a1bp—1+--+an_1by = na, (n > 1), then we say that (an,b,) is a Newton-Euler
pair.

By the above, both (a,, —s,) and (p(n),o(n)) are Newton-Euler pairs. Clearly for
each sequence {a,}°; ({b,}52 ) there is a unique sequence {b,}°%; ({a,}5% ) such
that (ay,,by,) is a Newton-Euler pair.
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Suppose that {a,} and {b,} are two sequences satisfying the relation > ;_, arbn,—_y
= na,(n = 0,1,2,...). Then ag = 0 or by = 0. If ag # 0, clearly (a,/aog,by) is
a Newton-Euler pair. If ap = 0 and a; # 0, it’s easily seen that (a,+1/a1,b,) is a
Newton-Euler pair.

Definition 1.2. If (a,,by,) is a Newton-Euler pair and a,, € Z for alln =1,2,3,...,
then we say that {b,} is a Newton-Euler sequence.

Let {b,} be a Newton-Euler sequence. Then clearly b,, € Z for all n = 1,2,3,....
In [DHL], {-b,} is called a Newton sequence generated by {—a,}. From [DHL] we
know that

Zu bz =0 (mod n) and by, =b= (mod »"), (1.1)

d

where 1 is the Mobius function and p is a prime such that p* | n.

In Section 2 we will prove some properties of Newton-Euler pairs, in Sections 3 and
4 we will list some typical examples of Newton-Euler pairs and then apply them to
many special sequences such as p(n), o(n), Bell numbers and Bernoulli numbers.

Throughout this paper we use the following notation: Z-—the set of integers,
Zt —the set of positive integers, [z]—the greatest integer not exceeding x, w =
(=1 + v/=3)/2, |A|—the determinant of square matrix A, o(n)—the sum of pos-
itive divisors of n, max{a,b}—the maximum element in the set {a,b}, f'(x)—the
formal derivative of f(x).

2. Formulas for Newton-Euler pairs.

In the section we study the properties of Newton-Euler pairs. For formal power
series f(x) = Z;o o anx", as usual the formal derivative f’(z) of f(x) and the formal
integral fo t)dt are defined by

o0
n—1 n+1
= E d t)dt = .
2 NQy,T an / f@) n + 1

Now we give

Theorem 2.1. Let {a,} and {b,} be two sequences. If A(x) =1+ 7 a,z"™ and
B(z) =377 bya™, then the following statements are equivalent:
(i) (an,bn) is a Newton-Euler pair.

(ii)) B(z) = :L‘A’(B()t)/A( x).

(i) A(z) = elo —v 9,

Proof. Let ag = 1 and by = 0. Since A(z)B(z) = >~ (O f_oarbp_k)z™ and
zA'(z) =Y 0 napa™, we see that

n—1
A(x)B(z) = 2A'(z @Zakbn k= na, (n>0) @Zakbn k= na, (n>1).
k=0 k=0

So (i) is equivalent to (ii).
Observing that d(lnA(z))/dx = A’(z)/A(z) we see that (ii) is equivalent to (iii).
Hence the proof is complete.
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Lemma 2.1. Suppose a(z) = > 0" apz™ and B(z) = a *(z) = D07, Bpa™. For
two sequences {an} and {b,} the following statements are equivalent:

(i) a(i brxr> = ni_o:l anx™.
(ii) ﬁ( i arxr> = i b,x".

ki+ -+ kp)!

(i) an = > ( lk:ll...k ! ) Qhy ook, DY b (0> 1),
k1+2ko+-+nk,=n ) n

. ky A+t k)

(iv) o = > ( lkll...k ! ) Byt @yt @i (n > 1),

k1+2ka++4nkn,=n

Proof. Clearly (i) is equivalent to (ii) since a(B(z)) = B(a(x)) = x. Observe that

the coefficient of 2™ in the expansion
[e.@) o0 o0 m
o(X0a) = 3 oY)
r=1 m=1 r=1

is the same as the coefficient of ™ in the expansion " | a,, (> _, byz”)™. By the

multinomial theorem we have
n n m
Z Ay, < Z br:cr)
m=1 r=1

" m)! "
- Z Qm Z k‘ﬂ-..k‘n!(blx)kl (bnm )kn

m=1 k14 +kn=m
(kb + - + k)

_ : k1
= E T Oy 4ok, 07
1<kitotho<n LTI

. bkn xk1+2k2+"’+nkn
n .

So the coefficient of z™ in the expansion of oz(Z;fi ) bya”) is
(k1 + -+ kp)! . .
Z k!l kp,! Oy 4vogky, 071 - DL

k1+2ka+-+nkn,=n
Hence (i) is equivalent to (iii) and so (ii) is equivalent to (iv). This proves the lemma.

Remark 2.1 Putting a(z) = 8(r) = — {5 in Lemma 2.1 we see that

o0 o0
1+ Z bpx" = (1 + Z anx”)_l
n=1 n=1

Fito k)
>y oo PR L(Cayorttinghs gl (o> 1),

< b, =
k14+2ko+---4+nk,=n



Theorem 2.2. Let (ay,by,) be a Newton-Euler pair. For n > 1 we have

B bk -
am= )
" 1kt kql - 2k2 kol oo ombn o k)
k14+2ko+--4+nk,=n

and
k ook, — 1)
T e
k1 +2kot-+nkn=n 1xhvas n
Proof. It follows from Theorem 2.1 that

o bmt™ Ldt S* b pm
1+Zanx"= fomzl —emz=:1mm :

Once setting a(z) =e* —1=3 ", % we find

n=1 " m=1 m n=1 !

Thus putting a(z) = e* — 1, a, = %, Bn = U™ nd then substituting b,, by
by /m in Lemma 2.1 we get the desired result.
Remark 2.2 If (a,,b,) is a Newton-Euler pair and a,, € Z for all positive integers n,

in 2003 Du, Huang and Li [DHL] proved a result equivalent to the formula

kn
n -

Z (k1+"'+kn_1)!(_1)k1+-"+kn—1a’f1 .

b, =
" leilhigl - Jor|

‘a
k142ka 4+ 4nkn=n

As a matter of fact, the author knew Theorem 2.2 in 1991.

Lemma 2.2. Let {a,}, {b,} and {c,} be three sequences satisfying ay # 0, ¢, #
bo(n > 1) and Y. _o mbp—m = anc, (n=1,2,3,...). Then for any positive integer
n we have

by by by ... b,
bo — C1 bl bz . bn—l
Ap, = @0 bo — C2 bl e bn_g
(c1 = bo) - (cn — bo) .
bo — cn—1 by
and
ap ay as ... Qp_1 (¢ — bo)ay,
ap a1 az ... apn—2 (cp—1 —bo)an—1
- (1)1 ap ar ... apn—3 (cp—2 —bp)an—o
ap  ap (c2 —bo)as
ag (c1 —bo)as




Proof. Let B,, and A,, be the first and second determinants in Lemma 2.2 respec-
tively. Expanding B,, by the last column we see that

B, =bB,_1+ Z D b (bo — cnpg1) - (bo — ¢n—1)Bn_k

+ (-1 )nﬂbn(bo —c1)- - (bo — cn-1)

= (c1=bo) -+ (cn—1 = bo) (b + > _(c1 —bo) "+ (cnk — bo) 'bkBny) (n > 1).
k=1

Once setting af, = ag and a}, = ag(c; —bo) ™'+ (¢ —bo) "1 Bp(n > 1) we then get
(en = bo)ay, = ao(ci —bo) ™" -+ (cpn1 = bo) ™' Bn = Zan bk

This yields
Za%_kbk =a,c, (n=1,2,3,...).
k=0
Since ag = af and Y ;_qan—kbp = anc, (n > 1) we must have a,, = al, = ap(c1 —
bo)_l cee (Cn — bo)_an (TL > 1).
Similarly, expanding A,, by the first row we obtain
1
Ap =Y (=D apal Ay + (1) ag " e, — bo)an (n > 1).
1

3
I

e
I

On setting by = by and b], = (—1)""lag" A,, we find
(—)" tagt, = A, = -1 Z arbl,_p + (=D Mal " en — bo)an.

So

n
Zakb;_k =anc, (n=1,2,3,--).
k=0
Since by = b)y and Y _;_, axbn—k = ancy, (n > 1) we obtain b, = b, = (—1)""tay " A,.
This completes the proof.
Theorem 2.3. Let (an,by,) be a Newton-Euler pair. For n > 1 we have

by by b3 . by,

-1 by bs .. bn—1

a0 = - P
n! . .
—(TL — 1) b1




and

ay az as e Qp—1 Nnan
1 ay azs ... ap—2 (n—1a,1
1 ar ... an-3 (n—2)an_2
by = (—1)"1
1 ai 2&2
1 a

Proof. Putting ag =1, by = 0 and ¢, = n in Lemma 2.2 we obtain the result.
Putting Theorems 2.2 and 2.3 together we get the following corollary.

Corollary 2.1. For any positive integer n we have

b1 by b3 by,
-1 b1 bg bn—l
-2 b bn_o
—(TL — 1) bl
BBk bl
= n! Z 1k1.]{;1!.2162.]{;2!...”1%.]{;”!'

kl +2k2++nkn:n

Theorem 2.4. Suppose that (a,,b,) is a Newton-Euler pair. For k # 0 let (1 +

S Lanz)k =3 aFzn. Then (a%k), kb,,) is also a Newton-FEuler pair. Moreover,
we have

1 < -
by, = Eﬂ;mag)aé_@l (n=1,2,3,...).

Proof. Let A(z) = 1+ Y07 apz™ and B(xz) = Yoo byz™. Then AkF(z) =

n=1
>, a'Pzm and A(z)B(z) = 2A’(z) by Theorem 2.1. Since
k
x%(x) = kA () - 2A/(z) = kAP (2) - A(2)B(z) = A*(x) - kB(x),
T

using Theorem 2.1 we see that (a%k), kb,,) is a Newton-Euler pair. From the above we
also see that

dAk >

Za( k) n Zna(k) n
= i ma(k) il_n)l

n=0 m=0

So

m=0

m=

This completes the proof.



Corollary 2.2. Let (an,b,) be a Newton-Euler pair, and let ay = aj = 1 and
ZZO Oanx (ZZOZO anxn)—l' Then

n n
by, = Z My Ay = — Z may, an—m (n>1).
m=1

m=1
Proof. This is immediate from Theorem 2.4 by taking k = +1.
Theorem 2.5. Let (ay,b,) be a Newton-FEuler pair, and let ag = 1 and by = 0. For

meZt, ne{0,1,2,...} and t € {0,1,... ,m — 1} let
K +2ko+-+mkm
a')(’Lm) = Z 627”' m a’kl o .. a‘km‘
ki+-+km=mn
Then
n 1 ;F1+2k + +mk
(m) _ E Qg LT =R T Em _omirt
Z&n_kbkm+t— E (& Zk e ﬂ'lm ak1"'akm'
k=0 ki+--+kn,=mn+t

Taking t = 0 we see that (a(m) bmn) is also a Newton-FEuler pair and hence

kq+2ko+-+mkm
m lrer2T T IRYM
bm—ag ) — E 2 m ag, - - Qg

k1t thm=m

m

Proof. Let A(z) =Y .," ja,z™ and B(z) = >~ byz". Then B(z) = zA'(z)/A(x)
by Theorem 2.1. It is clear that

1 m
_omikt ik
s § :e 27mmB(e27rzmx)
m
k=1
m oo m
— i § —27r1— § :627r1— E : (i § :eZWik(?n_t))bnxn
m m
k=1 n=0 k=1
oo oo
— E bnxn - E bkm—l—tka—’_t

Set

dln(a(z)) s dIn(A(emr)) s e2mimp Al (e iw 1)
Blz) = =x —
x kX_:l dz l; A2 1)
ZB 27T’L mzbkmmkm
k=1 k=0



and so

/OTdU—m/ meu “du -

k=1

Thus applying Theorem 2.1 we get

o0

x u i Skm .’L‘ b m 1 b m
a(x) — efo B<u Ldu — ek=1 k =1+ E k k:m 2'( l;f km)2 + ..
T k=1
1
=1+ by,z™ + 5(bgm + b2 )2

On the other hand,

m

a(r) = H A ) = fj <Zan 2mity ">

k=1

oo
= E ( g e m akl---akm>x”.

Comparing the two expansions of a(z) we obtain

k1++km:n

and so

o0

x) = E alm) gmn.

n=0

Thus,
(m) omiF1t2kot - dmbm
bm_O{I E e m akl...akm

and

1 m
27rz 27rz—
) D e )
k_
n

- (Z a%m)a;m”) (Zbkm+t$km+t> _ Z (Zan ) bt ) prntt
n=0 —

k=0 n=0
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On the other hand,

m
Oé(l’) Z e—27r2 B(eQTri%:L_)
k=1
m S m . _ﬁezmﬁxA/(eQwi%x)
:HA(emmx>'Ze T —
r=1 k=1 A(e?™m )
m
_ Ze—2ﬂi% . iot IL’A, 27m H A QTFZE:L,
=t "7k
m m oo
— Z o2 Z na,e*™ m ") H ( Z anezm%x”>
k=1 ;;k n=0
0o m
_ Z Z ezmw <Z kr672ﬂi%>akz1 e ag, T
n=0ki+---+km,m=n r=1
So we have
(e e n
Z ( Oé,(ﬁ)kbkm t)SUmnH
n=0 k=0
> 1 i L2kt mbm n —omirt
:Z— Z e m <Zkre mm)ak1~~akmx”.
n=0 m ki+-+km=n r=1

This yields
kq1+2ko+---+mk 7
jRat2kot - dmbm Z —2mirt
z : eQTrz pees ( kre Qﬂlm)akl"'akm :Of()rn;ét (mOd m)
ki4++kmn=n r=1
and
n (m) 1 o k1+2k2+ +mkm —27rz
E o, 1 bpmt = m Z © (Zk ¢ )akl e
k=0 k14-+kn=mn+t

Putting ¢ = 0 we then find
Z a(m) bim =nal™  (n=0,1,2,...).

So (a%m), bmn) is a Newton-Euler pair since oz(()m) = ag = 1 and by = 0. This completes

the proof.
From the proof of Theorem 2.5 we have
9



Corollary 2.3. Let m be a positive integer andt € {0,1,... ,;m—1}. For any sequence
{an} with ag = 1 we have

m
k1t2kot - Amkm —2mirt
Z 27 = (E :kre 2mm>ak1'“akm =0 forn#t (mod m).

kit+-+km=n r=1
In particular, we have

2 : o2 - ag, ---ak, =0 forn %0 (mod m).
kit tkm=n

Corollary 2.4. For given sequence {ay} with ag =1 let

ki 2ko+tmkom
Oé»glm) — E 627” m g, -+ - ak

ki+-+kmnm=mn

m

Then for any positive integers r,s,n we have
qu(fs) = Z B B a](:;) e a;{i).
ki4+-+kr=rn
Proof. Let {b,} be given by b,,+a1b,—1+- - -+a,—1b1 = na, (n > 1). Then (a,, b,) is
a Newton-Euler pair. From Theorem 2.5 we know that both (a;’”s), brsn) and (047(18), bsn)

are Newton-Euler pairs. Applying Theorem 2.5 again we see that (c,,bsy) is also a
Newton-Euler pair, where

 kq+2kg4--+rk
_ 2 LT=T2 T (s) (s)
Cn = E e ap’ oy
ki+--+k.=rn
So al™ = ¢n. This proves the corollary.

Corollary 2.5. Let (an,b,) be a Newton-Euler pair and ag = 1. Then both (A, bay)
and (Cy,, bsy,) are also Newton-Euler pairs, where

2n 2n
Ap =Y (~Dfagase 5 and Co =y (~1)*AxAs, .
k=0 k=0

Proof. Putting m = 2,4 in Theorem 2.5 and then applying Corollary 2.4 we obtain
the result.
Remark 2.3 If (a,,b,) is a Newton-Euler pair, ag = 1 and A, = iio(—l)k
arQon—k, by taking m = 2 and £t = 1 in Theorem 2.5 we have

n 2n+1
1
Z Ap_ibagt1 = 3 Z (=Dk(@2n + 1 — 2k)aragn1—k
k=0 k=0
=Y (=1D)*2n+1 - 2k)arazni1—k-
k=0

10



Corollary 2.6. Let (a,,b,) be a Newton-Euler pair, ag = 1 and

3n In—s 3n—s
1
An = § 5 QrQ3n—r—s § Gra3n—r—s |-
r=0

sO
3|rs

Then (An,bsy,) is also a Newton-FEuler pair.
Proof. Observe that

3n—s 3n—s
§ Qra3n—r—s = § Ara3n—r—s-
r=0 r=0
r=s—1(mod 3) r=s+1(mod 3)
We see that
E : wr—|—25—|—3tarasat
r+s+t=3n
3n 3n—s
_ r+2s _
- § w GrQsQ3n—r—s = E § w ArQ3n—r—shs
0<r+s<3n s=0 r=0

I

S
v

]

S
§

S
w
S

|
]

|
V)

&

<

3lr—s—j
3n 3n—s 3n—s
- as( E Qra3pn—r—s — E ara?m—r—s)
s=0 r=0 =
3|r—s 3lr—s—1
3n 3n—s 1 3n—s 3n—s
- as{ ArA3n—r—s 5 ( } ArA3p—r—s § ara3n—r—s) }
s=0 r=0 r=0 r=0
3|lr—s 3|r—s
3n 3n—s 3n—s
=3 E Qs ( E Qra3n—r—s 5 Qra3n—r— s)
5—0
3|r s

Thus applying Theorem 2.5 we get the result.
Remark 2.4 Let (a,,b,) be a Newton-Euler pair and ag = 1. In a similar way, using
Theorem 2.5 we can prove that

n 1 3n+t 3n+t—s
kZOAn_kbng =3 Z as{ Z 3Bn+t—1r—28)ara3n+t—r—s

s=0 r=0
r=s(mod 3)
3n+t—s
+ § (3 - r)ara3n+t—7"—s}7

r=0

where A,, is given in Corollary 2.6 and ¢ € {1, 2}.
From Theorems 2.2-2.5 we have
11



Corollary 2.7. Forn € Z* and any numbers ay,... ,a, we have

ai as az ... Qp_1 nan
1 a1 ay ... ap—2 (n—1a,
1 ai .. An—3 (n - 2)an_2
(_1)n71
1 a 2a9
1 ay
B (kl + .o 4 kn — 1)' ki+-+kn—1 k1 kn
=n (-1) ay = ln
kilko!- - k!
k1+2ko+--+nk,=n
— § 6271'7, n a’k}l P a‘kn
ki+-+kn=n

n
/
= g My Q1 s
m=1

where ap = ay = 1 and aj, is given by Zf:o a;a),_, =0 (k>1).

Theorem 2.6. If k # 0, Y. ja,z™ = [[12,(1 — \yx)¥ and the series Y oo A"
converges for every positive integer n, then (an,—k> ooy A?) is a Newton-Euler pair
and so

0o . (k‘l—|——|—]€n—1)' Koy totk,—1 kK k.,
—kY A =n > Tl - ko) (=)™ ay’ - ay
k14+2ko+--4+nk,=n "

n
2 : I
= MGy s
m=1

where ay, is given by > _sal ™ = (3 0°_ ama™) "t

Proof. Let A(z) =Y. 7 anx™. Then InA(z) = k) o, In(1l — A\;z). By differenti-
ating the expansion we get

Az) o~ A
A(x) _ks_zll—)\sx.

So

A, 00 oo oo . oo 0o N
& :—kzl_)\x:—kZZ)\sx :—k;<;)\s>x

s=1n=1

This together with Theorem 2.1 shows that (a,, —k > .o ; A”) is a Newton-Euler pair.
Hence using Theorems 2.2 and 2.4 we obtain the desired result.
12



3. Examples and Applications.

In this section we list some useful examples of Newton-Euler pairs and then apply
the results of Section 2 to obtain new results concerning some well-known sequences.

Putting £ = £1 in Theorem 2.6 we have the following two examples.

Example 1. If 1+ Y 7 apz" = [[o_;(1 = A\px) and s, = > . _ A%, then
(Gn, —Sn) is a Newton-Euler pair.

Example 2. If 1+ > 7 a,2™ = [[7_(1 = A\pz) P and s, = > oo A", then
(an, $pn) is a Newton-Euler pair.

Example 3. For given complex numbers ay,as,... ,a,, with a,, # 0 let =™ +
ax™ 4+t a, = (= A) (= Ap) and s, = AP + -+ A", Define ag = 1
and a, = 0 for n ¢ {0,1,... ,m}. Then both (a,,—s,) and (aym—n/am, —5_,) are
Newton-Euler pairs.

It is clear that 1 + ayx + -+ + apz™ = (1 — A\yz) -+ (1 — \juz) and

(1_%>...<1_%>:%(I—)q)”'(x—)\m)

= ai(a:m—kala:m_l—l—---—{—am).
m

So the result follows from Example 1.
From Example 3, Theorems 2.2 and 2.3 we have

ay a as cee Qp—1 nan
1 a1 ay ... apn—o2 (mn—1)a,—1
1 ajq ... Qp_3 (77,—2)& -2
S = (—1)" ! !
1 ay 2@2 (31)
1 al
—n Z (k1++km_1)'(—l)kl++kmalfl '”aﬁlm
kilko!--- k!
ki1+2ko+---+mky,=n
and
ki+--+k,—1) 1
S—p=n Z (it o o = 1) (——)k1+"'+kmalfm_l ceaf L (3.2)
kl'kg'km' (07%%%
ki1+2ko+---+mky=n
Example 4. For given complex numbers ay,as, ... ,a, (m > 2) with a,, # 0 let
T+ a ™ ot a, = (=) (2= M) and s, = AT+ + A% and let {u, }
be given by u1_,, = - =u_1 =0, ug =1 and u, + a1Un_1 + - + ApUp_m = 0

(n=0,4£1,£2,...). Then both (u, s,) and (—amUn—m, S—n) are Newton-Euler pairs.
From Theorem 2.4 of [S3] we see that ups, +u1Sp—1 + -+ + Up_181 = nu, (n > 1)
and U_;mS_p +U_1-mS_(n—1) T+ U_(n—1)—mS—1 = NU_pn_m (n >1). So the result
follows from Definition 1.1 and the fact that ug =1 and u_,, = —1/ay,.
13



Since 14+ > 77 upa™ = (1+ a1z + -+ - + a,@™) ! by [S3], it follows from Example
4 and Corollary 2.2 that

n m min{m,n}
Sp = — Z kagtn—p = — Zkakun_k = — Z kagtn—x (n > 1). (3.3)
k=1 k=1 k=1
This formula was given by Sun [S3].
Example 5. Let A be a set of some positive integers. If p4(n) is the number of
partitions of n with parts in A and o 4(n) is the sum of those divisors of n belonging

to A, then (pa(n),o4(n)) is a Newton-Euler pair.
It is clear that

1+Zp,4(n):l:”= H 1—1a:m = H 1:[ <1—e2mrzx>_1 (Jz] < 1)

meA meA r=0

and
m—1
27 - "
g E e“m ) = E m = o4(n).
meA r=0 m|n, meA

Thus the result follows from Example 2.
From Example 5 and Theorem 2.3 we have

O'A(l) UA(Q) UA(3) O'A(?”L)
-1 0a(l) 0a(2) oa(n—1)
pa(n) = % -2 U,T;(l) oa(n — 2) | (3.4)
-1 o)

Example 6. Let m be a positive integer and 1 < r < 2, and let

1) if p = mEIE(m=2r)k
o(r,m,n) = Z d and an(r,m)= (=1 ifn 2 ’
din 0 otherwise.
d=0,£r(mod m)

Then (a,(r,m),—o(r,m,n)) is a Newton-Euler pair.
From [HW] we have the following identity:

[ee) +oo
H{(l . m2kn—|—k—l)(1 . kan—i—k—l—l)(l . kan—i—Qk)} _ Z (_1)nxkn2+ln (lz| < 1).
n=0 n=-—oo

Taking k = 5 and [ = r — % we find

ﬁ {(1=ammm=r) (1 = gmmrr) (1 - et |

n=0

e mn2—(m—2r)n mn2+(m—27’)n >
:1+Z(_1)n<m ; 4 ) =1+ an(r,m)z".
n=1

n=1

14



So

1+Zan(r,m)x”: H (1—-2") = H 1:[ < ix)
=t nEO,iT;"(:rrllod m) n=0 ir(mod m) °=0

Hence the result follows from Example 1 and the fact that

Z Z 2mia)" = Z d=o(r,m,n).

d>1 d=0,£r(mod m)
d=0 :I:r(mod m) dln

From Example 6 and Theorem 2.2 we get
o(r,m,n)
(3.5)

S B R e

=N
kilks!--- k!
k142ka+-+nk,=n 12 "

For 1 <r < % let p(r,m,n) be the number of partitions of n into parts = 0,r,m —
r (mod m). Then clearly

1+ Zp(r, m,n)z’" = H (1 -z~ (|z] < 1).

By the above we get

(1+Zanrm )( +Zp7°mn )_1

Comparing the coefficients of " on both sides yields the following recursion formula
for p(r,m,n):

plromn) = > (=1 p(r.m,n - mk? — (;” - 2T)k>
= (3.6)
mk2 + (m — 2r)k
),

—}—p(r,m,n—

where p(r,m,0) = 1 and p(r,m,s) = 0 for s < 0. Since p(1,3,n) is just the number
p(n) of partitions of n, (3.6) is a generalization of Euler’s formula for p(n).
By Corollary 2.2 and the above we have

n

o(r,m,n) = — Z sas(r,m)p(r,m,n — s)

s=1
_ ; {mk - (2 - 2r)kp<r,m,n _ mk® — (7271 — 27“)/{:) (3.7)

N mk? + (m — 2T)kp<r,m, ~ mk® 4 (m — 2r)l<:> }

2
15



Since p(1,3,n) = p(n) and o(1,3,n) = o(n), by (3.7) we get

on)=pn—-1)+2p(n—-2)+---+ (_1)k_1yp<n 3k 2— k)

13K+ k 3k + k
DTS T )+

(3.8)

Example 7. Let a, = (=1)¥(2k + 1) or 0 according as n = k(k + 1)/2 or n #
k(k+1)/2. Then (a,, —30(n)) is a Newton-Euler pair.
Jacobi’s identity (see [AAR, Corollary 10.4.2]) states that

had > LICER)
[Ja-2m?=> (-1)F@k+ 1)z (Jz| < 1).
n=1 k=0

Thus,
1+Zan = J[a-="?=T1] H( 2T )3.
m=1 m=1 r=0

So the result follows from Example 1 and the fact that

oo m—1 oo

Z 3(627”.%)” :327’”:30'(”)
m=1 r=0 m=1
m|n

From Example 7 and Theorem 2.2 one can easily derive that

B n (kl ++kt_]-)! i(S—Fl)ks t ks
o(n) = 3 t Z el k! (—1)-= 821_[1(23 +1)%, (3.9)
where t = [—tvEntl V28"+1]

Example 8. Let 7(n) be Ramanujan’s tau function defined by z [] (1 — 2™)?* =
n=1

> 7(n)z™ (Jx| < 1). Then (7(n + 1), —240(n)) is a Newton-Euler pair.

n=1

Since [] (1—2™)?* = > 7(n+1)a"™, the proof of Example 8 is similar to the proof
n=1 n=0

of Example 7.
From Example 8 and Theorem 2.2 we have

n k.
r(n+1) = 3 (—24)f+ e T Tifok . (3.10)
k14+2ko+--+nk,=n r=1 L
16




Example 9. For z # 0 let

B (—2)F 4+ (=2)7F if n =k B S
an(z) = { 0 it 2 12 and s,(z) = o(n) + Z d(zd +z74 —1).

Then (a,(2), —sn(z)) is a Newton-Euler pair.
The famous Jacobi’s identity (cf. [HW, p.282]) states that if z # 0 and |¢q| < 1, then

00 +00
[T{a-aa-na- == 3 (—2)""
So we have
1+ an(2)q"
n=1
=1+ Z((_Z)k i (—Z)_k)qkz _ H {(1 B q2k:)(1 B q2k—1z)(1 - q2k—12—1)}
k=1 k=1
o 2k—1 2k—2
= H { H (1 627T7/2k q) H {(1 . eZﬂ'iﬁzﬁl—lq) (1 . 927”'2"3%12’_2’“%1(])}}
k=1 r=0 r=0

Hence the result follows from Example 1 and the fact that

(o) 2k—1 2k—2
Z{ S (@) Y { (i) (Z%l_lezfrmil)"}}
r=0

k=1 r=0
222k+ Z (Zk—l)(zﬁ +z*ﬁ)
2k|n 2k—1|n
=o(n)+ Z (2k—1)(zTn—1 4z T — 1) = sn(2).
2k—1|n

Putting 2 = —1 in the above we find

2 if n is a square,
an(_l) - . .
0 if n is not a square
and
sn(=1) = o(n) + (2(=1)" = Do1(n) = (=1)"(a(n) + 01(n)),
where o1(n) is the sum of positive odd divisors of n.

By Example 9, (an(—1),—s,(—1)) is a Newton-Euler pair. Thus setting ¢, =
(—=1)"Y(o(n) + o1(n))/2 we find

[Vn—1] . .
n if n is a square
ct=1 and ¢, +2 Z cn_kzz{ o 4 ’
— 0 if n is not a square.
17



That is,
Cco = —E, C1 = 1 and Cnp, —+ 2 Z Cpn_k2 = 0 (n 2 1) (3]‘]‘)

2
1<k?2<n

If n is odd, then ¢, = o(n). So the above formula is essentially a recursion formula
for o(n). Since n is a prime if and only if 0(n) = n+ 1, we can use (3.11) to determine
whether n is prime or not. We note that it’s difficult to determine the factorization
for given large natural number.

Applying the above and Theorem 2.2 we have the following formula:

Pyt 3 BTN D gt (a1

2 kil krom!
[y/n] ! [vn]

E j2kj=n
j=1
Example 10. For positive integers k and n let r;(n) be the number of ways n can
be written as the sum of k squares, and let o1(n) be the sum of positive odd divisors
of n. Then (rg(n),k(=1)""1(o(n) + o1(n))) is a Newton-Euler pair.
From Example 9 we know that (a,, (—1)""!(o(n)+o1(n))) is a Newton-Euler pair,
where a,, = 2 or 0 according as n is a square or not. Since

e T kK e N e k
;rk(n)x":< Z :1:”) :<1+;2x”> :(1+;anaj”> ,

applying the above and Theorem 2.4 we see that the result is true.
From Example 10 and Theorem 2.2 we have

0'1 k’
)= (1" 3 bt H ) ¥ >. (3.13)

k‘l +2k:2+~~-+nk:n—n

Example 11. For z # 0,1 let

a3

=2 g, = BGED
an(z) = { (1=2)(=%) > 7 and su(z) = Z(l + 24 4 27d)d.
0 if n # B i

Then (a,(2), —sn(z)) is a Newton-Euler pair.
The triple product identity (cf. [AAR, Theorem 10.4.1]) states that if z # 0 and
lg| < 1, then

[e’e) +oo

n — n n k(k=1)
[T -2 ) - = 3 (-2)fq
n=0 k=—o0

From this one can easily deduce that

[e%e) [e%e) 2k+1 R(ht1)
| | n -1 n _ E

18



So we have

14> an(2)q H 1—2z¢")(1—2""¢")(1—q")
n=1

IO_O[ ﬁ < mz%q) (1—e2m%z_%q) <1—e27”%q>.

Hence the example follows from Example 1 and the fact that

Putting z = —1 in Example 11 we find (a,, b,) is a Newton-Euler pair, where

. _ K24k
{1 if n ==,

an = . ) and b, = — Z(l +2(—1)d)d.
0 ifn# # dln
Thus, if {C,} is given by
Co=-n, C; =1 and Y C e =0(m>1), (3.14)
2

2
0< 5+ <n

then Cp, = by, = =3 4, (1 + 2(—1)4)d and so C,, = o(n) for odd n. Note that n is
prime if and only if o(n) = n + 1. This gives another primality test.
By the above and Theorem 2.2 we have

S+2-)Hd=n 3 (it d ke =DV et (315)

Trl - Kyl
i 1 ¢

t Lo,
32_31 3(3;1) ka=n
where t = [—1ty8ntl \/28”4‘1]

Example 12. For positive integers k and n let Ag(n) be the number of ways n can
be written as the sum of k triangular numbers (triangular numbers are nonnegative
integers of the form m(m + 1)/2). Then (Ax(n), kb,) is a Newton-Euler pair, where

= Y12 1))

From the discussion of Example 11 we see that (a,,b,) is a Newton-Euler pair,
where a,, = 1 or 0 according as n is of the form k(k + 1)/2 or not. Since

o0 o0 n(n ) k oo k
LY A = (¢ ) = (14 Y and)
n=1 n=0 n=1

19



applying Theorem 2.4 we obtain the result.
From Example 12 and Theorem 2.2 we get

) (;(1+2(—1)2)d)’“
Ak(n) _ Z (_k)k1+"'+kn 11 | - T . (316)

k1+2ka+ - +nky,=n

Example 13. Let {B,} be the Bell numbers (B,, is the number of partitions of

a set of n elements into non-empty, indistinguishable boxes). Then ( %, ﬁ) is a

Newton-Euler pair.

It is well known that By = 1 and B,, = Z;é (ngl)Bk (n >1). So ZZ;& % :
m =n- L2 (n > 1) and hence the example follows.
From Example 13 and Theorem 2.2 we have
n!
B, = Z 11yl 21k ol oplhn kg 1 (3.17)

ki1+2ko+-+nk,=n

It follows from (3.17) that B, = 2 (mod p) for any prime p.

Example 14. Let C,, = n%rl(zg) be the n-th Catalan number. Then (C 41, (2;))
is a Newton-Euler pair.

It is well known that >~ 7 Cpz™ = @. Thus,

212
n=1

> 1-2x—+1—14 = /2 1 1
n=1

So the example follows from Theorem 2.1.
Note that C,, € Z. So (2:) is a Newton-FEuler sequence. Hence, if p is a prime such
that p*** | n (s > 0,t > 1), by (1.1) we have

2n 2n/p 2n /psTl .
= =...= d p"). 1
()= () == (e ot o8
Example 15. For a given number a let {U,} and {V,,} be the Lucas sequences

given by
Uo = 0, U1 = 1, Un_|_1 = Un — CLUn_l (n Z 1)

and
Vb == 2, Vl = 1, Vn+1 = Vn - aVn_l (TL Z 1).
2

Then both (U,, V,—(1+(=1)")(—a)?) and (V;,, V,, — (14 (—=1)")a? ) are Newton-Euler
pairs.
It is well known that

:1—:1:+a.r2 an 1 — 2+ ax?

> > 2 — 1++/1—14
S Ut =t amd YVt = 2 (] < [P,
n=1 n=0 2(1

20



Thus the result follows from Theorem 2.1 and some calculations.
If a € Z, then U,,,V,, € Z and so V,, — (1 + (=1)")a?® is a Newton-Euler sequence.
Since Vo, = V.2 — 2a™ and V.2 — (1 — 4a)U2? = 4a™ (cf. [Ril], [W, (4.2.7)]) we have

Vo — (14 (=1)*")a" = Va,, — 20" = V,? — 4a" = (1 — 4a)UZ.

Applying Corollary 2.5 we see that (1 —4a)U? is also a Newton-Euler sequence. Thus,
it follows from (1.1) that if p is a prime such that p® | n, then

pt| (1 —4a)(U? - U%). (3.19)

Suppose p 1 2a(1 — 4a). Then we have p' | (U2 — U2). It is well known that U, =

(1;#) (mod p) (see [Ril], [W, (4.3.2)]), where () is the Legendre symbol. Thus, using
Siebeck’s identity (cf. [D], [W, (4.2.59)]) we see that

p

Ukp =Y (?) Ul(—aUy_1)P7U; = UPU, = UpU, = (
j=0

and so U,, = (%)Uﬁ (mod p). By [Ril] and [Ri2], p { Us implies p t Uspr, and p | U

implies p" | Ugpr-1. So p | U% implies p’ | U% and hence pt | U,. Thus applying the

above we see that if p is an odd prime such that p{ a(l — 4a) and p' | n, then

1 —4a
b

U, = < )U% (mod p"). (3.20)

Hence, if k,t € Z* and s € Z* U {0}, then

1—4a
p

s+1
Uppett = ( ) Uppi-1 (mod pt). (3.21)

4. Recursion formulas for Bernoulli numbers.

From now on let { B,,} be the Bernoulli numbers defined by By = 1 and ZZ;S (%) B
=0 (n > 2). It is well known that Y00 B,% = “-(|z| < 27). In order to
obtain some recursion formulas for Bernoulli numbers, we first give further examples
of Newton-Euler pairs concerning Bernoulli numbers.

Example 16. (%, %) is a Newton-Euler pair.

Let A(x) =37, %x" = ¢~=1. Then clearly

xA'(x) xe * x > x™
- —1= ~1=Y"B,~.
A(z) l1—e® e? —1 ; n!

Thus applying Theorem 2.1 we get the result.
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By Example 16 and Theorem 2.2 we have

ky 4tk —1)!

=(=1)" —1)kattha—t (1 n . 4.1

n! Y nk +2k ;Jr k -y 2kl (0 + 1)k, (1)
2kt k=

This formula can be found in [Sa]. From (4.1) one can easily derive the known fact
that pB,_1 =p—1 (mod p) where p is a prime.
Example 17. (5=
It is clear that

(2n+2),, (Qn*)ﬂ) is a Newton-Euler pair.

Zzn( 1)k (—1)* (—1)n—F {2Zn 2n + 2 _QZn 2n + 2 }
— (k+1)! (2n—k:—|—1) 2n—|—2 — \ k+1 —\k+1
B | 24k
1 2
- - 227’L—|—1 o 22n+1 —9 e —
@n+ 2 ( )= Gny o
Thus, by Example 16 and Corollary 2.5 we obtain the result.
2n—1
Example 18. ((2 myE 2 (2n)B!2”) is a Newton-Euler pair.
It is well known that (cf. [IR])
. O 2 > 1 (_1)n—122n—17.(.2nB2n
S = xn!_:[1 (1 B W) and mz::l m2n (2n)!

Thus,

siny/—x ad n 22n—lp, .
LT k) o 35 (k) =
- Wl;ll ( + m27r2 o Z m27r2 (2n)!

Hence the example follows from Example 1 and the fact that

siny =2 o= (-1)"(vV=2)"" < a”
= _Z (2n 4+ 1)! _;)(2n+1)!'

From Example 18 and Theorem 2.2 we have

22n—lB2n —n (_1)k1+...+kn,1 (kl +—{—kn - 1)' (4 2)
— oy E — . .
(2n)! ki+2ko+-+nk,=n [T (2r + 1)tkrE,!
r=1

Example 19. ((2n)" 22”71((222:)71)192”) is a Newton-Euler pair.

It is well known that (cf. [St,§1 — 20])

22n 22n _ 1 nB2n on _
> DY B

—ztan z (2| < = = CosZ.
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Thus

= COSsy —@.

Z 92n— 1(2(27;)_ 1)Bay, o ——\/—_xtan\/_

Now applying Theorem 2.1 we obtain the result.
Applying Theorem 2.1 one can also verify the following examples.

Example 20. ((gln),n, (Qn_nPB ) is a Newton-Euler pair.

Example 21. (B" ()" B

n!

) is a Newton-Euler pair.

Example 22. (— (2n_)!2 B, —%) is a Newton-Euler pair.

In 1911 Ramanujan (cf. [R],[C]) discovered some recursion formulas with gaps for
Bernoulli numbers. In particular, he proved that if n is odd, then

O L P S

k=3 (mod 6) 3
and
21+ Ly) if n=5,7 (mod 10),
Z (Z) (14 Li)Bn—k = 15(Ln—1—3) if n =1 (mod 10), (4.4)

k=5 (mod 10) 2(L,9—2)  ifn=39 (mod 10),

where {L, } is the Lucas sequence given by Lo =2, L1 =1 and Ly,+1 = Ly, + Lp—1.
From the above Ramanujan’s identities we see that

— [(6n+3
Bon_g1 = 2
Z<6kz+3> Gn—6k = =10

and )
— [10n+5
(1+L Biotn—r) = 2n(1 + Lign+s).
kzz()(lok+5) + Liok+5)Bio(n—k) n(1+ Lion+s)

Hence we have
Example 23. ((6n T (6;{),) and (10((117(;5?53?5)’ 2.](3118;;)!) are Newton-Euler pairs.

This example together with Theorem 2.2 yields

B6n j: (k1+"‘+kn_l)! kq4dk - 1
(6n)! k1+2kz+--+nkn,=n ol e =y (6r+ 3
and
Bion (ky + -+ k — 1) £ 10(1 + Ligyys)
= -2 . (4.6
(10n)! " 2. | H < (10r + 5)! ) (4.6)
ki1+2ko+--+nk,=n r=1

From Example 18 and Theorem 2.5 we have
23



Theorem 4.1. Form e Z*, n€ {0,1,2,...} andt € {0,1,... ,m — 1} let
(m) — o k1t2kadtmbm 1
o - e m )
' k1+---§ —mn (2k1 + 1)1+ (2ky + 1)
Then
i a(m) 22km+2t—1B2km+2t
n—k |
k=max{0,1—t} (2km + 2t)

1 omiF1t2kot dmbm “ _omirt 1
= E e m E kpe *™m ) ——
r=1

— :
kit Ak =mntt [T (2K, +1)!
r=1

In particular, for t =0 we have

i (m) 22km_1B2km (m)

= >1).
— Ok (ka)! nay, (n - )

Putting m =

(0425), %) are Newton-Euler pairs. Hence (2_6”a513), %) and (2_10"0z${5),
Bion

m) are Newton-Euler pairs. Comparing this with Example 23 we get

3,5 and t = 0 in Theorem 4.1 we see that (ag’), %) and

a3 — —6 20 and a® — 10 -2'"(1 + Lionys)
" (6n+3)! " (10n + 5)!
That is,
2, W : - o2 (4.7)
k1 b g 3n (2k1 + 1)!(2ke + 1)!(2ks +1)!  (6n + 3)!
and
Z ezmw 1 _ 10 - 210n(1 + Lions) 48
k4 ks =5n (2ky + 1)t - (2ks + 1) (10n +5)! R

From Example 19 and Theorem 2.5 we have

Theorem 4.2. Form e Z*, n e ZT U{0} andt € {0,1,... ,m — 1} let
P

TR N, (2k1)'(2km)‘
24




Then

n

Z ﬁ(m) 22km+2t71(22km+2t - 1)82km+2t
n—k (2km + 2¢)!

k=max{0,1—t}

1 ky+2kp+-fmk “ i 1
2j L T=R2 T —2miZt

= — m k m> .

m > € <; r€ 11 (2k,)!

ki+---+km=mn+t = r=1

In particular, we have

n m 22km—1 22km_1 B "
S, ( ) Bat =nB™  (n=1,2,3,...).

Corollary 4.1. For any positive integer n we have

— (4n ko2k—1 o4k

> ) DT = DBy =n
k=1

and

"L (An+2
> (4k; + 2> (1) 22242 — 1) Byjyp = 20 + 1.
k=0

Proof. Let ﬁ,(Lm) be given in Theorem 4.2, and let

n - n
w2 (1)
k=0
k=r(mod m)

From [S1, Theorem 1.2] we have

Tél(’rzi) — 2471—2 + (_1)77,2271—1, T24(7}l) — 2471—2 o (_1)712277,—17 T4n+2 — T41’L+2 —

0(4) 2(4)

Tlﬁl(’lz,l-)‘rl — 2477,—1 + (_1)’)1227’7,—1, T;)l(’i}l-)i-l — 247’1,—1 _ (_1)7’1,227’1,—1.

Thus applying Example 19, Theorem 2.5 and Corollary 2.5 we get

) _ % 1 1 Ty — Tl (-pre
o = ;(_1)k(2k)! C@2@n—k)! T (4n)!  (4n)!

25
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and

1 1
—1)*2n+1 -2k -
kzzo( St =2 s e =R
241 2§1 4n+2 2§1( " 1
(4n +2)! pt (2k — 1)!(4n + 2 — 2k)!
2§1 dn + 2 2§1 An+1
4n—|—1‘ 4n+1' 2%k — 1
_ 1 An+2 4An+2 4dn—+1 An+1
9. (4n +1)! <T0(4) T2(4) o 2(T3(4) T1(4) ))
— 1 .9 (_1)n22n — (_1)712277«
2. (4n+1)! (4n 4+ 1)1

Now applying Example 19, Corollary 2.5, Remark 2.3 and Theorem 4.2 yields the
result.

Corollary 4.2. Let Vo = Vi =2 and V41 = 2V, + Vi1 (n > 1). For any positive
integer n we have

", /8n _
> ( >(—1)’“22’f Y(2% — 1) B Vin—ak = nVan

— 8k
and
" (8n+4
Z ( )(—1)k22k+1(28k+4 — 1) BgptaVan—ar = —(2n + 1)Vip 1.
P 8k +4
Proof. Let @(Lm) be given in Theorem 4.2, and Tr(m) = > (Z) From the

k=r(mod m)

proof of Corollary 4.1 we know that 8\ = (=1)227/(4n)!. Thus by Corollary 2.5 we
have

2n 2n

_1\k9o2k _1\2n—k92(2n—k)
) _ N (L)@@ N~ (qyk (DT (=1)72
k=0 k=0
24n 2n L Sn, 24n
- (8n)! Z(_l) (4kr> (8n) (To(s) T4(8))
k=0
Since

y [S1], using [S2, Lemma 2.1] we obtain

8n n—1 n In—1 Sn—1
Tow) — Tiey = Tos) + 120 — Tugsy — Tags)
n—1 dn—1 no2n—1

= 2Tt - oTi Tt = (—1)"22 Y,
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Hence

2 24n (_1)n26n—1
(4) 1\ 2n—1 _
97 = Gy (o) = Tiey) = gy (212 W = gV

It is clear that

2n+1
2 2
S (DR + 1208088,
k=0
2n+1 ko2k 2n+1—kodn+2—2k
—1)k22k (1) 2
= C1)@n+1—2k) - ¢ :
kzzo( ) (2n+ ) am) (8n+ 4 —4k)!
2n—+1 1
—gin+2 Fon +1 -2k
Z (2n + )R8 + 4= 2k
n 2n+1 2n+1
_2imn 1) i 1 (B4 4 g i (—1)F 1
8n+4)! = 4k ! (4k — 1)!(8n + 4 — 4k)!

B an Qi*:l 8n+4 L 2§1(—1)k 8n + 3
B 8n+3' (8n+3)! & 4k —1

24 8n+4 8n+4 8n+3 8n+3
{Tins = T+ 215 - o) |

" Bn+3) LB 0(8) 7(8)
24n 8n+3 8n+3 24ntt 8n+3 8n+3
“ Gt e e ) T e e )

From [S2, Lemma 2.1] we know that TS&T?’ nggg = (—1)"2%""1Vy,, 1. Thus,

2n+1

1
5 ST (-DFen+1- 288765,
k=0
24n 9 1
B

(_1)n7126n71
(8n 4+ 3)!

‘/471—}-1-

From Example 19 and Theorem 2.5 we see that (5 (2) 2 1((2 :Z)Tl)B“") is a Newton-

Euler pair. Thus applying Corollary 2.5, Remark 2.3, Theorem 4.2 and all the above

we obtain the result.
Remark 4.1 From [IR, p. 247] we know that 2(2™ — 1)B,,, € Z for all m € Z*. Thus

we may use Corollary 4.1 or Corollary 4.2 to calculate the values of Bs,. We note that

Corollary 4.1 is equivalent to

(5]

2 n
Z (4?;) (_1)k2n—2k (22n—4k B 1)an—4k _ (—1)[5]71 for n > 0.
k=0
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In [R, (8)], Ramanujan proved a result equivalent to

[3

(5]

Z (4212 —t ;) (—1)*2" By _ax = (-D)El(n 4+ 1) for n>0.

Corollary 4.2 can also be written as

Q
2

(=1)2nVay, if 2 | n,
Z ( ) Y2k (2408 _ 1) By, g, Vag = { nt1 .
— (=1)2 nVap_1 if2¢n.

From Example 17 and Theorem 2.5 we have

Theorem 4.3. Form e Z*, ne€ {0,1,2,...} andt € {0,1,... ,m — 1} let

. kq42kot-+mk 1
’Yr(Lm) _ Z egﬂ-z%’”m

I .. I
It T o (2k1 +2)!- - (2K, + 2)!

Then

Bokm+ot

om Rt
n— |
1t} (2km + 2t)!

2
k=max{0
1 z—m m —2mi T 1
:E Z o2 k1+2kg+--4+mk (Zk o2 )H 2k +2

k14 +km=mn+t r=1 r:l

In particular, we have

n

(m) Bokm () _ 1973
kz_:l'yn_k—@km)! ny,, (n ,2,3,...).

Using Theorem 4.3, Corollaries 2.5, 2.6 and the formulas for T;‘( 4) and TZ‘(G) in [S1]

one can prove that

(2) _ 2 + (_1)n22n—|—2
(4n +4)!

Thus by Theorem 4.3 we have

3
d (3) — 1 26n+5 —1)" 3n+3 .
and 7, —2-(6n+6)!( + +(=1)"37)

" (4n 44
Z ( TL4;€|— )(1 + (_1>n—k22n—2k—|—1)B4k — n<1 + (_1)n22n+1) (49)
k=1
and "
(Gn + 6) (1 + 26n—6k+5 + (_1)n—k33n—3k+3)36k
2\ 6k (4.10)

=n(1+2"%° 4 (—1)"37" ).
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