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Abstract

Let T 1
n = (V, E1) and T 2

n = (V, E2) be the trees on n vertices with V = {v0, v1, . . . , vn−1},
E1 = {v0v1, . . . , v0vn−3, vn−4vn−2, vn−3vn−1}, and E2 = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−3

vn−1}. In this paper, for p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T 1
n) and ex(p;T 2

n),
where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L
as a subgraph. Let r(G1, G2) be the Ramsey number of the two graphs G1 and G2. In this
paper we also obtain some explicit formulas for r(Tm, T i

n), where i ∈ {1, 2} and Tm is a tree
on m vertices with ∆(Tm) ≤ m− 3.
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1. Introduction

In this paper, all graphs are simple graphs. For a graph G = (V (G), E(G)) let e(G) =
|E(G)| be the number of edges in G and let ∆(G) be the maximal degree of G. For a
forbidden graph L, let ex(p;L) denote the maximal number of edges in a graph of order p
not containing any copies of L. The corresponding Turán problem is to evaluate ex(p;L).
For a graph G of order p, if G does not contain any copies of L and e(G) = ex(p;L), we
say that G is an extremal graph. In this paper we also use Ex(p;L) to denote the set of
extremal graphs of order p not containing L as a subgraph.

Let N be the set of positive integers. Let p, n ∈ N with p ≥ n ≥ 2. For a given tree
Tn on n vertices, it is difficult to determine the value of ex(p;Tn). The famous Erdős-Sós
conjecture asserts that ex(p;Tn) ≤ (n−2)p

2 . For the progress on the Erdős-Sós conjecture, see
for example [8, 11]. Write p = k(n− 1) + r, where k ∈ N and r ∈ {0, 1, . . . , n− 2}. Let Pn

be the path on n vertices. In [4] Faudree and Schelp showed that

(1.1) ex(p;Pn) = k

(
n− 1

2

)
+

(
r

2

)
=

(n− 2)p− r(n− 1− r)
2

.
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Let K1,n−1 denote the unique tree on n vertices with ∆(K1,n−1) = n− 1, and let T ′n denote
the unique tree on n vertices with ∆(T ′n) = n− 2. For n ≥ 4 let T ∗n = (V, E) be the tree on
n vertices with V = {v0, v1, . . . , vn−1} and E = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1}. In
[10] we determine ex(p;K1,n−1), ex(p;T ′n) and ex(p;T ∗n). For i = 1, 2 let T i

n = (V, Ei) be the
tree on n vertices with

V = {v0, v1, . . . , vn−1},
E1 = {v0v1, . . . , v0vn−3, vn−4vn−2, vn−3vn−1},
E2 = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−3vn−1}.

In this paper, for p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T 1
n) and ex(p;T 2

n) (see
Theorems 2.1 and 3.1).

For a graph G, as usual G denotes the complement of G. Let G1 and G2 be two graphs.
The Ramsey number r(G1, G2) is the smallest positive integer p such that, for every graph
G with p vertices, either G contains a copy of G1 or else G contains a copy of G2.

Let n ∈ N, n ≥ 6 and let Tn be a tree on n vertices. As mentioned in [7], recently Zhao
proved the following conjecture of Burr and Erdős [2]: r(Tn, Tn) ≤ 2n− 2. Let m,n ∈ N. In
1973 Burr and Roberts [3] showed that for m,n ≥ 3,

(1.2) r(K1,m−1,K1,n−1) =
{

m + n− 3 if 2 - mn,
m + n− 2 if 2 | mn.

In 1995, Guo and Volkmann [5] proved that for n > m ≥ 4,

(1.3) r(K1,m−1, T
′
n) =

{
m + n− 3 if 2 | m(n− 1),
m + n− 4 if 2 - m(n− 1).

Recently the first author evaluated the Ramsey number r(Tm, T ∗n) for Tm ∈ {Pm,K1,m−1,
T ′m, T ∗m}. In particular, he proved that (see [9]) for n > m ≥ 7,

(1.4) r(K1,m−1, T
∗
n) =

{
m + n− 3 if m− 1 | n− 3,
m + n− 4 if m− 1 - n− 3.

Suppose m,n ∈ N and i, j ∈ {1, 2}. In this paper, using the formula for ex(p;T i
n) and

the method in [9] we evaluate r(Tm, T i
n) for Tm ∈ {K1,m−1, T

′
m, T ∗m, T j

m}. In particular, we
have the following typical results:

r(T i
n, T j

n) = 2n− 6− (1− (−1)n)/2, r(Pn, T j
n) = 2n− 7 for n ≥ 17,

r(T i
n, T ′n) = r(T i

n, T ∗n) = 2n− 5 for n ≥ 8,

r(K1,m−1, T
i
n) = m + n− 4 for n > m ≥ 7 and 2 | mn,

r(T i
m, T j

n) = m + n− 5 for m ≥ 7, n ≥ (m− 3)2 + 3 and m− 1 - n− 4,

and for n > m ≥ 16,

r(T ′m, T i
n) =





m + n− 4 if m− 1 | n− 4,
m + n− 6 if n = m + 1 ≡ 1 (mod 2),
m + n− 5 otherwise.
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In addition to the notation introduced above, throughout the paper we also use the
following symbols: [x] is the greatest integer not exceeding x, d(v) is the degree of the
vertex v in a graph, Γ(v) is the set of vertices adjacent to the vertex v, d(u, v) is the distance
between the two vertices u and v in a graph, Kn is the complete graph on n vertices, G[V0]
is the subgraph of G induced by vertices in the set V0 (we write G[v1, . . . , vm] instead of
G[{v1, . . . , vm}]), G − V0 is the subgraph of G obtained by deleting vertices in V0 and all
edges incident to them, and finally e(V1V

′
1) is the number of edges with one endpoint in V1

and another endpoint in V ′
1 .

2. Evaluation of ex(p; T 1
n)

Lemma 2.1. Let p, n ∈ N with p ≥ n− 1 ≥ 1. Then ex(p;K1,n−1) = [ (n−2)p
2 ].

This is a known result. See for example [10, Theorem 2.1].
Lemma 2.2. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 1

n). Suppose that G is connected.
Then ∆(G) = n− 4 and e(G) = [ (n−4)p

2 ].
Proof. Since a graph not containing K1,n−3 as a subgraph implies that the graph does

not contain T 1
n as a subgraph, by Lemma 2.1 we have

(2.1) e(G) = ex(p;T 1
n) ≥ ex(p;K1,n−3) =

[(n− 4)p
2

]
.

If ∆(G) ≤ n − 5, using Euler’s theorem we see that e(G) = 1
2

∑
v∈V (G) d(v) ≤ (n−5)p

2 . This

together with (2.1) yields (n−4)p−1
2 ≤ [ (n−4)p

2 ] ≤ e(G) ≤ (n−5)p
2 . This is impossible. Hence

∆(G) ≥ n− 4. Now we show that ∆(G) = n− 4.
Suppose q ≥ n and q = k(n− 1) + r with k ∈ N and r ∈ {0, 1, . . . , n− 2}. Then clearly

kKn−1 ∪Kr does not contain any copies of T 1
n and so ex(q;T 1

n) ≥ e(kKn−1 ∪Kr). For q = n

we see that e(kKn−1 ∪Kr) = e(Kn−1 ∪K1) = (n−1)(n−2)
2 > 2n − 1. For q ≥ n + 1 we see

that (n− 6)q ≥ (n− 6)(n + 1) > (n−1
2 )2 − 2 and so e(kKn−1 ∪Kr) = k(n−1)(n−2)

2 + r(r−1)
2 =

(n−2)q−r(n−1−r)
2 ≥ (n−2)q−(n−1

2
)2

2 > 2q − 1. Hence

(2.2) ex(q;T 1
n) ≥ e(kKn−1 ∪Kr) > 2q − 1 for q ≥ n.

Suppose v0 ∈ V (G), d(v0) = ∆(G) = m and Γ(v0) = {v1, . . . , vm}. If m = p − 1, as G
does not contain T 1

n as a subgraph, we see that G[v1, . . . , vm] does not contain 2K2 as a
subgraph and hence e(G[v1, . . . , vm]) ≤ m− 1. Therefore

(2.3) e(G) = d(v0) + e(G[v1, . . . , vm]) ≤ m + m− 1 = 2p− 3.

By (2.2), we have e(G) = ex(p;T 1
n) > 2p − 1 and we get a contradiction. Hence m <

p − 1. Suppose that u1, . . . , ut are all vertices in G such that d(u1, v0) = · · · = d(ut, v0) =
2. Then t ≥ 1. Assume u1v1 ∈ E(G) with no loss of generality. If m = p − 2, then
V (G) = {v0, v1, . . . , vm, u1} and vivj 6∈ E(G) for 2 ≤ i < j ≤ m. If v1vi ∈ E(G) for
some i ∈ {2, 3, . . . , m}, then u1vj 6∈ E(G) for all j 6= 1, i. Hence ex(p;T 1

n) = e(G) ≤
max{2m,m + 3} ≤ 2m = 2p− 4, which contradicts (2.2).

By the above, m < p−2. We first assume m ≥ n−2. As G does not contain any copies of
T 1

n , we see that {v2, . . . , vm} is an independent set, uivj 6∈ E(G) for any i ∈ {2, 3, . . . , t} and
j ∈ {2, 3, . . . , m}, and uiv1 ∈ E(G) for any i = 1, 2, . . . , t. Set V1 = {v0, v2, v3, . . . , vm}. Then
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e(G[V1]) = m − 1. If u1 is adjacent to at least two vertices in {v2, v3, . . . , vm}, then v1vj /∈
E(G) for any j = 2, 3, . . . , m. If v1 is adjacent to at least two vertices in {v2, v3, . . . , vm},
then u1vj /∈ E(G) for any j = 2, 3, . . . , m. Hence there are at most m edges with one
endpoint in V1 and another endpoint in G− V1. Therefore,

(2.4) e(G) ≤ e(G[V1]) + m + e(G− V1) = 2m− 1 + e(G− V1).

For m ∈ {n − 2, n − 1} let G1 = Km. Then clearly e(G1) = m(m−1)
2 > 2m − 1. For

m = k(n − 1) + r ≥ n with k ∈ N and 0 ≤ r ≤ n − 2 let G1 = kKn−1 ∪ Kr. Then G1

does not contain any copies of T 1
n and e(G1) > 2m − 1 by (2.2). Thus, by (2.4) we have

e(G) ≤ 2m − 1 + e(G − V1) < e(G1 ∪ (G − V1)) for m ≥ n − 2. This contradicts the fact
G ∈ Ex(p;T 1

n).
Suppose m = n− 3 and d(v1) = n− 3. Then v1vs 6∈ E(G) for some s ∈ {2, 3, . . . , n− 3}.

We claim that V (G) = {v0, v1, . . . , vm, u1, . . . , ut}. Otherwise, there exists w ∈ V (G) such
that d(v0, w) = 3. As d(v1) = n− 3, we see that the subgraph induced by {v1, vs, w} ∪Γ(v1)
contains a copy of T 1

n . This contradicts the assumption G ∈ Ex(p;T 1
n). Hence the claim is

true and so |V (G)| = p = n − 2 + t. Since p ≥ n we have t ≥ 2. For i = 1, 2, . . . , t and
j = 2, 3, . . . , n−3 we have uivj 6∈ E(G), uiv1 ∈ E(G) and so t+1 ≤ d(v1) = n−3. Therefore
2 ≤ t ≤ n− 4 and hence

e(G) = e(G[v0, v2, v3, . . . , vn−3]) + d(v1) + e(G[u1, . . . , ut])

≤
(

n− 3
2

)
+ n− 3 +

(
t

2

)
=

(
n− 2

2

)
+

(
t

2

)
.

Clearly Kn−1 ∪Kt−1 does not contain T 1
n and

e(Kn−1 ∪Kt−1) =
(

n− 1
2

)
+

(
t− 1

2

)
=

(
n− 2

2

)
+

(
t

2

)
+ n− 1− t > e(G).

This contradicts the assumption G ∈ Ex(n− 2 + t;T 1
n).

Now suppose m = n − 3 and d(v1) ≤ n − 4. If t = 1, setting V2 = {v0, v1, . . . , vn−3, u1}
we see that

e(G) = e(G[v0, v2, v3, . . . , vn−3]) + d(v1) + d(u1)− 1 + e(G− V2)

≤
(

n− 3
2

)
+ n− 4 + n− 4 + e(G− V2)

=
n2 − 3n− 4

2
+ e(G− V2) < e(Kn−1 ∪ (G− V2)).

This contradicts the assumption G ∈ Ex(p;T 1
n). Hence t ≥ 2. For i = 1, 2, . . . , t and

j = 2, 3, . . . , n − 3 we see that uivj 6∈ E(G) and uiv1 ∈ E(G). Let V3 = {v0, v1, . . . , vn−3}.
Then

e(G) = d(v1) + e(G[v0, v2, v3, . . . , vn−3]) + e(G− V3)

≤ n− 4 +
(

n− 3
2

)
+ e(G− V3) =

n2 − 5n + 4
2

+ e(G− V3)

< e(Kn−2 ∪ (G− V3)).

Since G is an extremal graph, we get a contradiction.
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Summarizing all the above we obtain ∆(G) = n−4 and so e(G) =
∑

v∈V (G) d(v) ≤ (n−4)p
2 .

This together with (2.1) yields e(G) = [ (n−4)p
2 ], which completes the proof.

Lemma 2.3. Let n, n1, n2 ∈ N with n1 < n− 1 and n2 < n− 1. Then
(

n1

2

)
+

(
n2

2

)
< min

{(
n1 + n2

2

)
,

(
n− 1

2

)
+

(
n1 + n2 − n + 1

2

)}
.

Proof. It is clear that
(

n1

2

)
+

(
n2

2

)
=

(n1 + n2)(n1 + n2 − 1)− 2n1n2

2
<

(
n1 + n2

2

)

and
(

n− 1
2

)
+

(
n1 + n2 − n + 1

2

)
−

(
n1

2

)
−

(
n2

2

)

=
(n− 1)(n− 2) + (n1 + n2 − n + 1)(n1 + n2 − n)

2
− (n1 + n2)(n1 + n2 − 1)− 2n1n2

2
= (n− 1− n1)(n− 1− n2) > 0.

Thus the lemma is proved.
Lemma 2.4. Suppose that p ∈ N, p ≥ 6, and G is a connected graph of order p that

does not contain any copies of T 1
6 . Then e(G) ≤ 2p− 3.

Proof. Clearly ∆(T 1
6 ) = 3. Suppose v0 ∈ V (G), d(v0) = ∆(G) = m and Γ(v0) =

{v1, . . . , vm}. If ∆(G) = m ≤ 3, using Euler’s theorem we see that e(G) ≤ 3p
2 ≤ 2p − 3.

From now on we assume ∆(G) = m ≥ 4. If d(v) ≤ 2 for all v ∈ V (G)− {v0}, then

e(G) =
1
2

∑

v∈V (G)

d(v) ≤ 1
2
(
m + 2(p− 1)

) ≤ 3(p− 1)
2

< 2p− 3.

So the result is true. Now we assume d(v) ≥ 3 for some v ∈ V (G)−{v0}. We may choose a
vertex u0 ∈ V (G) so that u0 6= v0, d(u0) ≥ 3 and d(u0, v0) is as small as possible.

We first assume d(u0, v0) = 1 and u0 = v1 with no loss of generality. That is, d(v1) ≥ 3.
Suppose Γ(v1) ⊂ {v0, v1, . . . , vm}. Since d(v1) ≥ 3 and G does not contain any copies of T 1

6 ,
we see that V (G) = {v0, . . . , vm}, m = p − 1 ≥ 5 and G[v1, . . . , vm] does not contain any
copies of 2K2. Thus e(G) ≤ d(v0) + m− 1 = 2m− 1 ≤ 2(m + 1)− 3 = 2p− 3. Now assume
Γ(v1) − {v0, v1, . . . , vm} = {w1, . . . , wt}. Since d(v0) = m ≥ 5, d(v1) ≥ 3 and G does not
contain any copies of T 1

6 , we see that V (G) = {v0, v1, . . . , vm, w1, . . . , wt} and {v2, . . . , vm}
is an independent set. For t ≥ 2, we have e(G[w1, . . . , wt]) ≤ 1 and viwj /∈ E(G) for any
i ∈ {2, 3, . . . , m} and j ∈ {1, 2, . . . , t}. Thus e(G) ≤ d(v0)+d(v1)−1+1 ≤ 2m < 2(m+1+t)−
3 = 2p−3. Now assume t = 1. Then v1vi ∈ E(G) for some i ∈ {2, 3, . . . , m} and vjw1 /∈ E(G)
for j ∈ {2, 3, . . . , m}−{i}. Hence e(G) ≤ d(v0)+d(v1)−1+1 ≤ 2m < 2(m+2)−3 = 2p−3.

Next we assume d(u0, v0) = 2. Then {v1, . . . , vm} is an independent set. If Γ(u0) ⊆
{v1, . . . , vm}, then V (G) = {v0, . . . , vm, u0} and so e(G) = d(v0)+d(u0) ≤ m+m < 2(m+2)−
3 = 2p−3. If Γ(u0)−{v2, . . . , vm} = {v1, w1, . . . , wt}, we see that V (G) = {v0, v1, . . . , vm, u0,
w1, . . . , wt} and so e(G) = d(v0)+d(u0)+e(G[w1, . . . , wt]) ≤ m+m+1 < 2(m+2+ t)−3 =
2p− 3.

Finally we assume d(u0, v0) ≥ 3. Suppose that v0v1u1u2 · · ·uku0 is the shortest path in G
between v0 and u0, and Γ(u0) = {w1, . . . , wt, uk}. Since G is connected and G does not con-
tain any copies of T 1

6 , it is easily seen that V (G) = {v0, v1, . . . , vm, u1, . . . , uk, u0, w1, . . . , wt},
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d(v2) = · · · = d(vm) = 1, d(v1) = d(u1) = · · · = d(uk) = 2 and e(G[w1, . . . , wt]) ≤ 1. Clearly
G is a tree or a graph obtained by adding an edge to a tree. Hence e(G) ≤ p < 2p− 3.

Summarizing all the above proves the lemma.
Theorem 2.1. Suppose p, n ∈ N, p ≥ n− 1 ≥ 4 and p = k(n− 1) + r, where k ∈ N and

r ∈ {0, 1, . . . , n− 2}. Then

ex(p;T 1
n) = max

{[(n− 2)p
2

]
− (n− 1 + r),

(n− 2)p− r(n− 1− r)
2

}

=





[
(n− 2)p

2
]− (n− 1 + r) if n ≥ 16 and 3 ≤ r ≤ n− 6 or if

13 ≤ n ≤ 15 and 4 ≤ r ≤ n− 7,

(n− 2)p− r(n− 1− r)
2

otherwise.

Proof. Clearly ex(n−1;T 1
n) = e(Kn−1) = (n−2)(n−1)

2 . Thus the result is true for p = n−1.
From now on we assume p ≥ n. Since T 1

5
∼= P5, by (1.1) we obtain the result in the case

n = 5. Now we assume n ≥ 6. Suppose G ∈ Ex(p;T 1
n) and G1, . . . , Gt are all components of

G with |V (Gi)| = pi and p1 ≤ p2 ≤ · · · ≤ pt. Then clearly Gi ∈ Ex(pi;T 1
n) for i = 1, 2, . . . , t.

We first consider the case n = 6. If pi ≤ 5, then clearly Gi
∼= Kpi and e(Gi) =

(
pi
2

)
.

If pi ≥ 6 and pi = 5ki + ri with ki ∈ N and 0 ≤ ri ≤ 4, from Lemma 2.4 we have
e(Gi) ≤ 2pi−3 ≤ 2pi− ri(5−ri)

2 = e(kiK5∪Kri). Since kiK5∪Kri does not contain any copies
of T 1

6 and Gi ∈ Ex(pi;T 1
6 ), we see that e(Gi) ≥ e(kiK5 ∪Kri) and so e(Gi) = e(kiK5 ∪Kri).

Therefore, there is a graph G′ ∈ Ex(p;T 1
6 ) such that G′ = a1K1∪a2K2∪a3K3∪a4K4∪a5K5,

where a1, . . . , a5 are nonnegative integers. If a1 +a2 +a3 +a4 ≤ 1, then ex(p;T 1
6 ) = e(G′) =

e(a5K5 ∪Kr) = k
(
5
2

)
+

(
r
2

)
. If a1 + a2 + a3 + a4 > 1, then 2a1 + 3a2 + 3a3 + 2a4 > 3 ≥ r(5−r)

2
and so

e(a1K1 ∪ a2K2 ∪ a3K3 ∪ a4K4)

= a2 + 3a3 + 6a4 < 2(a1 + 2a2 + 3a3 + 4a4)− r(5− r)
2

= (k − a5)
(

5
2

)
+

(
r

2

)
.

Thus, ex(p;T 1
6 ) = e(G′) = e(a1K1 ∪ a2K2 ∪ a3K3 ∪ a4K4) + e(a5K5) < k

(
5
2

)
+

(
r
2

)
. Since

kK5 ∪ Kr does not contain any copies of T 1
6 , we get a contradiction. Thus ex(p;T 1

6 ) =
e(kK5 ∪Kr) = k

(
5
2

)
+

(
r
2

)
= 2p− r(5−r)

2 . This proves the result for n = 6.
From now on we assume n ≥ 7. If t = 1, then G is connected. Thus, by Lemma 2.2 we

have

(2.5) e(G) =
[(n− 4)p

2

]
for t = 1.

Now we assume t ≥ 2. We claim that pi ≥ n− 1 for i ≥ 2. Otherwise, p1 ≤ p2 < n − 1
and so G1 ∪ G2

∼= Kp1 ∪ Kp2 . If p1 + p2 < n, by Lemma 2.3 we have e(G1 ∪ G2) =
e(Kp1 ∪Kp2) =

(
p1

2

)
+

(
p2

2

)
<

(
p1+p2

2

)
= e(Kp1+p2). Since Kp1+p2 does not contain T 1

n and
G1 ∪ G2 ∈ Ex(p1 + p2;T 1

n) we get a contradiction. Hence p1 + p2 ≥ n. Using Lemma 2.3
again we see that

e(G1 ∪G2) = e(Kp1 ∪Kp2) =
(

p1

2

)
+

(
p2

2

)

<

(
n− 1

2

)
+

(
p1 + p2 − n + 1

2

)
= e(Kn−1 ∪Kp1+p2−n+1).
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Since p1 ≤ p2 < n− 1, we have p1 + p2 − n + 1 < n− 1. Therefore Kn−1 ∪Kp1+p2−n+1 does
not contain T 1

n . As G1 ∪ G2 is an extremal graph without T 1
n , we also get a contradiction.

Thus, the claim is true.
Next we claim that pi ≤ n − 1 for all i = 1, 2, . . . , t − 1. If pt−1 ≥ n, by Lemma 2.2 we

have

e(Gt−1 ∪Gt) = e(Gt−1) + e(Gt) =
[
(n− 4)pt−1

2

]
+

[
(n− 4)pt

2

]
≤

[
(n− 4)(pt−1 + pt)

2

]
.

Let H ∈ Ex(pt−1 + pt − n + 1; K1,n−3). As pt−1 + pt − n + 1 ≥ pt + 1 ≥ n + 1, we have
e(H) = [ (n−4)(pt−1+pt−n+1)

2 ] by Lemma 2.1. Clearly Kn−1 ∪H does not contain any copies
of T 1

n and

e(Kn−1 ∪H) = e(Kn−1) + e(H) =
(

n− 1
2

)
+

[
(n− 4)(pt−1 + pt − n + 1)

2

]

=
[
(n− 4)(pt−1 + pt)

2

]
+ n− 1 > e(Gt−1 ∪Gt).

Since Gt−1 ∪Gt ∈ Ex(pt−1 + pt;T 1
n), we get a contradiction. Hence p1 ≤ p2 ≤ · · · ≤ pt−1 ≤

n− 1. Combining this with the previous assertion that pt ≥ · · · ≥ p2 ≥ n− 1 we obtain

(2.6) p1 ≤ n− 1, p2 = · · · = pt−1 = n− 1 and pt ≥ n− 1.

As G is an extremal graph, we must have

(2.7) G1
∼= Kp1 , G2

∼= Kn−1, . . . , Gt−1
∼= Kn−1.

If pt = n− 1, then Gt
∼= Kn−1. By (2.7), G ∼= Kp1 ∪ (t− 1)Kn−1

∼= kKn−1 ∪Kr. Thus,

(2.8) e(G) = k

(
n− 1

2

)
+

(
r

2

)
=

(n− 2)p− r(n− 1− r)
2

for t ≥ 2 and pt = n− 1.

Now we assume pt ≥ n. By Lemma 2.2, e(Gt) = [ (n−4)pt

2 ]. Since p1 ≤ n − 1, we have
G1

∼= Kp1 and so e(G1) = e(Kp1) =
(
p1

2

)
. Let H1 ∈ Ex(p1 + pt;K1,n−3). Then H1 does not

contain T 1
n as a subgraph. By Lemma 2.1, for p1 ≤ n− 4 we have

e(H1) =
[
(n− 4)(p1 + pt)

2

]
≥

[
(n− 4)pt

2

]
+

[
(n− 4)p1

2

]

≥
[
(n− 4)pt

2

]
+

(n− 4)(p1 − 1)
2

+ 1

>

[
(n− 4)pt

2

]
+

p1(p1 − 1)
2

= e(G1 ∪Gt).

This contradicts G1 ∪Gt ∈ Ex(p1 + pt;T 1
n). Hence n− 3 ≤ p1 ≤ n− 1.

For p1 ∈ {n− 3, n− 2} and pt ≥ n, we have p1(p1 − (n− 3)) ≤ 2n− 4 and so

e(G1 ∪Gt) = e(G1) + e(Gt) =
(

p1

2

)
+

[
(n− 4)pt

2

]

≤ p1(p1 − 1) + (n− 4)pt

2
=

p1(p1 − (n− 3)) + (n− 4)(p1 + pt)
2
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≤ 2n− 4 + (n− 4)(p1 + pt)
2

=
(

n− 1
2

)
+

(n− 4)(p1 + pt − n + 1)− 2
2

<

(
n− 1

2

)
+

[(n− 4)(p1 + pt − n + 1)
2

]
.

Let H2 ∈ Ex(p1 + pt − n + 1; K1,n−3). Then Kn−1 ∪H2 does not contain any copies of T 1
n .

Since p1+pt−n+1 ≥ p1+1 ≥ n−2, applying Lemma 2.1 we have e(H2) = [ (n−4)(p1+pt−n+1)
2 ].

Thus, we have e(Kn−1 ∪ H2) =
(
n−1

2

)
+ [ (n−4)(p1+pt−n+1)

2 ] > e(G1 ∪ Gt). This contradicts
G1 ∪Gt ∈ Ex(p1 + pt;T 1

n).
By the above, for t ≥ 2 and pt ≥ n we have p1 = p2 = · · · = pt−1 = n− 1. If pt ≥ 2n− 2,

setting H3 ∈ Ex(pt − (n− 1);K1,n−3) and then applying Lemmas 2.1 and 2.2 we find that

e(Gt) =
[
(n− 4)pt

2

]
<

(
n− 1

2

)
+

[
(n− 4)(pt − (n− 1))

2

]
= e(Kn−1 ∪H3).

This contradicts the fact Gt ∈ Ex(pt;T 1
n). Hence n ≤ pt < 2n − 2 and so r ≥ 1. Note that

p = k(n − 1) + r = (k − 1)(n − 1) + n − 1 + r and n ≤ n − 1 + r < 2n − 2. Hence t = k,
pt = n− 1 + r and therefore

(2.9)
e(G) = e((k − 1)Kn−1) + e(Gt) = (k − 1)

(
n− 1

2

)
+

[
(n− 4)(n− 1 + r)

2

]

=
[
(n− 2)p

2

]
− (n− 1 + r) for t ≥ 2 and pt ≥ n.

Since G ∈ Ex(p;T 1
n), by comparing (2.5), (2.8) and (2.9) we get

e(G) = max
{[

(n− 4)p
2

]
,
(n− 2)p− r(n− 1− r)

2
,

[
(n− 2)p

2

]
− (n− 1 + r)

}
.

Observe that p = k(n− 1) + r ≥ n− 1 + r. We see that [ (n−4)p
2 ] = [ (n−2)p

2 ]− p ≤ [ (n−2)p
2 ]−

(n− 1 + r) and therefore

(2.10)
ex(p;T 1

n) = e(G) = max
{

(n− 2)p− r(n− 1− r)
2

,

[
(n− 2)p

2

]
− (n− 1 + r)

}

=
(n− 2)p− r(n− 1− r)

2
+ max

{
0,

[r(n− 3− r)− 2(n− 1)
2

]}
.

For 7 ≤ n ≤ 12 we have r(n − 3 − r) − 2(n − 1) ≤ (n−3)2

4 − 2(n − 1) = (n−7)2−32
4 < 0.

For r ∈ {0, 1, 2, n− 5, n− 4, n− 3, n− 2} we see that r(n− 3− r)− 2(n− 1) < 0. Suppose
n ≥ 13 and 3 ≤ r ≤ n− 6. For 4 ≤ r ≤ n− 7 we have |r − n−3

2 | ≤ n−11
2 and so

r(n− 3− r)− 2(n− 1) =
n2 − 14n + 17

4
−

(
r − n− 3

2

)2

≥ n2 − 14n + 17
4

−
(n− 11

2

)2
= 2n− 26 ≥ 0.

For r ∈ {3, n − 6} we have r(n − 3 − r) − 2(n − 1) = 3(n − 6) − 2(n − 1) = n − 16. Now
combining the above with (2.10) we deduce the result.
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Corollary 2.1. Suppose p, n ∈ N, p ≥ n ≥ 5 and n − 1 - p. Then (n−2)p
2 − (n−1)2

8 ≤
ex(p;T 1

n) ≤ (n−2)(p−1)
2 .

Proof. Suppose p = k(n − 1) + r with k ∈ N and r ∈ {0, 1, . . . , n − 2}. Then r ≥ 1.
Clearly (n−1)2

4 ≥ r(n − 1 − r) = (n−1
2 )2 − (n−1

2 − r)2 ≥ (n−1
2 )2 − (n−1

2 − 1)2 = n − 2 and
n − 1 + r > n−2

2 . Thus, from Theorem 2.1 we deduce that ex(p;T 1
n) ≤ (n−2)p−(n−2)

2 and

ex(p;T 1
n) ≥ (n−2)p−r(n−1−r)

2 ≥ (n−2)p−(n−1)2/4
2 . This proves the corollary.

3. Evaluation of ex(p; T 2
n)

Lemma 3.1. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2
n). Suppose that G is connected.

Then ∆(G) ≤ n− 3. Moreover, for p < 2n− 2 we have ∆(G) ≤ n− 4.
Proof. Since a graph does not contain K1,n−3 implies that the graph does not contain

T 2
n , by Lemma 2.1 we have

(3.1) e(G) = ex(p;T 2
n) ≥ ex(p;K1,n−3) =

[(n− 4)p
2

]
.

Suppose that v0 ∈ V (G), d(v0) = ∆(G) = m and Γ(v0) = {v1, . . . , vm}. If V (G) =
{v0, v1, . . . , vm}, then m = p − 1 ≥ n − 1. Since G does not contain T 2

n , we see that
G[v1, . . . , vm] does not contain K1,2 and hence e(G[v1, . . . , vm]) ≤ m

2 . Therefore e(G) =
d(v0) + e(G[v1, . . . , vm]) ≤ m + m

2 = 3(p−1)
2 ≤ (n−4)p−3

2 < [ (n−4)p
2 ]. This contradicts (3.1).

Thus p > m + 1. Suppose that u1, . . . , ut are all vertices such that d(u1, v0) = · · · =
d(ut, v0) = 2. Then t ≥ 1. We may assume without loss of generality that v1, . . . , vs are
all vertices in Γ(v0) adjacent to some vertex in the set {u1, . . . , ut}. Then 1 ≤ s ≤ m. Let
V1 = {v0, v1, . . . , vm}, V ′

1 = V (G) − V1 and let e(V1V
′
1) be the number of edges with one

endpoint in V1 and another endpoint in V ′
1 . Since G does not contain T 2

n , for m ≥ n − 3
each vi(1 ≤ i ≤ s) has one and only one adjacent vertex in the set {u1, . . . , ut}. Thus, for
m ≥ n− 3 we must have e(V1V

′
1) = s ≥ t.

If m ≥ n − 1, since G does not contain T 2
n as a subgraph, we see that d(vi) ≤ 2 for

i = 1, . . . , m and so e(G[V1]) = d(v0) + e(G[vs+1, . . . , vm]) ≤ m + m−s
2 . Hence

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤ 3m− s

2
+ s + e(G− V1) ≤ 2m + e(G− V1).

Suppose m + 1 = k(n − 1) + r with k ∈ N and 0 ≤ r ≤ n − 2. Set G1 = kKn−1 ∪ Kr.
Since m + 1 ≥ n, by (2.2) we have e(G1) > 2(m + 1) − 1 > 2m. Thus, e(G1 ∪ (G− V1)) =
e(G1) + e(G− V1) > 2m + e(G− V1) ≥ e(G). As G1 does not contain any copies of T 2

n and
G is an extremal graph, we get a contradiction. Hence ∆(G) = m ≤ n− 2.

Suppose m = n− 2. As G does not contain T 2
n as a subgraph, we see that d(v1) = · · · =
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d(vs) = 2 and so e(G[V1]) ≤ n− 2 +
(
n−2−s

2

)
. Since 1 ≤ s ≤ m = n− 2 ≤ 2n− 8, we have

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤
(

n− 2− s

2

)
+ n− 2 + s + e(G− V1)

=
(n− 2)(n− 1)− s(2n− 7− s)

2
+ e(G− V1)

<

(
n− 1

2

)
+ e(G− V1) = e(Kn−1 ∪ (G− V1)).

This is impossible since G is an extremal graph.
By the above, ∆(G) ≤ n−3. We first assume ∆(G) = n−3. We claim that d(vi) ≤ n−4

for i = 1, 2, . . . , s. If i ∈ {1, 2, . . . , s} and d(vi) = n− 3, let uj be the unique adjacent vertex
of vi in {u1, . . . , ut} and let V2 = {v0, v1, . . . , vn−3, uj}. Then there is at most one vertex
adjacent to uj in G − V2. Hence e(G − V1) ≤ 1 + e(G − V2). Since each vr (1 ≤ r ≤ s) is
adjacent to one and only one vertex in {u1, . . . , ut} and ∆(G[V1]) ≤ n− 3, we see that

e(G[V1]) =
1
2

n−3∑

r=0

dG[V1](vr) ≤ s(n− 4) + (n− 2− s)(n− 3)
2

=
(n− 2)(n− 3)− s

2
.

Note that s ≤ ∆(G) = n− 3. From the above we deduce that

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1) = e(G[V1]) + s + e(G− V1)

≤ e(G[V1]) + s + 1 + e(G− V2) ≤ (n− 2)(n− 3)− s

2
+ s + 1 + e(G− V2)

=
(n− 2)(n− 3) + s + 2

2
+ e(G− V2) ≤ (n− 2)(n− 3) + n− 1

2
+ e(G− V2)

<
(n− 1)(n− 2)

2
+ e(G− V2) = e(Kn−1 ∪ (G− V2)).

Since Kn−1∪(G−V2) does not contain T 2
n and G is an extremal graph, we get a contradiction.

Hence the claim is true. Thus, for ∆(G) = n−3 we have dG[V1](vi) ≤ n−5 for i = 1, 2, . . . , s
and so

(3.2) e(G[V1]) =
1
2

n−3∑

i=0

dG[V1](vi) ≤ s(n− 5) + (n− 2− s)(n− 3)
2

=
(n− 2)(n− 3)

2
− s.

Now we assume p < 2n − 2 and p = n − 1 + r. Then 1 ≤ r < n − 1. By the above,
∆(G) ≤ n − 3. Assume ∆(G) = n − 3. Then |V (G − V1)| = p − (n − 2) = r + 1 < n,
∆(G−V1) ≤ n−3 and so e(G−V1) ≤ min{(r+1

2

)
, (r+1)(n−3)

2 }. Since e(G[V1]) ≤ (n−2)(n−3)
2 −s

by (3.2), we deduce that

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤ (n− 2)(n− 3)
2

− s + s + min
{r(r + 1)

2
,
(r + 1)(n− 3)

2

}

=





(n− 2)(n− 3)
2

+
(

r + 1
2

)
if r ≤ n− 3

(n− 2)(n− 3)
2

+
(n− 3)(n− 1)

2
if r = n− 2

<

(
n− 1

2

)
+

(
r

2

)
= e(Kn−1 ∪Kr).
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This is impossible since G is an extremal graph. Thus, ∆(G) ≤ n − 4 for p < 2n − 2. Now
the proof is complete.

Lemma 3.2. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2
n). Suppose that G is connected.

Then p < 2n− 2.
Proof. By Lemma 3.1, we have ∆(G) ≤ n − 3 and so e(G) ≤ (n−3)p

2 . Assume that
p = k(n− 1)+ r with k ∈ N and r ∈ {0, 1, . . . , n− 2}. Let G1 ∈ Ex(n− 1+ r;K1,n−3). Then
e(G1) = [ (n−4)(n−1+r)

2 ] by Lemma 2.1. Hence, if (k − 2)(n− 1)− r ≥ 2, then

e((k − 1)Kn−1 ∪G1) = (k − 1)
(

n− 1
2

)
+

[(n− 4)(n− 1 + r)
2

]

=
(p− r − (n− 1))(n− 2)

2
+

[(n− 4)(n− 1 + r)
2

]

=
[(n− 3)p

2
+

p− 2r − 2(n− 1)
2

]

=
[(n− 3)p

2
+

(k − 2)(n− 1)− r

2

]
>

[(n− 3)p
2

]
≥ e(G).

This is impossible since (k − 1)Kn−1 ∪ G1 does not contain T 2
n as a subgraph and G ∈

Ex(p;T 2
n). Thus (k−2)(n−1)−r ≤ 1. If k = 3, then r = n−2 and p = 3(n−1)+n−2 = 4n−5

and so

e(G) ≤
[(n− 3)p

2

]
≤ (n− 3)(4n− 5)

2
=

4n2 − 17n + 15
2

<
4n2 − 14n + 12

2
= 3

(
n− 1

2

)
+

(
n− 2

2

)
= e(3Kn−1 ∪Kn−2).

Since 3Kn−1 ∪Kn−2 does not contain T 2
n and G ∈ Ex(p;T 2

n), we get a contradiction. Thus
k ≤ 2.

For p = 2(n−1)+ r with r ∈ {0, 1, 2, n−4, n−3, n−2} we see that r(n−2− r) < 2n−2
and so e(2Kn−1 ∪ Kr) = 2(n−1)(n−2)+r(r−1)

2 > (n−3)(2n−2+r)
2 ≥ e(G). This contradicts the

assumption G ∈ Ex(p;T 2
n). Now suppose p = 2(n−1)+r with 3 ≤ r ≤ n−5. If ∆(G) ≤ n−4,

then e(G) ≤ (n−4)p
2 . From previous argument we have

e(Kn−1 ∪G1) =
(

n− 1
2

)
+

[(n− 4)(n− 1 + r)
2

]
=

[(n− 3)p− r

2

]

=
[(n− 4)p

2

]
+ n− 1 >

(n− 4)p
2

≥ e(G).

Since Kn−1∪G1 does not contain T 2
n as a subgraph and G ∈ Ex(p;T 2

n), we get a contradiction.
Hence ∆(G) = n − 3. Suppose v0 ∈ V (G), d(v0) = n − 3, Γ(v0) = {v1, . . . , vn−3}, V1 =
{v0, v1, . . . , vn−3} and V ′

1 = V (G)−V1. Suppose also that there are exactly s vertices in Γ(v0)
adjacent to some vertex in V ′

1 . Then 1 ≤ s ≤ n − 3. By (3.2), e(G[V1]) ≤ (n−2)(n−3)
2 − s.

As G does not contain any copies of T 2
n , we see that e(V1V

′
1) = s. Since |V (G − V1)| =

|V ′
1 | = p − (n − 2) = n + r and G − V1 does not contain any copies of T 2

n we see that
e(G− V1) ≤ ex(n + r;T 2

n).
We claim that

ex(n + r;T 2
n) ≤ max

{(n− 4)(n + r)
2

,
(n− 1)(n− 2) + r(r + 1)

2

}
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for 3 ≤ r ≤ n − 5. Let G′ ∈ Ex(n + r;T 2
n). If G′ is connected, using Lemma 3.1 we

have ∆(G′) ≤ n − 4 and so e(G′) ≤ (n−4)(n+r)
2 . Now suppose that G′ is not connected. If

n1, n2 ∈ {1, 2, . . . , n−2}, from Lemma 2.3 we have e(Kn1∪Kn2) < e(Kn1+n2) for n1+n2 < n
and e(Kn1 ∪Kn2) < e(Kn−1 ∪Kn1+n2−(n−1)) for n1 + n2 ≥ n. Thus, G′ = G′

1 ∪G′
2, where

G′
1 and G′

2 are components of G′ with |V (G′
1)| = p′1 < n − 1 and |V (G′

2)| = p′2 ≥ n − 1.
For p′2 ≥ n we have p′1 ≤ r ≤ n − 3 and so e(G′

1) = p′1(p′1−1)
2 ≤ (n−4)p′1

2 . For p′2 ≥ n we also

have ∆(G′
2) ≤ n− 4 and so e(G′

2) ≤ (n−4)p′2
2 by Lemma 3.1. Hence for p′2 ≥ n we find that

e(G′) = e(G′
1) + e(G′

2) ≤ (n−4)p′1
2 + (n−4)p′2

2 = (n−4)(n+r)
2 . Now assume p′2 = n − 1. Then

p′1 = r + 1 and

e(G′) = e(Kn−1 ∪Kr+1) =
(n− 1)(n− 2) + r(r + 1)

2
.

Hence the claim is true and so

e(G− V1) ≤ ex(n + r;T 2
n) ≤ max

{(n− 4)(n + r)
2

,
(n− 1)(n− 2) + r(r + 1)

2

}
.

Thus,

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤ (n− 2)(n− 3)
2

− s + s + max
{(n− 4)(n + r)

2
,
(n− 1)(n− 2) + r(r + 1)

2

}

=
(

n− 1
2

)
+ max

{(n− 4)(n− 1 + r)− n

2
,
(n− 1)(n− 2) + r(r − 1)

2
− (n− 2− r)

}

<

(
n− 1

2

)
+ max

{[(n− 4)(n− 1 + r)
2

]
,
(n− 1)(n− 2) + r(r − 1)

2

}

= max
{

e(Kn−1 ∪G1), e(2Kn−1 ∪Kr)
}

.

This is impossible since G is an extremal graph.
By the above we must have k = 1 and so p = k(n− 1) + r < 2n− 2 as asserted.
Lemma 3.3. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2

n). Suppose that G is connected.
Then ∆(G) = n− 4 and e(G) = [ (n−4)p

2 ].
Proof. By (3.1), e(G) ≥ [ (n−4)p

2 ]. If ∆(G) ≤ n − 5, using Euler’s theorem we see that
e(G) = 1

2

∑
v∈V (G) d(v) ≤ (n−5)p

2 . Hence (n−4)p−1
2 ≤ [ (n−4)p

2 ] ≤ e(G) ≤ (n−5)p
2 . This is

impossible. Thus ∆(G) ≥ n − 4. By Lemmas 3.1 and 3.2, ∆(G) ≤ n − 4. Therefore
∆(G) = n − 4 and so e(G) = 1

2

∑
v∈V (G) d(v) ≤ (n−4)p

2 . Recall that e(G) ≥ [ (n−4)p
2 ]. Then

e(G) = [ (n−4)p
2 ] as asserted.

Lemma 3.4. Let p and k be nonnegative integers, p = 5k + r and r ∈ {0, 1, 2, 3, 4}.
Suppose that G is a graph of order p without T 2

6 . Then e(G) ≤ 2p− r(5−r)
2 .

Proof. Clearly ∆(T 2
6 ) = 3. We prove the lemma by induction on p. For p ≤ 5 we have

e(G) ≤ p(p−1)
2 = 2p− r(5−r)

2 . Now suppose that p ≥ 6 and the lemma is true for all graphs
of order p0 < p without T 2

6 . If ∆(G) ≤ 3, then e(G) = 1
2

∑
v∈V (G) d(v) ≤ 3p

2 ≤ 2p − 3 ≤
2p− r(5−r)

2 .
Suppose ∆(G) = m ≥ 4, v0 ∈ V (G), d(v0) = m, Γ(v0) = {v1, . . . , vm}, V1 = {v0, v1, . . . , vm}

and V ′
1 = V (G)− V1. If G[V1] is a component of G, then e(G[V1]) = e(K5) = 10 for m = 4,
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and e(G[V1]) ≤ m + m
2 = 3m

2 for m ≥ 5 since d(vi) ≤ 2 for i = 1, 2, . . . , m. By the in-
ductive hypothesis, e(G[V ′

1 ]) ≤ 2(p − m − 1) − r1(5−r1)
2 , where r1 ∈ {0, 1, 2, 3, 4} is given

by p − m − 1 ≡ r1 (mod 5). Thus, for m = 4 we have e(G) = e(G[V1]) + e(G[V ′
1 ]) ≤

10 + 2(p − 5) − r(5−r)
2 = 2p − r(5−r)

2 , and for m ≥ 5 we have e(G) = e(G[V1]) + e(G[V ′
1 ]) ≤

3m
2 + 2(p−m− 1)− r1(5−r1)

2 ≤ 2p− 2− m
2 ≤ 2p− 3 ≤ 2p− r(5−r)

2 .
From now on we assume that G[V1] is not a component of G and m = ∆(G) ≥ 4. Hence

there is a vertex u1 such that d(u1, v0) = 2 and u1v1 ∈ E(G) with no loss of generality. Then
v1vi /∈ E(G) for i = 2, 3, . . . , m. For m = 4 we see that e(G[V1]) + e(V1V

′
1) ≤ 4 + 4 = 8. For

m ≥ 5 we see that d(vi) ≤ 2 for i = 1, 2, . . . , m and so e(G[V1])+e(V1V
′
1) ≤

∑m
i=1 d(vi) ≤ 2m.

Hence, for m ≥ 4 we have e(G) = e(G[V1]) + e(V1V
′
1) + e(G[V ′

1 ]) ≤ 2m + e(G[V ′
1 ]). By the

inductive hypothesis, e(G[V ′
1 ]) ≤ 2(p−m− 1)− r1(5−r1)

2 , where r1 ∈ {0, 1, 2, 3, 4} is given by
p−m− 1 ≡ r1 (mod 5). Thus, e(G) ≤ 2m + 2(p−m− 1)− r1(5−r1)

2 = 2p− 2− r1(5−r1)
2 . For

r1 ≥ 1 we have e(G) ≤ 2p− 2− 2 < 2p− r(5−r)
2 . For r1 = 0 and r = 0, 1, 4 we have e(G) ≤

2p−2 ≤ 2p− r(5−r)
2 . Therefore, we only need to consider the case p ≡ m+1 ≡ 2, 3 (mod 5).

Now assume p ≡ m + 1 ≡ 2, 3 (mod 5) and Γ(u1) − {v1, . . . , vm} = {w1, . . . , wt}. As
m ≥ 4 we have m ≥ 6. Set V2 = {v0, v1, . . . , vm, u1} and V ′

2 = V (G) − V2. Since d(vi) ≤ 2
for i = 1, 2, . . . , m, we see that

e(G) = e(G[V2]) + e(V2V
′
2) + e(G[V ′

2 ]) ≤
m∑

i=1

d(vi) + t + e(G[V ′
2 ]) ≤ 2m + t + e(G[V ′

2 ]).

Note that p −m − 2 ≡ 4 (mod 5) and e(G[V ′
2 ]) ≤ 2(p −m − 2) − 4(5−4)

2 by the inductive
hypothesis. We then have e(G) ≤ 2m + t + 2(p−m− 2)− 2 = 2p + t− 6. For t ≤ 3 we get
e(G) ≤ 2p + t− 6 ≤ 2p− 3 = 2p− r(5−r)

2 . For t ≥ 4 set V3 = {v0, v1, . . . , vm, u1, w1, . . . , wt}
and V ′

3 = V (G) − V3. Since d(vi) ≤ 2 for i = 1, 2, . . . , m and d(wj) ≤ 2 for j = 1, 2, . . . , t,
using the inductive hypothesis we see that

e(G) = e(G[V3]) + e(V3V
′
3) + e(G[V ′

3 ]) ≤
m∑

i=1

d(vi) +
t∑

j=1

d(wj) + e(G[V ′
3 ])

≤ 2m + 2t + e(G[V ′
3 ]) ≤ 2m + 2t + 2(p−m− 2− t) = 2p− 4

< 2p− r(5− r)
2

.

By the above, the lemma has been proved by induction.
Theorem 3.1. Let p, n ∈ N, p ≥ n − 1 ≥ 4 and p = k(n − 1) + r, where k ∈ N and

r ∈ {0, 1, . . . , n− 2}. Then

ex(p;T 2
n) = max

{[(n− 2)p
2

]
− (n− 1 + r),

(n− 2)p− r(n− 1− r)
2

}

=





[
(n− 2)p

2
]− (n− 1 + r) if n ≥ 16 and 3 ≤ r ≤ n− 6 or if

13 ≤ n ≤ 15 and 4 ≤ r ≤ n− 7,

(n− 2)p− r(n− 1− r)
2

otherwise.

Proof. Clearly ex(n−1;T 2
n) = e(Kn−1) = (n−2)(n−1)

2 . Thus the result is true for p = n−1.
Now we assume p ≥ n. Since T 2

5
∼= T ′5, taking n = 5 in [10, Theorem 3.1] we obtain the result
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in the case n = 5. For n = 6 we see that ex(p;T 2
6 ) ≥ e(kK5∪Kr) = 10k+ r(r−1)

2 = 2p− r(5−r)
2 .

This together with Lemma 3.4 gives the result in this case. Applying Lemmas 3.3, 2.3 and
replacing T 1

n with T 2
n in the proof of Theorem 2.1 we deduce the result for n ≥ 7.

Corollary 3.1. Suppose p, n ∈ N, p ≥ n ≥ 5 and n − 1 - p. Then (n−2)p
2 − (n−1)2

8 ≤
ex(p;T 2

n) ≤ (n−2)(p−1)
2 .

4. The Ramsey number r(T i
n, Tn)

Lemma 4.1 ([9, Lemma 2.1]). Let G1 and G2 be two graphs. Suppose p ∈ N, p ≥
max{|V (G1)|, |V (G2)|} and ex(p;G1) + ex(p;G2) <

(
p
2

)
. Then r(G1, G2) ≤ p.

Proof. Let G be a graph of order p. If e(G) ≤ ex(p;G1) and e(G) ≤ ex(p;G2), then
ex(p;G1) + ex(p;G2) ≥ e(G) + e(G) =

(
p
2

)
. This contradicts the assumption. Hence, either

e(G) > ex(p;G1) or e(G) > ex(p;G2). Therefore, G contains a copy of G1 or G contains a
copy of G2. This shows that r(G1, G2) ≤ |V (G)| = p. So the lemma is proved.

Lemma 4.2 ([9, Lemma 2.3]). Let G1 and G2 be two graphs with ∆(G1) = d1 ≥ 2
and ∆(G2) = d2 ≥ 2. Then

(i) r(G1, G2) ≥ d1 + d2 − (1− (−1)(d1−1)(d2−1))/2.
(ii) Suppose that G1 is a connected graph of order m and d1 < d2 ≤ m. Then r(G1, G2) ≥

2d2 − 1 ≥ d1 + d2.
(iii) If G1 is a connected graph of order m, d1 6= m − 1 and d2 > m, then r(G1, G2) ≥

d1 + d2.
Theorem 4.1. Let n ∈ N and i, j ∈ {1, 2}.
(i) If n is odd with n ≥ 17, then r(T i

n, T j
n) = 2n− 7.

(ii) If n is even with n ≥ 12, then r(T i
n, T j

n) = 2n− 6.
Proof. Suppose n ≥ 12. Since ∆(T i

n) = ∆(T j
n) = n − 3, from Lemma 4.2 we know that

r(T i
n, T j

n) ≥ 2n − 7 for odd n, and r(T i
n, T j

n) ≥ 2n − 6 for even n. If n is odd with n ≥ 17,
using Theorems 2.1 and 3.1 (with k = 1 and r = n− 6) we see that

ex(2n− 7;T i
n) =

(n− 2)(2n− 7)− 1
2

− (2n− 7) <
(n− 4)(2n− 7)

2
=

1
2

(
2n− 7

2

)

and so ex(2n− 7;T i
n) + ex(2n− 7;T j

n) <
(
2n−7

2

)
. Thus, by Lemma 4.1 we have r(T i

n, T j
n) ≤

2n − 7. Hence (i) is true. From Theorems 2.1 and 3.1 (with k = 1 and r = n − 5) we see
that for n ≥ 12,

ex(2n− 6;T i
n) =

(n− 2)(2n− 6)− 4(n− 5)
2

= n2 − 7n + 16

< n2 − 13
2

n +
21
2

=
1
2

(
2n− 6

2

)

and so ex(2n− 6;T i
n) + ex(2n− 6;T j

n) <
(
2n−6

2

)
. Thus, by Lemma 4.1 we have r(T i

n, T j
n) ≤

2n− 6. Hence r(T i
n, T j

n) = 2n− 6 for even n, proving (ii).
Lemma 4.3. Let n ∈ N, n ≥ 5 and i ∈ {1, 2}. Let Gn be a connected graph of order n

such that ex(2n− 5;Gn) < n2 − 5n + 4. Then r(T i
n, Gn) ≤ 2n− 5.

Proof. By Theorems 2.1 and 3.1, ex(2n − 5;T i
n) = (n−2)(2n−5)−3(n−4)

2 = n2 − 6n + 11.
Thus,

ex(2n− 5;Gn) + ex(2n− 5;T i
n) < n2 − 5n + 4 + n2 − 6n + 11 =

(
2n− 5

2

)
.
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Appealing to Lemma 4.1 we obtain r(T i
n, Gn) ≤ 2n− 5.

Lemma 4.4 ([10, Theorem 3.1]). Let p, n ∈ N with p ≥ n ≥ 5. Let r ∈ {0, 1, . . . , n−2}
be given by p ≡ r (mod n− 1). Then

ex(p;T ′n) =





[(n− 2)(p− 1)− r − 1
2

]
if n ≥ 7 and 2 ≤ r ≤ n− 4,

(n− 2)p− r(n− 1− r)
2

otherwise.

Theorem 4.2. Let n ∈ N, n ≥ 8 and i ∈ {1, 2}. Then r(T i
n, T ′n) = r(T i

n, T ∗n) = 2n− 5.
Proof. Let Tn ∈ {T ′n, T ∗n). As 2Kn−3 does not contain any copies of T i

n and 2Kn−3 =
Kn−3,n−3 does not contain any copies of Tn, we see that r(T i

n, Tn) ≥ 1 + 2(n− 3) = 2n− 5.
Taking p = 2n− 5 and r = n− 4 in Lemma 4.4 we find that

ex(2n− 5;T ′n) =
[(n− 2)(2n− 6)− (n− 4)− 1

2

]
≤ n2 − 11

2
n +

15
2

< n2 − 5n + 4.

By [10, Theorem 4.1],

ex(2n− 5;T ∗n) =
(n− 2)(2n− 5)− 3(n− 4)

2
= n2 − 6n + 11 < n2 − 5n + 4.

Thus, applying Lemma 4.3 we obtain r(T i
n, Tn) ≤ 2n − 5. Hence r(T i

n, Tn) = 2n − 5 as
asserted.

Remark 4.1 Let n ∈ N, n ≥ 5 and i ∈ {1, 2}. From [5, Theorem 3.1(ii)] we know that
r(K1,n−1, T

i
n) = 2n− 3.

Theorem 4.3. Let n ∈ N and i ∈ {1, 2}. Then r(Pn, T i
n) = 2n − 7 for n ≥ 17,

r(Pn−1, T
i
n) = 2n− 7 for n ≥ 13, r(Pn−2, T

i
n) = 2n− 7 for n ≥ 11 and r(Pn−3, T

i
n) = 2n− 7

for n ≥ 8.
Proof. Suppose n ≥ 8 and s ∈ {0, 1, 2, 3}. From Lemma 4.2(ii) we have r(Pn−s, T

i
n) ≥

2(n− 3)− 1 = 2n− 7. By (1.1),

ex(2n− 7;Pn−s) =





(n− 2)(2n− 7)− 5(n− 6)
2

=
(n− 4)(2n− 7) + 16− n

2
if s = 0,

(n− 3)(2n− 7)− 3(n− 5)
2

=
(n− 4)(2n− 7) + 8− n

2
if s = 1,

(n− 4)(2n− 7)− (n− 4)
2

if s = 2,

(n− 5)(2n− 7)− (n− 5)
2

=
(n− 4)(2n− 7) + 12− 3n

2
if s = 3.

By Theorems 2.1 and 3.1,

ex(2n− 7;T i
n) =





[
(n− 4)(2n− 7)

2
] if n ≥ 16,

(n− 2)(2n− 7)− 5(n− 6)
2

=
(n− 4)(2n− 7) + 16− n

2
if n < 16.

For n ≥ 17, 13, 11 or 8 according as s = 0, 1, 2 or 3, from the above we find ex(2n −
7;Pn−s) + ex(2n − 7;T i

n) <
(
2n−7

2

)
and so r(Pn−s, T

i
n) ≤ 2n − 7 by Lemma 4.1. This

completes the proof.
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5. The Ramsey number r(T i
m, Tn) for m < n

Proposition 5.1 (Burr[1]). Let m,n ∈ N with m ≥ 3 and m− 1 | n− 2. Let Tm be a tree
on m vertices. Then r(Tm,K1,n−1) = m + n− 2.

Proposition 5.2 (Guo and Volkmann [5, Theorem 3.1]). Let m,n ∈ N,m ≥ 3
and n = k(m − 1) + b with k ∈ N and b ∈ {0, 1, . . . , m − 2} \ {2}. Let Tm 6= K1,m−1 be
a tree on m vertices. Then r(Tm,K1,n−1) ≤ m + n − 3. Moreover, if k ≥ m − b, then
r(Tm,K1,n−1) = m + n− 3.

Lemma 5.1 ([6, Theorem 8.3, pp.11-12]). Let a, b, n ∈ N. If a is coprime to b and
n ≥ (a− 1)(b− 1), then there are two nonnegative integers x and y such that n = ax + by.

Theorem 5.1. Let m,n ∈ N, n > m ≥ 5, m − 1 - n − 2 and i ∈ {1, 2}. Then
r(T i

m,K1,n−1) = m + n − 3 or m + n − 4. Moreover, if n ≥ (m − 3)2 + 1 or m + n − 4 =
(m− 1)x+(m− 2)y for some nonnegative integers x and y, then r(Tm,K1,n−1) = m+n− 3
for any tree Tm 6= K1,m−1 of order m.

Proof. Let Tm 6= K1,m−1 be a tree on m vertices. From Proposition 5.2 we know that
r(Tm, K1,n−1) ≤ m + n − 3. By Lemma 4.2(iii), r(T i

m,K1,n−1) ≥ m − 3 + n − 1. Thus,
r(T i

m,K1,n−1) = m+n−3 or m+n−4. If n ≥ (m−3)2 +1, then m+n−4 ≥ (m−2)(m−3)
and so m+n−4 = (m−1)x+(m−2)y for some nonnegative integers x and y by Lemma 5.1.
If m + n− 4 = (m− 1)x + (m− 2)y for x, y ∈ {0, 1, 2, . . .}, setting G = xKm−1 ∪ yKm−2 we
see that G does not contain any copies of Tm and G does not contain any copies of K1,n−1.
Thus r(Tm,K1,n−1) ≥ 1+ |V (G)| = m+n−3. Now putting all the above together we obtain
the theorem.

Theorem 5.2. Let m,n ∈ N, n > m ≥ 6, m − 1 | n − 3 and i ∈ {1, 2}. Then
r(T i

m, T ′n) = m + n− 3.
Proof. By Theorems 2.1 and 3.1, ex(m+n−3;T i

m) = (m−2)(m+n−3)−(m−2)
2 < (m−2)(m+n−3)

2 .
Thus applying [9, Theorem 5.1] we obtain the conclusion.

Theorem 5.3. Suppose i ∈ {1, 2}, m,n ∈ N, n > m ≥ 7 and m − 1 - (n − 3). Then
m + n− 5 ≤ r(T i

m, T ′n) ≤ m + n− 4 and m + n− 6 ≤ r(T i
m, T ∗n) ≤ m + n− 4. Moreover, if

n = k(m− 1) + b = q(m− 2) + a, k, q ∈ N, a ∈ {0, 1, . . . , m− 3}, b ∈ {0, 1, . . . , m− 2} and
one of the following conditions holds:

(1) b ∈ {1, 2, 4},
(2) b = 0 and k ≥ 3,

(3) n ≥ (m− 3)2 + 2,

(4) n ≥ m2 − 1− b(m− 2),
(5) a ≥ 3 and n ≥ (a− 4)(m− 1) + 4,

then r(T i
m, T ∗n) = r(T i

m, T ′n) = m + n− 4.
Proof. By Lemma 4.2 we have r(T i

m, T ′n) ≥ m− 3+n− 2 and r(T i
m, T ∗n) ≥ m− 3+n− 3.

Since m − 1 - n − 3, we have m − 1 - m + n − 4. From Corollaries 2.1 and 3.1 we find
ex(m+n−4;T i

m) ≤ (m−2)(m+n−5)
2 . Hence, by [9, Lemma 5.2] we have r(T i

m, T ′n) ≤ m+n−4,
and by [9, Lemma 4.2] we have r(T i

m, T ∗n) ≤ m + n− 4. Now applying [9, Theorems 4.4 and
5.4] we deduce the remaining assertion.

16



6. The Ramsey number r(Gm, T j
n) for m < n

Theorem 6.1. Let m,n ∈ N, m ≥ 5, n ≥ 8, n > m and j ∈ {1, 2}. Then r(K1,m−1, T
j
n)

= m + n− 4 or m + n− 5. Moreover, if 2 | mn, then r(K1,m−1, T
j
n) = m + n− 4.

Proof. From Lemma 4.2 we deduce that r(K1,m−1, T
j
n) ≥ m − 1 + n − 3 − (1 −

(−1)(m−2)(n−4))/2 = m+n−4−(1−(−1)mn)/2. So, it suffices to prove that r(K1,m−1, T
j
n) ≤

m + n− 4. By Lemma 2.1, ex(m + n− 4;K1,m−1) = [ (m−2)(m+n−4)
2 ]. By Theorems 2.1 and

3.1, we have

ex(m + n− 4;T j
n) =

[(n− 4)(m + n− 4)
2

]
or

(n− 2)(m + n− 4)− (m− 3)(n−m + 2)
2

.

Since [ (m−2)(m+n−4)
2 ] + [ (n−4)(m+n−4)

2 ] ≤ (m+n−6)(m+n−4)
2 <

(
m+n−4

2

)
and

(m− 2)(m + n− 4)
2

+
(n− 2)(m + n− 4)− (m− 3)(n−m + 2)

2

=
(m + n− 4)(m + n− 5)− (m− 4)(n−m− 2

m−4)
2

<

(
m + n− 4

2

)
,

we see that ex(m + n− 4;K1,m−1) + ex(m + n− 4;T j
n) <

(
m+n−4

2

)
and so r(K1,m−1, T

j
n) ≤

m + n− 4 by Lemma 4.1. This completes the proof.
Theorem 6.2. Let m,n ∈ N, m ≥ 4, n ≥ 7, m− 1 | n− 4 and j ∈ {1, 2}.
(i) If Gm is a connected graph of order m with ex(m + n− 4;Gm) ≤ (m−2)(m+n−5)

2 , then
r(Gm, T j

n) = m + n− 4.
(ii) r(T ′m, T j

n) = r(T 1
m, T j

n) = r(T 2
m, T j

n) = m + n − 4 for m ≥ 5, r(T ∗m, T j
n) = m + n − 4

for m ≥ 6, and r(Pm, T j
n) = m + n− 4.

Proof. Set t = (n− 4)/(m− 1). Suppose that Gm is a connected graph of order m with
ex(m+n−4;Gm) ≤ (m−2)(m+n−5)

2 . Then clearly ∆((t + 1)Km−1) = t(m−1) = n−4. Thus,
(t+1)Km−1 does not contain any copies of Gm and (t + 1)Km−1 does not contain any copies
of T j

n. Hence r(Gm, T j
n) ≥ 1 + (t + 1)(m− 1) = m + n− 4. By Theorems 2.1 and 3.1,

ex(m + n− 4;T j
n) =

[(n− 4)(m + n− 4)
2

]
or

(n− 2)(m + n− 4)− (m− 3)(n−m + 2)
2

.

If ex(m + n− 4;T j
n) = [ (n−4)(m+n−4)

2 ], then

ex(m + n− 4;Gm) + ex(m + n− 4;T j
n)

≤ (m− 2)(m + n− 5) + (n− 4)(m + n− 4)
2

<

(
m + n− 4

2

)
.

If ex(m + n− 4;T j
n) = (n−2)(m+n−4)−(m−3)(n−m+2)

2 , then

ex(m + n− 4;Gm) + ex(m + n− 4;T j
n)

≤ (m− 2)(m + n− 5) + (n− 2)(m + n− 4)− (m− 3)(n−m + 2)
2

=
(

m + n− 4
2

)
− (m− 4)(n−m + 1)

2
<

(
m + n− 4

2

)
.
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Therefore, by Lemma 4.1 we always have r(Gm, T j
n) ≤ m + n − 4 and hence r(Gm, T j

n) =
m + n− 4. This proves (i).

Now consider (ii). Note that m + n− 4 ≡ 1 (mod m− 1). By (1.1), we have ex(m + n−
4;Pm) = (m−2)(m+n−5)

2 . By Lemma 4.4, ex(m + n − 4;T ′m) = (m−2)(m+n−5)
2 for m ≥ 5. By

[10, Theorem 4.2], ex(m + n− 4;T ∗m) = (m−2)(m+n−5)
2 for m ≥ 6. By Theorems 2.1 and 3.1,

ex(m + n − 4; T i
m) = (m−2)(m+n−5)

2 for i ∈ {1, 2} and m ≥ 5. Thus from (i) and the above
we deduce (ii). The proof is complete.

Lemma 6.1. Let j ∈ {1, 2}, m,n ∈ N, m ≥ 7 and m−1 - n−4. Assume n = m+1 ≥ 12
or n ≥ max {m + 2, 19−m}.

(i) If Gm is a connected graph of order m with ex(m + n− 5;Gm) ≤ (m−2)(m+n−6)
2 , then

r(Gm, T j
n) ≤ m + n− 5.

(ii) For Tm ∈ {Pm, T ′m, T ∗m, T 1
m, T 2

m} we have r(Tm, T j
n) ≤ m + n− 5.

Proof. Since m + n− 5 = n− 1 + m− 4, by Theorems 2.1 and 3.1 we have

ex(m + n− 5;T j
n) =

[(n− 4)(m + n− 5)
2

]

or
(n− 2)(m + n− 5)− (m− 4)(n− 1− (m− 4))

2
.

If n = m+1, then (m−4)(n−3− (m−4)) = 2(n−5). If n ≥ m+2, then 3 ≤ m−4 ≤ n−6
and so (m−4)(n−3−(m−4)) = (n−3

2 )2−(m−4− n−3
2 )2 ≥ (n−3

2 )2−(n−6− n−3
2 )2 = 3(n−6).

Thus,

(n− 4)(m + n− 5) + m− 2
2

− (n− 2)(m + n− 5)− (m− 4)(n− 1− (m− 4))
2

=
(m− 4)(n− 3− (m− 4))− 2n + m

2

≥





2(n− 5)− 2n + m

2
=

m− 10
2

> 0 if n = m + 1 ≥ 12,

3(n− 6)− 2n + m

2
=

n− 10 + m− 8
2

> 0 if n ≥ max {m + 2, 19−m}.

Therefore, from the above we deduce that

(6.1) ex(m + n− 5;T j
n) <

(n− 4)(m + n− 5) + m− 2
2

.

Hence, if Gm is a connected graph of order m with ex(m+n− 5;Gm) ≤ (m−2)(m+n−6)
2 , then

ex(m + n− 5;Gm) + ex(m + n− 5;T j
n)

<
(m− 2)(m + n− 6)

2
+

(n− 4)(m + n− 5) + m− 2
2

=
(

m + n− 5
2

)
.

Applying Lemma 4.1 we obtain (i).
Now we consider (ii). Since m − 1 - (m + n − 5), by Corollaries 2.1 and 3.1 we have

ex(m+n−5;T i
m) ≤ (m−2)(m+n−6)

2 for i ∈ {1, 2}. By (1.1), ex(m+n−5;Pm) ≤ (m−2)(m+n−6)
2 .

By Lemma 4.4, ex(m + n− 5;T ′m) ≤ (m−2)(m+n−6)
2 . By [10, Theorems 4.1-4.5], ex(m + n−

5;T ∗m) ≤ (m−2)(m+n−6)
2 . Thus, from the above and (i) we deduce (ii). This proves the lemma.

Theorem 6.3. Let m ∈ N and j ∈ {1, 2}.
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(i) We have

r(T ′m, T j
m+1) =

{
2m− 4 if 2 - m and m ≥ 9,
2m− 5 if 2 | m and m ≥ 16.

(ii) If n ∈ N, m ≥ 7, n ≥ max {m+2, 19−m} and m−1 - n−4, then r(T ′m, T j
n) = m+n−5.

Proof. We first assume 2 - m and m ≥ 9. By Lemma 4.2(i), we have r(T ′m, T j
m+1) ≥

m−2+m−2 = 2m−4. By Lemma 4.4, ex(2m−4;T ′m) = (m−2)(2m−4)−2(m−3)
2 = m2−5m+7.

By Theorems 2.1 and 3.1, ex(2m− 4;T j
m+1) = (m−1)(2m−4)−4(m−4)

2 = m2 − 5m + 10. Thus,

ex(2m− 4;T ′m) + ex(2m− 4;T j
m+1)

= m2 − 5m + 7 + m2 − 5m + 10 = 2m2 − 10m + 17 < 2m2 − 9m + 10 =
(

2m− 4
2

)
.

Hence, by Lemma 4.1 we obtain r(T ′m, T j
m+1) ≤ 2m− 4 and so r(T ′m, T j

m+1) = 2m− 4.
Now we assume 2 | m and m ≥ 16. By Lemma 4.2(i), r(T ′m, T j

m+1) ≥ m−2+m−2−1 =
2m−5. By Lemma 4.4, ex(2m−5;T ′m) = [ (m−2)(2m−6)−(m−3)

2 ] = 2m2−11m+14
2 . By Theorems

2.1 and 3.1, ex(2m− 5;T j
m+1) = [ (m−1)(2m−5)

2 ]− (2m− 5) = 2m2−11m+14
2 . Thus,

ex(2m− 5;T ′m) + ex(2m− 5;T j
m+1) = 2m2 − 11m + 14 < 2m2 − 11m + 15 =

(
2m− 5

2

)
.

Hence, by Lemma 4.1 we obtain r(T ′m, T j
m+1) ≤ 2m− 5 and so r(T ′m, T j

m+1) = 2m− 5. This
proves (i).

Now we consider (ii). Suppose n ∈ N, m ≥ 7 and n ≥ max {m + 2, 19−m}. By Lemma
6.1(ii), r(T ′m, T j

n) ≤ m + n− 5. By Lemma 4.2, we have r(T ′m, T j
n) ≥ m− 2 + n− 3. Thus,

r(T ′m, T j
n) = m + n− 5. This proves (ii). The proof is complete.

Theorem 6.4. Let j ∈ {1, 2}, m,n ∈ N, m ≥ 7 and m−1 - n−4. Suppose n = m+1 ≥ 12
or n ≥ max {m + 2, 19 −m}. Assume that Gm ∈ {Pm, T ∗m, T 1

m, T 2
m} or Gm is a connected

graph of order m such that ex(m + n − 5;Gm) ≤ (m−2)(m+n−6)
2 . If n ≥ (m − 3)2 + 3 or

m + n− 6 = (m− 1)x + (m− 2)y for some nonnegative integers x and y, then r(Gm, T j
n) =

m + n− 5.
Proof. If n ≥ (m − 3)2 + 3, then m + n − 6 ≥ (m − 2)(m − 3) and so m + n − 6 =

(m− 1)x + (m− 2)y for some x, y ∈ {0, 1, 2, . . .} by Lemma 5.1. Now suppose m + n− 6 =
(m−1)x+(m−2)y, where x, y ∈ {0, 1, 2, . . .}. Set G = xKm−1∪yKm−2. Then ∆(G) ≤ n−4.
Thus, G does not contain any copies of Gm and G does not contain any copies of T j

n.
Hence r(Gm, T j

n) ≥ 1 + |V (G)| = m + n − 5. On the other hand, by Lemma 6.1 we have
r(Gm, T j

n) ≤ m + n− 5. Thus r(Gm, T j
n) = m + n− 5. This proves the theorem.

Corollary 6.1. Let m,n ∈ N, m ≥ 7, m−1 | n−b, b ∈ {2, 3, 5}, n ≥ max {m+2, 19−m}
and j ∈ {1, 2}. Assume that Gm ∈ {Pm, T ∗m, T 1

m, T 2
m} or Gm is a connected graph of order

m with ex(m + n− 5;Gm) ≤ (m−2)(m+n−6)
2 . Then r(Gm, T j

n) = m + n− 5.
Proof. Set k = (n− b)/(m− 1). Then k ∈ N. For b = 2 we have k ≥ 2. Since

m + n− 6 =





(k − 2)(m− 1) + 3(m− 2) if b = 2,
(k − 1)(m− 1) + 2(m− 2) if b = 3,
(k + 1)(m− 1) if b = 5,

the result follows from Theorem 6.4.
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Theorem 6.5. Let m ∈ N, m ≥ 12 and i, j ∈ {1, 2}. Then

r(T i
m, T j

m+1) = r(T ∗m, T j
m+1) = 2m− 5.

Proof. Let Tm ∈ {T i
m, T ∗m}. By Theorems 2.1, 3.1 and [10, Theorem 4.1],

ex(2m− 5;Tm) =
(m− 2)(2m− 5)− 3(m− 4)

2
,

ex(2m− 5;T j
m+1) =

(m− 1)(2m− 5)− 5(m− 5)
2

or
[(m− 3)(2m− 5)

2

]
.

Since (m−2)(2m−5)−3(m−4)
2 + (m−3)(2m−5)

2 = (2m−5)(2m−6)+7−m
2 <

(
2m−5

2

)
and

(m− 2)(2m− 5)− 3(m− 4)
2

+
(m− 1)(2m− 5)− 5(m− 5)

2

= 2m2 − 12m + 26 < 2m2 − 11m + 15 =
(

2m− 5
2

)
,

we see that ex(2m − 5;Tm) + ex(2m − 5;T j
m+1) <

(
2m−5

2

)
. Hence, applying Lemma 4.1 we

deduce that r(Tm, T j
m+1) ≤ 2m−5. Since ∆(Tm) = m−3 and ∆(T j

m+1) = m−2, by Lemma
4.2(i) we have r(Tm, T j

m+1) ≥ m− 3 + m− 2 = 2m− 5. Hence r(Tm, T j
m+1) = 2m− 5. This

proves the theorem.
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