Journal of Number Theory 129(2009), 971-989.
On the number of representations of n by $a x(x-1) / 2+b y(y-1) / 2$

ZHI-Hong Sun

Department of Mathematics, Huaiyin Teachers College,
Huaian, Jiangsu 223001, PR China
E-mail: szh6174@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract

Let \mathbb{N} be the set of positive integers. For $b, n \in \mathbb{N}$ let $t_{n}(1, b)$ denote the number of representations $\langle x, y\rangle(x, y \in \mathbb{N})$ of $n=x(x-1) / 2+b y(y-1) / 2$. In the paper we mainly obtain explicit formulas for $t_{n}(1, b)$ in the cases $b=$ $2,4,5,9,11,13,19,23,25,27,31,37,43,67,163$.

MSC: 11E25; 11E16.
Keywords: Triangular numbers; Binary quadratic forms; The number of representations

1. Introduction.

Let \mathbb{Z} and \mathbb{N} be the set of integers and the set of positive integers respectively. For $a, b, n \in \mathbb{N}$ let

$$
t_{n}(a, b)=|\{\langle x, y\rangle: n=a x(x-1) / 2+b y(y-1) / 2, x, y \in \mathbb{N}\}|
$$

and

$$
\psi(q)=\sum_{k=1}^{\infty} q^{k(k-1) / 2} \quad(|q|<1)
$$

Then clearly

$$
\begin{equation*}
\psi\left(q^{a}\right) \psi\left(q^{b}\right)=1+\sum_{n=1}^{\infty} t_{n}(a, b) q^{n} \quad(|q|<1) . \tag{1.1}
\end{equation*}
$$

Since Legendre it is known that

$$
\begin{equation*}
t_{n}(1,1)=\sum_{k \mid 4 n+1}(-1)^{\frac{k-1}{2}} \tag{1.2}
\end{equation*}
$$

Ramanujan (see [B, pp. 302-303]) found that if $|q|<1$, then

$$
q \psi(q) \psi\left(q^{7}\right)=\frac{q}{1-q}-\frac{q^{3}}{1-q^{3}}-\frac{q^{5}}{1-q^{5}}+\frac{q^{9}}{1-q^{9}}+\frac{q^{11}}{1-q^{11}}-\frac{q^{13}}{1-q^{13}}+\cdots
$$

The author was supported by Natural Sciences Foundation of Jiangsu Educational Office in China (07KJB110009).
and

$$
q \psi\left(q^{2}\right) \psi\left(q^{6}\right)=\frac{q}{1-q^{2}}-\frac{q^{5}}{1-q^{10}}+\frac{q^{7}}{1-q^{14}}-\frac{q^{11}}{1-q^{22}}+\cdots
$$

In 1999, K.S. Williams [W] proved the above two Ramanujan identities by using the theory of binary quadratic forms. By (1.1), the above Ramanujan identities are equivalent to

$$
\begin{equation*}
t_{n}(1,3)=\sum_{k \mid 2 n+1}\left(\frac{k}{3}\right) \quad \text { and } \quad t_{n}(1,7)=\sum_{k \mid n+1,2 \nmid k}\left(\frac{k}{7}\right) \tag{1.3}
\end{equation*}
$$

where $\left(\frac{k}{m}\right)$ is the Legendre-Jacobi-Kronecker symbol. In 2006 the author and K.S. Williams [SW2, p. 369] showed that if $n+1=3^{\alpha} n_{0}\left(3 \nmid n_{0}\right)$, then

$$
\begin{equation*}
t_{n}(3,5)=\frac{1+(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)}{2} \sum_{k \mid n+1,2 \nmid k}\left(\frac{k}{15}\right) ; \tag{1.4}
\end{equation*}
$$

if $n+2=3^{\alpha} n_{0}\left(3 \nmid n_{0}\right)$, then

$$
\begin{equation*}
t_{n}(1,15)=\frac{1-(-1)^{\alpha}\left(\frac{n_{0}}{3}\right)}{2} \sum_{k \mid n+2,2 \nmid k}\left(\frac{k}{15}\right) \tag{1.5}
\end{equation*}
$$

In the paper we use the results in [SW1] to obtain the formulae for $t_{n}(1, b)$ in the cases $b=2,4,5,9,11,13,19,23,25,27,31,37,43,67,163$. Our method is based on the connection between $t_{n}(a, b)$ and the number of representations of $8 n+a+b$ by certain binary quadratic forms, whose corresponding class number of discriminant is 1,2 or 3 . We also obtain some explicit formulas for $t_{n}(a, b)$ when $8 n+a+b$ or $4 n+(a+b) / 2$ is an odd prime power, and give a general criterion for $t_{n}(a, b)>0$.
2. General formulas for $t_{n}(a, b)$.

Let $\mathbb{Z}^{2}=\{\langle x, y\rangle: x, y \in \mathbb{Z}\}$. For $n \in \mathbb{N}$ and $a, b, c \in \mathbb{Z}$ with $a, c>0$ and $b^{2}-4 a c<0$ let

$$
R(a, b, c ; n)=\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b x y+c y^{2}\right\}\right| .
$$

Theorem 2.1. Let $a, b, n \in \mathbb{N}$. Then

$$
\begin{aligned}
4 t_{n}(a, b)= & \left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right| \\
= & \begin{cases}\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 2 n+\frac{a+b}{4}=a x^{2}+a x y+\frac{a+b}{4} y^{2}, 2 \nmid y\right\}\right| \\
=R\left(a, a, \frac{a+b}{4} ; 2 n+\frac{a+b}{4}\right)-R\left(a, 0, b ; 2 n+\frac{a+b}{4}\right) & \text { if } 4 \mid a+b, \\
R\left(2 a, 2 a, \frac{a+b}{2} ; 4 n+\frac{a+b}{2}\right) & \text { if } 4 \mid a+b-2, \\
R(4 a, 4 a, a+b ; 8 n+a+b) & \text { if } 2 \nmid a+b .\end{cases}
\end{aligned}
$$

Proof. As $x(x-1) / 2=(1-x)(1-x-1) / 2$, we see that

$$
\begin{aligned}
4 t_{n}(a, b) & =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a\left(x^{2}-x\right) / 2+b\left(y^{2}-y\right) / 2\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a(2 x-1)^{2}+b(2 y-1)^{2}\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \nmid x y\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a(2 x+y)^{2}+b y^{2}, 2 \nmid y\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=4 a x^{2}+4 a x y+(a+b) y^{2}, 2 \nmid y\right\}\right|
\end{aligned}
$$

and so

$$
\begin{aligned}
4 t_{n}(a, b)= & \left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2 \mid x-y\right\}\right| \\
& \quad-\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a x^{2}+b y^{2}, 2|x, 2| y\right\}\right| \\
= & \left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=a(2 x+y)^{2}+b y^{2}\right\}\right| \\
& \quad-\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 8 n+a+b=4\left(a x^{2}+b y^{2}\right)\right\}\right| \\
= & R(4 a, 4 a, a+b ; 8 n+a+b)-R(4 a, 0,4 b ; 8 n+a+b) .
\end{aligned}
$$

Thus the result follows.
Remark 2.1 For $a, b, n \in \mathbb{N}$ with $2 \nmid a b$ and $8 \mid a+b$, we have

$$
\begin{aligned}
& R(a, 0, b ; 2 n+(a+b) / 4) \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 2 n+(a+b) / 4=a x^{2}+b y^{2}, 2 \mid x-y\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: 2 n+(a+b) / 4=a(2 x+y)^{2}+b y^{2}\right\}\right| \\
& =\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n+(a+b) / 8=2\left(a x^{2}+a x y+(a+b) y^{2} / 4\right)\right\}\right| \\
& = \begin{cases}0 & \text { if } 2 \nmid n+(a+b) / 8, \\
R(a, a,(a+b) / 4 ;(8 n+a+b) / 16) & \text { if } 2 \mid n+(a+b) / 8 .\end{cases}
\end{aligned}
$$

A nonsquare integer d with $d \equiv 0,1(\bmod 4)$ is called a discriminant. Let d be a discriminant. The conductor of d is the largest positive integer $f=f(d)$ such that $d / f^{2} \equiv 0,1(\bmod 4)$. As usual we set $w(d)=1,2,4,6$ according as $d>0, d<-4, d=-4$ or $d=-3$. For $a, b, c \in \mathbb{Z}$ we denote the form $a x^{2}+b x y+c y^{2}$ by (a, b, c), and the equivalence class containing the form (a, b, c) by $[a, b, c]$. It is well known that $[a, b, c]=[c,-b, a]=\left[a, 2 a k+b, a k^{2}+b k+c\right]$ for $k \in \mathbb{Z}$. Let $H(d)$ be the form class group of discriminant d and $h(d)=|H(d)|$. For $n \in \mathbb{N}$ and $[a, b, c] \in H(d)$ we define $R([a, b, c], n)$ as in [SW1]. Then $R([a, b, c], n)=R(a, b, c ; n)=R(a,-b, c ; n)$ for $a>0$ and $b^{2}-4 a c<0$. If $R([a, b, c], n)>0$, we say that n is represented by $[a, b, c]$ or (a, b, c), and write $n=a x^{2}+b x y+c y^{2}$.

Throughout this paper let (a, b) be the greatest common divisor of integers a and b. For a prime p and $n \in \mathbb{N}$ let $\operatorname{ord}_{p} n$ be the unique nonnegative integer α such that $p^{\alpha} \| n$ (i.e. $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n$).

Let d be a discriminant and $n \in \mathbb{N}$. In view of [SW1, Lemma 4.1], we introduce

$$
\begin{align*}
\delta(n, d) & =\sum_{m \mid n}\left(\frac{d}{m}\right) \tag{2.1}\\
& = \begin{cases}\prod_{\left(\frac{d}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right) & \text { if } 2 \mid \operatorname{ord}_{q} n \text { for every prime } q \text { with }\left(\frac{d}{q}\right)=-1, \\
0 & \text { otherwise },\end{cases}
\end{align*}
$$

where in the product p runs over all distinct primes such that $p \mid n$ and $\left(\frac{d}{p}\right)=1$. As in [SW1] we also define

$$
N(n, d)=\sum_{K \in H(d)} R(K, n) .
$$

Lemma 2.1 ([SW1, Theorem 4.1]). Let d be a discriminant with conductor f. Let $n \in \mathbb{N}$ and $d_{0}=d / f^{2}$. Then
$N(n, d)= \begin{cases}0 & \text { if }\left(n, f^{2}\right) \text { is not a square, }, \\ m \prod_{p \mid m}\left(1-\frac{1}{p}\left(\frac{d / m^{2}}{p}\right)\right) \cdot w(d) \delta\left(\frac{n}{m^{2}}, d_{0}\right) & \text { if }\left(n, f^{2}\right)=m^{2} \text { for } m \in \mathbb{N},\end{cases}$
where in the product p runs over all distinct prime divisors of m. In particular, when $(n, f)=1$ we have $N(n, d)=w(d) \delta\left(n, d_{0}\right)$.

For $d \in\{-3,-4,-7,-12,-16,-28\}$ it is known that $h(d)=1$. Thus applying Theorem 2.1 we have

$$
\begin{aligned}
4 t_{n}(1,1) & =R(2,2,1 ; 4 n+1)=N(4 n+1,-4), \\
4 t_{n}(1,3) & =R(1,1,1 ; 2 n+1)-R(1,0,3 ; 2 n+1) \\
& =N(2 n+1,-3)-N(2 n+1,-12), \\
4 t_{n}(1,7) & =R(1,1,2 ; 2 n+2)-R(1,0,7 ; 2 n+2) \\
& =N(2 n+2,-7)-N(2 n+2,-28) .
\end{aligned}
$$

This together with Lemma 2.1 yields (1.2) and (1.3). By Theorem 2.1 we have

$$
4 t_{n}(1,15)=R(1,1,4 ; 2 n+4)-R(1,0,15 ; 2 n+4)
$$

and

$$
\begin{aligned}
4 t_{n}(3,5) & =R(3,3,2 ; 2 n+2)-R(3,0,5 ; 2 n+2) \\
& =R(2,1,2 ; 2 n+2)-R(3,0,5 ; 2 n+2) .
\end{aligned}
$$

As $h(-15)=h(-60)=2$, applying the above and [SW1, Theorem 9.3] we derive (1.4) and (1.5).

Theorem 2.2. Let $a, b, n \in \mathbb{N}$ with $(a, b)=1$. Let

$$
D=\left\{\begin{array}{ll}
-a b & \text { if } 4 \mid a+b, \\
-4 a b & \text { if } 2 \| a+b, \\
-16 a b & \text { if } 2 \nmid a+b,
\end{array} \quad n^{\prime}= \begin{cases}2 n+\frac{a+b}{4} & \text { if } 4 \mid a+b, \\
4 n+\frac{a+b}{2} & \text { if } 2 \| a+b, \\
8 n+a+b & \text { if } 2 \nmid a+b\end{cases}\right.
$$

and let f be the conductor of D. If $\left(n^{\prime}, f^{2}\right)$ is not a square or if there is a prime p such that $\left(\frac{D / f^{2}}{p}\right)=-1$ and $2 \nmid \operatorname{ord}_{p} n^{\prime}$, then $t_{n}(a, b)=0$.

Proof. By (2.1) and Lemma 2.1 we have $N\left(n^{\prime}, D\right)=0$ and hence $R\left(K, n^{\prime}\right)=$ 0 for any $K \in H(D)$. Thus applying Theorem 2.1 we obtain the result.

For $n \in \mathbb{N}$ let C_{n} denote the cyclic group of order n. For $m, n \in \mathbb{N}$ let $C_{m} \times C_{n}$ denote the direct product of C_{m} and C_{n}.
Lemma 2.2. Let d be a discriminant with conductor f. Suppose $H(d) \cong$ $C_{2} \times \cdots \times C_{2}$ and $A \in H(d)$ is not the identity. Let p be a prime such that $p \nmid f$ and $\alpha \in \mathbb{N}$. Then

$$
R\left(A, p^{\alpha}\right)= \begin{cases}w(d) & \text { if } 2 \nmid \alpha, p \mid d \text { and } p \text { is represented by } A, \\ w(d)(\alpha+1) & \text { if } 2 \nmid \alpha, p \nmid d \text { and } p \text { is represented by } A, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. The result follows immediately from [SW1, Theorem 5.1].
Theorem 2.3. Let $a, b, n \in \mathbb{N}$ with $(a, b)=1, a b>1$ and $4 \nmid a+b$.
(i) Suppose $2 \| a+b$ and $4 n+(a+b) / 2=p^{\alpha}$, where p is a prime such that $p \nmid f(-4 a b)$ and $\alpha \in \mathbb{N}$. If $H(-4 a b) \cong C_{2} \times \cdots \times C_{2}$, then

$$
t_{n}(a, b)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha \text { and } p=2 a x^{2}+2 a x y+\frac{a+b}{2} y^{2}, \\ 0 & \text { otherwise } .\end{cases}
$$

(ii) Suppose $2 \nmid a+b$ and $8 n+a+b=p^{\alpha}$, where p is a prime such that $p \nmid f(-16 a b)$ and $\alpha \in \mathbb{N}$. If $H(-16 a b) \cong C_{2} \times \cdots \times C_{2}$, then

$$
t_{n}(a, b)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha \text { and } p=4 a x^{2}+4 a x y+(a+b) y^{2}, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Suppose $2 \| a+b$. By Theorem 2.1 we have

$$
4 t_{n}(a, b)=R(2 a, 2 a,(a+b) / 2 ; 4 n+(a+b) / 2)=R\left(2 a, 2 a,(a+b) / 2 ; p^{\alpha}\right)
$$

As $(a, b)=1$ we see that $[2 a, 2 a,(a+b) / 2] \in H(-4 a b)$. If $1=2 a x^{2}+2 a x y+$ $\frac{a+b}{2} y^{2}$ for some $x, y \in \mathbb{Z}$, then $2=a(2 x+y)^{2}+b y^{2}$. Hence $y(2 x+y) \neq 0$ and so $2 \geqslant a+b$. This contradicts the fact $a b>1$. Thus 1 cannot be represented by $2 a x^{2}+2 a x y+\frac{a+b}{2} y^{2}$. Therefore $[2 a, 2 a,(a+b) / 2]$ is not the identity in $H(-4 a b)$. If $p=2 a x^{2}+2 a x y+\frac{a+b}{2} y^{2}$ for some $x, y \in \mathbb{Z}$, then $2 p=a(2 x+y)^{2}+b y^{2}$. Note that $(a, b)=1$. We see that $p \mid a$ implies $p \mid y$ and so $2 p \geqslant b p^{2}$, and $p \mid b$ implies $p \mid 2 x+y$ and so $2 p \geqslant a p^{2}$. Thus $p \nmid 4 a b$. Now applying Lemma 2.2 in the case $d=-4 a b$ and $A=[2 a, 2 a,(a+b) / 2]$ we deduce (i). Part (ii) can be proved similarly.
3. Formulas for $t_{n}(1, b)$ when $b=2,4,5,9,13,25,37$.

Theorem 3.1. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
t_{n}(1,2) & =\frac{1}{2} \sum_{k \mid 8 n+3}\left(\frac{-2}{k}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{2} \prod_{p \equiv 1,3(\bmod 8)}\left(1+\operatorname{ord}_{p}(8 n+3)\right) \\
\text { if } 2 \mid \operatorname{ord}_{q}(8 n+3) \text { for every prime } q \equiv 5,7(\bmod 8), \\
0 & \text { otherwise },
\end{array}\right.
\end{aligned}
$$

where in the product p runs over all distinct primes satisfying $p \mid 8 n+3$ and $p \equiv 1,3(\bmod 8)$.

Proof. By Theorem 2.1 we have $t_{n}(1,2)=\frac{1}{4} R(4,4,3 ; 8 n+3)$. As $f(-32)=$ $2,[4,4,3]=[3,-4,4]=[3,2,3]$ and $H(-32)=\{[1,0,8],[3,2,3]\}$, by [SW1, Theorem 9.3] and (2.1) we have $R(4,4,3 ; 8 n+3)=\left(1-\left(\frac{-1}{8 n+3}\right)\right) \delta(8 n+3,-8)=$ $2 \delta(8 n+3,-8)$. Now combining the above with (2.1) gives the result.
Theorem 3.2. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
t_{n}(1,4) & =\frac{1}{2} \sum_{k \mid 8 n+5}\left(\frac{-1}{k}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{2} \prod_{p \equiv 1(\bmod 4)}\left(1+\operatorname{ord}_{p}(8 n+5)\right) \\
\text { if } 2 \mid \operatorname{ord}_{q}(8 n+5) \text { for every prime } q \equiv 3(\bmod 4), \\
0 & \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where in the product p runs over all distinct primes satisfying $p \mid 8 n+5$ and $p \equiv 1(\bmod 4)$.

Proof. By Theorem 2.1 we have $t_{n}(1,4)=\frac{1}{4} R(4,4,5 ; 8 n+5)$. As $f(-64)=4$ and $H(-64)=\{[1,0,16],[4,4,5]\}$, by [SW1, Theorem 9.3] and (2.1) we have $R(4,4,5 ; 8 n+5)=\left(1-\left(\frac{8 n+5}{2}\right)\right) \delta(8 n+5,-4)=2 \delta(8 n+5,-4)$. Now combining the above with (2.1) gives the result.

Theorem 3.3. Let $n \in \mathbb{N}$ and $4 n+3=5^{\alpha} n_{0}\left(5 \nmid n_{0}\right)$. Then

$$
\begin{aligned}
t_{n}(1,5) & =\frac{1}{4}\left(1-\left(\frac{n_{0}}{5}\right)\right) \sum_{k \mid 4 n+3}\left(\frac{-5}{k}\right) \\
& =\left\{\begin{array}{c}
\frac{1}{2} \prod_{p \equiv 1,3,7,9} \prod_{(\bmod 20)}\left(1+\operatorname{ord}_{p}(4 n+3)\right) \quad \text { if } n_{0} \equiv \pm 2(\bmod 5) \text { and } \\
2 \mid(4 n+3) \text { for every prime } q \equiv 11,13,17,19(\bmod 20),
\end{array}\right.
\end{aligned}
$$

where in the product p runs over all distinct primes satisfying $p \mid 4 n+3$ and $p \equiv 1,3,7,9(\bmod 20)$.

Proof. By Theorem 2.1 we have $t_{n}(1,5)=\frac{1}{4} R(2,2,3 ; 4 n+3)$. As $f(-20)=1$ and $H(-20)=\{[1,0,5],[2,2,3]\}$, by [SW1, Theorem 9.3] and (2.1) we have $R(2,2,3 ; 4 n+3)=\left(1-\left(\frac{n_{0}}{5}\right)\right) \delta(4 n+3,-20)$. Now combining the above with (2.1) gives the result.

Theorem 3.4. Let $n \in \mathbb{N}$. Then

$$
t_{n}(1,9)= \begin{cases}\frac{1}{2} \sum_{k \mid 4 n+5}\left(\frac{-1}{k}\right) & \text { if } 3 \mid n \\ \sum_{k \left\lvert\, \frac{4 n+5}{9}\right.}\left(\frac{-1}{k}\right) & \text { if } 9 \mid n-1, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 2.1 we have $t_{n}(1,9)=\frac{1}{4} R(2,2,5 ; 4 n+5)$. As $f(-36)=3$ and $H(-36)=\{[1,0,9],[2,2,5]\}$, by [SW1, Theorem 9.3] and (2.1) we obtain the result.

From (2.1) and Theorem 3.4 we have:
Corollary 3.1. Let $n \in \mathbb{N}$. Then n is represented by $x(x-1) / 2+9 y(y-1) / 2$ if and only if $n \equiv 0,1,3,6(\bmod 9)$ and $2 \mid \operatorname{ord}_{q}(4 n+5)$ for every prime $q \equiv 3(\bmod 4)$.
Theorem 3.5. Let $n \in \mathbb{N}$ and $4 n+7=13^{\alpha} n_{0}\left(13 \nmid n_{0}\right)$. Then

$$
\begin{aligned}
t_{n}(1,13) & =\frac{1}{4}\left(1-\left(\frac{n_{0}}{13}\right)\right) \sum_{k \mid 4 n+7}\left(\frac{-13}{k}\right) \\
& =\left\{\begin{array}{cc}
\frac{1}{2} \prod_{\left(\frac{-13}{p}\right)=1}\left(1+\operatorname{ord}_{p}(4 n+7)\right) \quad \text { if }\left(\frac{n_{0}}{13}\right)=-1 \text { and } \\
2 \mid \operatorname{ord}_{q}(4 n+7) \text { for every odd prime } q \text { with }\left(\frac{-13}{q}\right)=-1, \\
0 & \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where in the product p runs over all distinct primes satisfying $\left(\frac{-13}{p}\right)=1$ and $p \mid 4 n+7$.

Proof. By Theorem 2.1 we have $t_{n}(1,13)=\frac{1}{4} R(2,2,7 ; 4 n+7)$. As $f(-52)=1$ and $H(-52)=\{[1,0,13],[2,2,7]\}$, by [SW1, Theorem 9.3] and (2.1) we have $R(2,2,7 ; 4 n+7)=\left(1-\left(\frac{n_{0}}{13}\right)\right) \delta(4 n+7,-52)$. Now combining the above with (2.1) gives the result.

Theorem 3.6. Let $n \in \mathbb{N}$. Then

$$
t_{n}(1,25)= \begin{cases}\frac{1}{2} \sum_{k \mid 4 n+13}\left(\frac{-1}{k}\right) & \text { if } n \equiv 0,1(\bmod 5), \\ \sum_{k \left\lvert\, \frac{4 n+13}{25}\right.}\left(\frac{-1}{k}\right) & \text { if } n \equiv 3(\bmod 25) \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 2.1 we have $t_{n}(1,25)=\frac{1}{4} R(2,2,13 ; 4 n+13)$. As $f(-100)$ $=5$ and $H(-100)=\{[1,0,25],[2,2,13]\}$, by [SW1, Theorem 9.3] and (2.1) we obtain the result.

From (2.1) and Theorem 3.6 we have:
Corollary 3.2. Let $n \in \mathbb{N}$. Then n is represented by $x(x-1) / 2+25 y(y-1) / 2$ if and only if $2 \mid \operatorname{ord}_{q}(4 n+13)$ for every prime $q \equiv 3(\bmod 4)$ and n satisfies $n \equiv 0,1(\bmod 5)$ or $n \equiv 3(\bmod 25)$.

Theorem 3.7. Let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
t_{n}(1,37) & =\frac{1}{2} \sum_{k \mid 4 n+19}\left(\frac{-37}{k}\right) \\
& =\left\{\begin{array}{l}
\frac{1}{2} \prod_{\left(\frac{-37}{p}\right)=1}\left(1+\operatorname{ord}_{p}(4 n+19)\right) \\
\quad \text { if } 2 \mid \operatorname{ord}_{q}(4 n+19) \text { for every odd prime } q \text { with }\left(\frac{-37}{q}\right)=-1, \\
0 \\
\text { otherwise },
\end{array}\right.
\end{aligned}
$$

where p runs over all distinct primes satisfying $\left(\frac{-37}{p}\right)=1$ and $p \mid 4 n+19$.
Proof. By Theorem 2.1, $t_{n}(1,37)=\frac{1}{4} R(2,2,19 ; 4 n+19)$. As $f(-148)=1$ and $H(-148)=\{[1,0,37],[2,2,19]\}$, by [SW1, Theorem 9.3] and (2.1) we obtain the result.
4. Formulas for $t_{n}(1, b)$ when $b=11,19,23,27,31,43,67,163$.

Theorem 4.1. Let $n \in \mathbb{N}$ and $b \in\{11,19,43,67,163\}$. If there is a prime p such that $\left(\frac{p}{b}\right)=-1$ and $2 \nmid \operatorname{ord}_{p}(2 n+(b+1) / 4)$, then $t_{n}(1, b)=0$. If $2 \mid \operatorname{ord}_{q}(2 n+(b+1) / 4)$ for every prime q with $\left(\frac{q}{b}\right)=-1$, then

$$
3 t_{n}(1, b)=\left\{\begin{array}{cc}
\prod_{\left(\frac{p}{b}\right)=1}\left(1+\operatorname{ord}_{p}(2 n+(b+1) / 4)\right) \quad \text { if there is a prime } \\
q=4 x^{2}+2 x y+\frac{b+1}{4} y^{2} & \text { with } 3 \left\lvert\,\left(1+\operatorname{ord}_{q}\left(2 n+\frac{b+1}{4}\right)\right)\right., \\
\prod_{\left(\frac{p}{b}\right)=1}\left(1+\operatorname{ord}_{p}(2 n+(b+1) / 4)\right) \\
-(-1)^{\mu} \prod_{p=x^{2}+b y^{2} \neq b}\left(1+\operatorname{ord}_{p}(2 n+(b+1) / 4)\right) \\
\text { otherwise, }
\end{array}\right.
$$

where

$$
\mu=\sum_{\substack{p=4 x^{2}+2 x y+\frac{b+1}{4} y^{2} \\ \operatorname{ord}_{p}(2 n+(b+1) / 4) \equiv 1(\bmod 3)}} 1
$$

and p runs over all distinct prime divisors of $2 n+(b+1) / 4$.

Proof. Set $b_{0}=(b+1) / 4$. Then b_{0} is odd. From Theorem 2.1 we have

$$
4 t_{n}(1, b)=R\left(1,1, b_{0} ; 2 n+b_{0}\right)-R\left(1,0, b ; 2 n+b_{0}\right)
$$

As $H(-b)=\left\{\left[1,1, b_{0}\right]\right\}$ and $f(-b)=1$, by Lemma 2.1 we have

$$
R\left(1,1, b_{0} ; 2 n+b_{0}\right)=N\left(2 n+b_{0},-b\right)=2 \sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right) .
$$

Since $H(-4 b)=\left\{[1,0, b],\left[4,2, b_{0}\right],\left[4,-2, b_{0}\right]\right\}$ and $f(-4 b)=2$, by $[\mathrm{SW} 1$, Theorem 10.2(i)] we have (4.1)

$$
\begin{aligned}
& \left(R\left(1,0, b ; 2 n+b_{0}\right)-R\left(4,2, b_{0} ; 2 n+b_{0}\right)\right) / 2 \\
& =\left\{\begin{array}{l}
0 \quad \text { if there is a prime } p \text { such that }\left(\frac{p}{b}\right)=-1 \text { and } 2 \nmid \operatorname{ord}_{p}\left(2 n+b_{0}\right), \\
\text { or } p=4 x^{2}+2 x y+b_{0} y^{2} \text { and } \operatorname{ord}_{p}\left(2 n+b_{0}\right) \equiv 2(\bmod 3), \\
(-1)^{\mu} \prod_{p=x^{2}+b y^{2} \neq b}\left(1+\operatorname{ord}_{p}\left(2 n+b_{0}\right)\right) \quad \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where p runs over all distinct prime divisors of $2 n+b_{0}$. As

$$
R\left(1,0, b ; 2 n+b_{0}\right)+2 R\left(4,2, b_{0} ; 2 n+b_{0}\right)=N\left(2 n+b_{0},-4 b\right)=2 \sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right),
$$

combining the above we see that

$$
\begin{aligned}
4 t_{n}(1, b)= & 2 \sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right)-\frac{1}{3}\left\{2\left(R\left(1,0, b ; 2 n+b_{0}\right)-R\left(4,2, b_{0} ; 2 n+b_{0}\right)\right)\right. \\
& \left.+R\left(1,0, b ; 2 n+b_{0}\right)+2 R\left(4,2, b_{0} ; 2 n+b_{0}\right)\right\} \\
= & 2 \sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right)-\frac{2}{3} \sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right) \\
& \quad-\frac{2}{3}\left(R\left(1,0, b ; 2 n+b_{0}\right)-R\left(4,2, b_{0} ; 2 n+b_{0}\right)\right)
\end{aligned}
$$

That is,

$$
\begin{equation*}
3 t_{n}(1, b)=\sum_{k \mid 2 n+b_{0}}\left(\frac{-b}{k}\right)-\frac{1}{2}\left(R\left(1,0, b ; 2 n+b_{0}\right)-R\left(4,2, b_{0} ; 2 n+b_{0}\right)\right) \tag{4.2}
\end{equation*}
$$

This together with (4.1) and (2.1) yields the result.
From Theorem 4.1 we have:

Corollary 4.1. Let $n \in \mathbb{N}$ and $b \in\{11,19,43,67,163\}$. Then n is represented by $x(x-1) / 2+b y(y-1) / 2$ if and only if $2 \left\lvert\, \operatorname{ord}_{p}\left(2 n+\frac{b+1}{4}\right)\right.$ for every prime p with $\left(\frac{p}{b}\right)=-1$ and there is a prime divisor of $2 n+\frac{b+1}{4}$ represented by $4 x^{2}+$ $2 x y+\frac{b+1}{4} y^{2}$.

For $k=1,2, \ldots, 12$ let

$$
\begin{equation*}
q \prod_{m=1}^{\infty}\left\{\left(1-q^{k m}\right)\left(1-q^{(24-k) m}\right)\right\}=\sum_{n=1}^{\infty} \phi_{k}(n) q^{n} \quad(|q|<1) . \tag{4.3}
\end{equation*}
$$

In [SW2], for $k=1,2,3,4,6,8,12$ we showed that $\phi_{k}(n)$ is a multiplicative function of n and determined the value of $\phi_{k}(n)$. See [SW2, Theorems 4.4 and 4.5].

Putting $b=11$ in (4.2) and then applying the fact $R(4,2,3 ; n)=R(3,-2,4 ; n)$ $=R(3,2,4 ; n)$ and $[\mathrm{SW} 2,(4.1)]$ we deduce:
Theorem 4.2. Let $n \in \mathbb{N}$. Then

$$
3 t_{n}(1,11)=\sum_{k \mid 2 n+3}\left(\frac{k}{11}\right)-\phi_{2}(2 n+3) .
$$

Theorem 4.3. Let $n \in \mathbb{N}$. Then

$$
t_{n}(1,27)= \begin{cases}\frac{1}{3}\left(\sum_{k \mid 2 n+7}\left(\frac{k}{3}\right)-\phi_{6}(2 n+7)\right) & \text { if } 3 \mid n, \\ \sum_{k \left\lvert\, \frac{2 n+7}{9}\right.}\left(\frac{k}{3}\right) & \text { if } n \equiv 1,10(\bmod 27), \\ 0 & \text { otherwise },\end{cases}
$$

where $\phi_{6}(m)$ is given by (4.3) or [SW2, Theorem 4.4(iii)].
Proof. From Theorem 2.1 we have

$$
4 t_{n}(1,27)=R(1,1,7 ; 2 n+7)-R(1,0,27 ; 2 n+7)
$$

As $f(-27)=3$ and $H(-27)=\{[1,1,7]\}$, by Lemma 2.1 we have

$$
R(1,1,7 ; 2 n+7)=N(2 n+7,-27)= \begin{cases}2 \sum_{k \mid 2 n+7}\left(\frac{-3}{k}\right) & \text { if } 3 \nmid n-1 \\ 6 \sum_{k \left\lvert\, \frac{2 n+7}{9}\right.}\left(\frac{-3}{k}\right) & \text { if } 9 \mid n-1 \\ 0 & \text { if } 3 \| n-1\end{cases}
$$

From [SW2, Theorem 2.2 or (4.1)] we know that

$$
R(1,0,27 ; 2 n+7)-R(4,2,7 ; 2 n+7)=2 \phi_{6}(2 n+7) .
$$

On the other hand, as $H(-108)=\{[1,0,27],[4,2,7],[4,-2,7]\}$ and $f(-108)=$ 6, using Lemma 2.1 we have

$$
\begin{aligned}
& R(1,0,27 ; 2 n+7)+2 R(4,2,7 ; 2 n+7) \\
& =N(2 n+7,-108)=N(2 n+7,-27)
\end{aligned}
$$

Thus

$$
R(1,0,27 ; 2 n+7)=\frac{4}{3} \phi_{6}(2 n+7)+\frac{1}{3} N(2 n+7,-27) .
$$

Hence,

$$
\begin{aligned}
4 t_{n}(1,27) & =N(2 n+7,-27)-R(1,0,27 ; 2 n+7) \\
& =N(2 n+7,-27)-\frac{1}{3} N(2 n+7,-27)-\frac{4}{3} \phi_{6}(2 n+7) .
\end{aligned}
$$

That is,

$$
t_{n}(1,27)=\frac{1}{6} N(2 n+7,-27)-\frac{1}{3} \phi_{6}(2 n+7) .
$$

From [SW2, Theorem 4.4] we know that $\phi_{6}(2 n+7)=0$ for $n \not \equiv 0(\bmod 3)$. Thus combining the above with (2.1) we deduce the result.

Corollary 4.2. Let $n \in \mathbb{N}$. If $3 \mid n$, then n is represented by $x(x-1) / 2+$ $27 y(y-1) / 2$ if and only if $2 \mid \operatorname{ord}_{p}(2 n+7)$ for every prime $p \equiv 5(\bmod 6)$ and there is a prime divisor of $2 n+7$ represented by $4 x^{2}+2 x y+7 y^{2}$. If $3 \nmid n$, then n is represented by $x(x-1) / 2+27 y(y-1) / 2$ if and only if $n \equiv 1,10(\bmod 27)$ and $2 \mid \operatorname{ord}_{p}(2 n+7)$ for every prime $p \equiv 5(\bmod 6)$.

Theorem 4.4. Let $n \in \mathbb{N}, b \in\{23,31\}$ and $n+(b+1) / 8=2^{\alpha} n_{0}\left(2 \nmid n_{0}\right)$. If there is a prime p such that $\left(\frac{p}{b}\right)=-1$ and $2 \nmid \operatorname{ord}_{p} n_{0}$, then $t_{n}(1, b)=0$. If $2 \mid \operatorname{ord}_{q} n_{0}$ for every prime q with $\left(\frac{q}{b}\right)=-1$, setting $b_{1}=(b+1) / 8$ we have

$$
\begin{aligned}
& 3 t_{n}(1, b)-\prod_{\left(\frac{p}{b}\right)=1}\left(1+\operatorname{ord}_{p} n_{0}\right) \\
& =\left\{\begin{array}{c}
0 \quad \text { if there is a prime } q \text { such that } q=2 x^{2}+x y+b_{1} y^{2} \\
\text { and } 3 \mid\left(1+\operatorname{ord}_{q} n_{0}\right), \\
-(-1)^{\mu} \prod_{p=x^{2}+x y+2 b_{1} y^{2} \neq b}\left(1+\operatorname{ord}_{p} n_{0}\right) \\
\text { if } \alpha \equiv 0,1(\bmod 3) \text { and } \operatorname{ord}_{q} n_{0} \equiv 0,1(\bmod 3) \\
\text { for every prime } q=2 x^{2}+x y+b_{1} y^{2}, \\
2(-1)^{\mu} \prod_{p=x^{2}+x y+2 b_{1} y^{2} \neq b}\left(1+\operatorname{ord}_{p} n_{0}\right) \\
\text { if } \alpha \equiv 2(\bmod 3) \text { and } \operatorname{ord}_{q} n_{0} \equiv 0,1(\bmod 3) \\
\text { for every prime } q=2 x^{2}+x y+b_{1} y^{2}, \\
11
\end{array}\right.
\end{aligned}
$$

where

$$
\mu=\sum_{\substack{p=2 x^{2}+x y+b_{1} y^{2} \\ \operatorname{ord}_{p} n_{0} \equiv 1(\bmod 3)}} 1
$$

and p runs over all distinct prime divisors of n_{0}.
Proof. From Theorem 2.1 we have $4 t_{n}(1, b)=R\left(1,1,2 b_{1} ; 2 n+2 b_{1}\right)-R(1,0, b ; 2 n+$ $2 b_{1}$). By Remark 2.1,

$$
R\left(1,0, b ; 2 n+2 b_{1}\right)= \begin{cases}0 & \text { if } 2 \nmid n+b_{1} \\ R\left(1,1,2 b_{1} ;\left(n+b_{1}\right) / 2\right) & \text { if } 2 \mid n+b_{1}\end{cases}
$$

Thus

$$
4 t_{n}(1, b)= \begin{cases}R\left(1,1,2 b_{1} ; 2 n+2 b_{1}\right) & \text { if } 2 \nmid n+b_{1} \tag{4.4}\\ R\left(1,1,2 b_{1} ; 2 n+2 b_{1}\right)-R\left(1,1,2 b_{1} ; \frac{n+b_{1}}{2}\right) & \text { if } 2 \mid n+b_{1}\end{cases}
$$

As $H(-b)=\left\{\left[1,1,2 b_{1}\right],\left[2,1, b_{1}\right],\left[2,-1, b_{1}\right]\right\}$ and $f(-b)=1$, using Lemma 2.1 we see that for $m \in \mathbb{N}$,

$$
R\left(1,1,2 b_{1} ; m\right)+2 R\left(2,1, b_{1} ; m\right)=N(m,-b)=2 \sum_{k \mid m}\left(\frac{-b}{k}\right)
$$

Set $F(m)=\left(R\left(1,1,2 b_{1} ; m\right)-R\left(2,1, b_{1} ; m\right)\right) / 2$. We then derive

$$
\begin{equation*}
R\left(1,1,2 b_{1} ; m\right)=\frac{4}{3} F(m)+\frac{2}{3} \sum_{k \mid m}\left(\frac{-b}{k}\right) \tag{4.5}
\end{equation*}
$$

From [SW1, Theorem 7.4(i)] we know that $F(m)$ is a multiplicative function of m. For any nonnegative integer r, by [SW1, Theorem 8.6(i)] we have

$$
F\left(2^{r}\right)= \begin{cases}-1 & \text { if } r \equiv 1(\bmod 3) \tag{4.6}\\ 0 & \text { if } r \equiv 2(\bmod 3) \\ 1 & \text { if } r \equiv 0(\bmod 3)\end{cases}
$$

If $2 \nmid n+b_{1}$, as $F(m)$ is multiplicative we have $F\left(2 n+2 b_{1}\right)=F(2) F\left(n+b_{1}\right)=$ $-F\left(n+b_{1}\right)$. We also have

$$
\sum_{k \mid 2 n+2 b_{1}}\left(\frac{-b}{k}\right)=\sum_{k \mid n+b_{1}}\left\{\left(\frac{-b}{k}\right)+\left(\frac{-b}{2 k}\right)\right\}=2 \sum_{k \mid n+b_{1}}\left(\frac{k}{b}\right)
$$

Thus combining the above we obtain

$$
\begin{aligned}
4 t_{n}(1, b) & =R\left(1,1,2 b_{1} ; 2 n+2 b_{1}\right)=\frac{4}{3} F\left(2 n+2 b_{1}\right)+\frac{2}{3} \sum_{k \mid 2 n+2 b_{1}}\left(\frac{-b}{k}\right) \\
& =-\frac{4}{3} F\left(n+b_{1}\right)+\frac{4}{3} \sum_{k \mid n+b_{1}}\left(\frac{k}{b}\right)
\end{aligned}
$$

Now assume $2 \mid n+b_{1}$. As $F(m)$ is multiplicative and $n+b_{1}=2^{\alpha} n_{0}\left(2 \nmid n_{0}\right)$, by (4.4) and (4.5) we have

$$
\begin{aligned}
& 4 t_{n}(1, b) \\
& =\frac{4}{3}\left(F\left(2 n+2 b_{1}\right)-F\left(\frac{n+b_{1}}{2}\right)\right)+\frac{2}{3}\left(\sum_{k \mid 2 n+2 b_{1}}\left(\frac{-b}{k}\right)-\sum_{k \left\lvert\, \frac{n+b_{1}}{2}\right.}\left(\frac{-b}{k}\right)\right) \\
& =\frac{4}{3}\left(F\left(2^{\alpha+1} n_{0}\right)-F\left(2^{\alpha-1} n_{0}\right)\right)+\frac{2}{3} \sum_{\substack{k \mid 2^{\alpha+1} n_{0} \\
k \nmid 2^{\alpha-1} n_{0}}}\left(\frac{-b}{k}\right) \\
& =\frac{4}{3}\left(F\left(2^{\alpha+1}\right) F\left(n_{0}\right)-F\left(2^{\alpha-1}\right) F\left(n_{0}\right)\right)+\frac{2}{3} \sum_{k \mid n_{0}}\left\{\left(\frac{-b}{2^{\alpha} k}\right)+\left(\frac{-b}{2^{\alpha+1} k}\right)\right\} \\
& =\frac{4}{3}\left(F\left(2^{\alpha+1}\right)-F\left(2^{\alpha-1}\right)\right) F\left(n_{0}\right)+\frac{4}{3} \sum_{k \mid n_{0}}\left(\frac{-b}{k}\right) .
\end{aligned}
$$

By (4.6) we have

$$
F\left(2^{\alpha+1}\right)-F\left(2^{\alpha-1}\right)= \begin{cases}-1-0=-1 & \text { if } \alpha \equiv 0(\bmod 3), \\ 0-1=-1 & \text { if } \alpha \equiv 1(\bmod 3), \\ 1-(-1)=2 & \text { if } \alpha \equiv 2(\bmod 3)\end{cases}
$$

Thus,

$$
t_{n}(1, b)= \begin{cases}\frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{-b}{k}\right)-F\left(n_{0}\right)\right) & \text { if } \alpha \equiv 0,1(\bmod 3), \\ \frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{-b}{k}\right)+2 F\left(n_{0}\right)\right) & \text { if } \alpha \equiv 2(\bmod 3) .\end{cases}
$$

As $f(-b)=1$, combining the above with (2.1) and [SW1, Theorem 10.2(i) (with $\left.\left.n=n_{0}, d=-b, I=\left[1,1,2 b_{1}\right], A=\left[2,1, b_{1}\right]\right)\right]$ we deduce the result.
Corollary 4.3. Let $n \in \mathbb{N}, b \in\{23,31\}$ and $n+(b+1) / 8=2^{\alpha} n_{0}\left(2 \nmid n_{0}\right)$. If $\alpha \equiv 0,1(\bmod 3)$, then n is represented by $x(x-1) / 2+b y(y-1) / 2$ if and only if $2 \mid \operatorname{ord}_{p} n_{0}$ for every prime p with $\left(\frac{p}{b}\right)=-1$ and there is a prime divisor of n_{0} represented by $2 x^{2}+x y+\frac{b+1}{8} y^{2}$.
Theorem 4.5. Let $n \in \mathbb{N}$ and $n+3=2^{\alpha} n_{0}\left(2 \nmid n_{0}\right)$. Then

$$
t_{n}(1,23)= \begin{cases}\frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{k}{23}\right)+2 \phi_{1}\left(n_{0}\right)\right) & \text { if } \alpha \equiv 2(\bmod 3) \\ \frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{k}{23}\right)-\phi_{1}\left(n_{0}\right)\right) & \text { if } \alpha \equiv 0,1(\bmod 3) .\end{cases}
$$

Proof. For $m \in \mathbb{N}$ let $F(m)=(R(1,1,6 ; m)-R(2,1,3 ; m)) / 2$. By [SW2, (4.1)] we have $F(m)=\phi_{1}(m)$. According to the proof of Theorem 4.4 we have

$$
t_{n}(1,23)= \begin{cases}\frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{-23}{k}\right)-F\left(n_{0}\right)\right) & \text { if } \alpha \equiv 0,1(\bmod 3) \\ \frac{1}{3}\left(\sum_{k \mid n_{0}}\left(\frac{-23}{k}\right)+2 F\left(n_{0}\right)\right) & \text { if } \alpha \equiv 2(\bmod 3)\end{cases}
$$

Thus the result follows.

5. Formulas for $t_{n}(a, b)$ when $\frac{8 n+a+b}{(2, a+b)}$ is a prime power.

Theorem 5.1. Let $n \in \mathbb{N}, b \in\{6,10,12,22,28,58\}$ and $8 n+b+1=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Let $b=2^{r} b_{0}\left(2 \nmid b_{0}\right)$. Then

$$
t_{n}(1, b)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha, p \equiv b+1(\bmod 8) \text { and }\left(\frac{p}{b_{0}}\right)=1, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. From [SW1, Table 9.1] we see that $p=4 x^{2}+4 x y+(b+1) y^{2}=(2 x+$ $y)^{2}+b y^{2}$ if and only if $p \equiv b+1(\bmod 8)$ and $\left(\frac{p}{b_{0}}\right)=1$. By Theorem 2.1 we have $4 t_{n}(1, b)=R(4,4, b+1 ; 8 n+b+1)=R\left(4,4, b+1 ; p^{\alpha}\right)$. As $[4,4, b+1] \in H(-16 b)$, $H(-16 b) \cong C_{2} \times C_{2}$ (see [SW1, Proposition 11.1(ii)]) and $f(-16 b) \in\{2,8\}$, applying Theorem 2.3(ii) (with $a=1$) and the above we obtain the result.

Theorem 5.2. Let $n \in \mathbb{N}, b \in\{3,5,11,29\}$ and $8 n+b+2=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(2, b)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha, p \equiv b+2(\bmod 8) \text { and }\left(\frac{p}{b}\right)=-1, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. From [SW1, Table 9.1] we see that $p=8 x^{2}+8 x y+(b+2) y^{2}=2(2 x+$ $y)^{2}+b y^{2}$ if and only if $p \equiv b+2(\bmod 8)$ and $\left(\frac{p}{b}\right)=-1$. By Theorem 2.1 we have $4 t_{n}(2, b)=R(8,8, b+2 ; 8 n+b+2)=R\left(8,8, b+2 ; p^{\alpha}\right)$. As $[8,8, b+2] \in H(-32 b)$, $H(-32 b) \cong C_{2} \times C_{2}$ (see [SW1, Proposition 11.1(ii)]) and $f(-32 b)=2$, applying Theorem 2.3(ii) (with $a=2$) and the above we obtain the result.

Theorem 5.3. Let $n \in \mathbb{N}$ and $8 n+19=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(1,18)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha \text { and } p \equiv 19(\bmod 24), \\ \frac{\alpha-1}{2} & \text { if } 2 \nmid \alpha \text { and } p=3, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. From [SW1, Table 9.1] we see that $p=4 x^{2}+4 x y+19 y^{2}=(2 x+$ $y)^{2}+18 y^{2}$ if and only if $p \equiv 19(\bmod 24)$. By Theorem 2.1 we have $4 t_{n}(1,18)=$ $R(4,4,19 ; 8 n+19)=R\left(4,4,19 ; p^{\alpha}\right)$. Clearly $H(-288)=\{[1,0,72],[8,0,9]$, $[4,4,19],[8,8,11]\} \cong C_{2} \times C_{2}$ and $f(-288)=6$. If $p \neq 3$, then $p \nmid f(-288)$. Thus applying Theorem 2.3(ii) (with $a=1$ and $b=18$) and the above we obtain the result. If $p=3$, then $\alpha \geqslant 3$. As $[4,4,19]=\left[4,3 \cdot 4,3^{2}\right.$. 3] and $[4,4,3]=[3,-4,4]=[3,2,3]$, by [SW1, Theorem 5.3 (ii)] we have $R\left(4,4,19 ; 3^{\alpha}\right)=R\left(3,2,3 ; 3^{\alpha-2}\right)$. As $H(-32)=\{[1,0,8],[3,2,3]\}$ and $f(-32)=$ 2, by the above and Lemma 2.2 we have

$$
4 t_{n}(1,18)=R\left(3,2,3 ; 3^{\alpha-2}\right)= \begin{cases}2(\alpha-2+1) & \text { if } 2 \nmid \alpha, \\ 0 & \text { if } 2 \mid \alpha\end{cases}
$$

This completes the proof.

Theorem 5.4. Let $n \in \mathbb{N}$ and $8 n+11=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(2,9)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha \text { and } p \equiv 11(\bmod 24), \\ \frac{\alpha-1}{2} & \text { if } 2 \nmid \alpha \text { and } p=3, \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. From [SW1, Table 9.1] we see that $p=8 x^{2}+8 x y+11 y^{2}=2(2 x+$ $y)^{2}+9 y^{2}$ if and only if $p \equiv 11(\bmod 24)$. By Theorem 2.1 we have $4 t_{n}(2,9)=$ $R(8,8,11 ; 8 n+11)=R\left(8,8,11 ; p^{\alpha}\right)$. Clearly $[8,8,11] \in H(-288), H(-288) \cong$ $C_{2} \times C_{2}$ and $f(-288)=6$. If $p \neq 3$, then $p \nmid f(-288)$. Thus applying Theorem 2.3(ii) (with $a=2$ and $b=9$) and the above we obtain the result. If $p=3$, then $\alpha \geqslant 3$. As $[8,8,11]=[11,-8,8]=\left[11,3 \cdot(-10), 3^{2} \cdot 3\right]$ and $[11,-10,3]=$ $[3,10,11]=[3,-2,3]$, by [SW1, Theorem 5.3(ii)] we have $R\left(8,8,11 ; 3^{\alpha}\right)=$ $R\left(3,-2,3 ; 3^{\alpha-2}\right)=R\left(3,2,3 ; 3^{\alpha-2}\right)$. As $H(-32)=\{[1,0,8],[3,2,3]\}$ and $f(-32)$ $=2$, by the above and Lemma 2.2 we have

$$
4 t_{n}(2,9)=R\left(3,2,3 ; 3^{\alpha-2}\right)= \begin{cases}2(\alpha-2+1) & \text { if } 2 \nmid \alpha \\ 0 & \text { if } 2 \mid \alpha\end{cases}
$$

This proves the theorem.
Theorem 5.5. Let $n \in \mathbb{N}, b \in\{7,11,19,31,59\}$ and $4 n+(b+3) / 2=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(3, b)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha, p \equiv \frac{b+3}{2}(\bmod 12) \text { and }\left(\frac{p}{b}\right)=(-1)^{\frac{b-3}{4}}\left(\frac{b}{3}\right) \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 2.1 we have $4 t_{n}(3, b)=R\left(6,6, \frac{b+3}{2} ; 4 n+\frac{b+3}{2}\right)=R(6,6$, $\frac{b+3}{2} ; p^{\alpha}$. Clearly $H(-12 b)=\{[1,0,3 b],[3,0, b],[2,2,(3 b+1) / 2],[6,6,(b+3) / 2] \cong$ $C_{2} \times C_{2}$ and $f(-12 b)=1$. It is easily seen that $p=6 x^{2}+6 x y+\frac{b+3}{2} y^{2}=$ $\frac{1}{2}\left(3(2 x+y)^{2}+b y^{2}\right)$ if and only if $p \equiv-b(\bmod 3), p \equiv \frac{b+3}{2}(\bmod 4)$ and $\left(\frac{p}{b}\right)=\left(\frac{-b}{p}\right)=\left(\frac{3}{p}\right)=\left(\frac{3}{(b+3) / 2}\right)$. Thus applying Theorem 2.3(i) (with $a=3$) and the above we obtain the result.

Theorem 5.6. Let $n \in \mathbb{N}$ and $8 n+7=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(3,4)= \begin{cases}\frac{\alpha+1}{2} & \text { if } 2 \nmid \alpha \text { and } p \equiv 7(\bmod 24), \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. By Theorem 2.1 we have $4 t_{n}(3,4)=R(12,12,7 ; 8 n+7)=R(12,12,7$; $\left.p^{\alpha}\right)$. As $[12,12,7]=[7,-12,12]=[7,2,7], H(-192)=\{[1,0,48],[3,0,16],[7,2,7]$, $[4,4,13]\} \cong C_{2} \times C_{2}, f(-192)=8$, and p is represented by $7 x^{2}+2 x y+7 y^{2}$ if and only if $p \equiv 7(\bmod 24)$, applying Theorem 2.3(ii) (with $a=3$ and $b=4$) we obtain the result.

From [SW1, Theorem 5.1] we deduce:

Lemma 5.1. Let d be a discriminant with conductor f. Let p be a prime not dividing f and $\alpha \in \mathbb{N}$. Suppose $H(d)=\left\{I, A, A^{2}, A^{3}\right\} \cong C_{4}$ with $A^{4}=I$. Then

$$
R\left(A^{2}, p^{\alpha}\right)= \begin{cases}w(d) & \text { if } p \mid d, 2 \nmid \alpha \text { and } p \text { is represented by } A^{2}, \\ w(d)(\alpha+1) & \text { if } p \nmid d, 2 \nmid \alpha \text { and } p \text { is represented by } A^{2}, \\ w(d) \frac{\alpha}{2} & \text { if } p \nmid d, 4 \mid \alpha \text { and } p \text { is represented by } A, \\ w(d)\left(\frac{\alpha}{2}+1\right) & \text { if } p \nmid d, 4 \mid \alpha-2 \text { and } p \text { is represented by } A, \\ 0 & \text { otherwise. }\end{cases}
$$

Theorem 5.7. Let $n \in \mathbb{N}$ and $8 n+9=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then

$$
t_{n}(1,8)= \begin{cases}(\alpha+1) / 2 & \text { if } 2 \nmid \alpha \text { and } p=4 x^{2}+4 x y+9 y^{2} \\ \alpha / 4 & \text { if } 4 \mid \alpha \text { and } p \equiv 3(\bmod 8), \\ (\alpha+2) / 4 & \text { if } 4 \mid \alpha-2 \text { and } p \equiv 3(\bmod 8), \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. From Theorem 2.1 we know that $4 t_{n}(1,8)=R(4,4,9 ; 8 n+9)=$ $R\left(4,4,9 ; p^{\alpha}\right)$. As $H(-128)=\{[1,0,32],[4,4,9],[3,2,11],[3,-2,11]\} \cong C_{4}$, we see that $p=3 x^{2}+2 x y+11 y^{2}$ if and only if $p \equiv 3(\bmod 8)$. Since $w(-128)=2$ and $f(-128)=4$, applying the above and Lemma 5.1 (with $A=[3,2,11]$ and $\left.A^{2}=[4,4,9]\right)$ we obtain the result.
Theorem 5.8. Let $n \in \mathbb{N}$ and $4 n+9=p^{\alpha}$, where p is an odd prime and $\alpha \in \mathbb{N}$. Then
$t_{n}(1,17)= \begin{cases}(\alpha+1) / 2 & \text { if } 2 \nmid \alpha \text { and } p=2 x^{2}+2 x y+9 y^{2}, \\ \alpha / 4 & \text { if } 4 \mid \alpha \text { and } p \equiv 3,7,11,23,27,31,39,63(\bmod 68), \\ (\alpha+2) / 4 & \text { if } 4 \mid \alpha-2 \text { and } p \equiv 3,7,11,23,27,31,39,63(\bmod 68), \\ 0 & \text { otherwise. }\end{cases}$
Proof. From Theorem 2.1 we know that $4 t_{n}(1,17)=R(2,2,9 ; 4 n+9)=$ $R\left(2,2,9 ; p^{\alpha}\right)$. As $H(-68)=\{[1,0,17],[2,2,9],[3,2,6],[3,-2,6]\} \cong C_{4}$, we see that $p=3 x^{2}+2 x y+6 y^{2}$ if and only if $\left(\frac{-1}{p}\right)=\left(\frac{17}{p}\right)=-1$. Since $w(-68)=2$, $f(-68)=1$ and $\left(\frac{17}{p}\right)=\left(\frac{p}{17}\right)=-1$ if and only if $p \equiv \pm 3, \pm 5, \pm 6, \pm 7(\bmod 17)$, applying the above and Lemma 5.1 (with $A=[3,2,6]$ and $A^{2}=[2,2,9]$) we obtain the result.
6. Criteria for $R(K, n)>0(K \in H(d))$ and $t_{n}(a, b)>0$.

Let d be a discriminant, $a, b, c \in \mathbb{Z}$ and $b^{2}-4 a c=d$. For $n \in \mathbb{N}$ we define $R^{\prime}([a, b, c], n)$ to be the number of proper primary representations of $n=a x^{2}+b x y+c y^{2}$ as in [SW1, Definition 3.2]. For $a>0$ and $d<0$, we have

$$
R^{\prime}([a, b, c], n)=\left|\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: n=a x^{2}+b x y+c y^{2},(x, y)=1\right\}\right| .
$$

From [SW1, Lemma 5.2 and Theorem 5.2] we deduce the following lemma.

Lemma 6.1. Let d be a discriminant with conductor f. Let $K \in H(d)$ and $t \in \mathbb{N}$. Let p be a prime such that $p \nmid f$.
(i) If $\left(\frac{d}{p}\right)=-1$, then $R^{\prime}\left(K, p^{t}\right)=0$.
(ii) If $\left(\frac{d}{p}\right)=0$, then p is represented by unique $A \in H(d)$ and we have

$$
R^{\prime}\left(K, p^{t}\right)= \begin{cases}w(d) & \text { if } t=1 \text { and } K=A, \\ 0 & \text { otherwise } .\end{cases}
$$

(iii) If $\left(\frac{d}{p}\right)=1$, then p is represented by some $A \in H(d)$ and we have

$$
R^{\prime}\left(K, p^{t}\right)= \begin{cases}0 & \text { if } K \neq A^{t}, A^{-t} \\ w(d) & \text { if } K \in\left\{A^{t}, A^{-t}\right\} \text { and } A^{t} \neq A^{-t}, \\ 2 w(d) & \text { if } K=A^{t}=A^{-t}\end{cases}
$$

Lemma 6.2 ([SW1, Theorem 7.1]). Let d be a discriminant. If n_{1}, n_{2}, $\ldots, n_{r}(r \geqslant 2)$ are pairwise prime positive integers and $K \in H(d)$, then

$$
R\left(K, n_{1} n_{2} \cdots n_{r}\right)=\frac{1}{w(d)^{r-1}} \sum_{\substack{K_{1}, \ldots, K_{r} \in H(d) \\ K_{1} K_{2} \cdots K_{r}=K}} R\left(K_{1}, n_{1}\right) R\left(K_{2}, n_{2}\right) \cdots R\left(K_{r}, n_{r}\right)
$$

and
$R^{\prime}\left(K, n_{1} n_{2} \cdots n_{r}\right)=\frac{1}{w(d)^{r-1}} \sum_{\substack{K_{1}, \ldots, K_{r} \in H(d) \\ K_{1} K_{2} \cdots K_{r}=K}} R^{\prime}\left(K_{1}, n_{1}\right) R^{\prime}\left(K_{2}, n_{2}\right) \cdots R^{\prime}\left(K_{r}, n_{r}\right)$.
Theorem 6.1. Let d be a discriminant with conductor f. Let $K \in H(d)$ and $n \in \mathbb{N}$ with $n>1$ and $(n, f)=1$. Then $R^{\prime}(K, n)>0$ if and only if $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} p_{s+1} \cdots p_{r}$ and $K=P_{1}^{\alpha_{1}} \cdots P_{s}^{\alpha_{s}} P_{s+1} \cdots P_{r}$, where p_{1}, \ldots, p_{r} are distinct primes such that $\left(\frac{d}{p_{i}}\right)=1$ or 0 according as $i \leqslant s$ or $i>s$, and P_{i} is a class in $H(d)$ representing p_{i}. Moreover, if the above conditions hold and we arrange the order of P_{1}, \ldots, P_{s} so that

$$
P_{1} \neq P_{1}^{-1}, \ldots, P_{k} \neq P_{k}^{-1}, P_{k+1}=P_{k+1}^{-1}, \ldots, P_{s}=P_{s}^{-1},
$$

then

$$
R^{\prime}(K, n)=2^{s-k} w(d) \varepsilon(K, n)
$$

where

$$
\varepsilon(K, n)=\left|\left\{J \subseteq\{1,2, \ldots, k\}: \quad \prod_{j \in J} P_{j}^{2 \alpha_{j}}=I\right\}\right|
$$

and I is the identity in $H(d)$.

Proof. Let p be a prime divisor of n and $p^{\alpha} \| n$. If $\left(\frac{d}{p}\right)=-1$ or if $\left(\frac{d}{p}\right)=0$ and $\alpha \geqslant 2$, by Lemma 6.1 we have $R^{\prime}\left(M, p^{\alpha}\right)=0$ for any $M \in H(d)$. Thus, using Lemma 6.2 we see that

$$
R^{\prime}(K, n)=\frac{1}{w(d)} \sum_{\substack{K_{1}, K_{2} \in H(d) \\ K_{1} K_{2}=K}} R^{\prime}\left(K_{1}, p^{\alpha}\right) R^{\prime}\left(K_{2}, n / p^{\alpha}\right)=0 .
$$

Now assume $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} p_{s+1} \cdots p_{r}\left(\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}\right)$, where p_{1}, \ldots, p_{r} are distinct primes such that $\left(\frac{d}{p_{1}}\right)=\cdots=\left(\frac{d}{p_{s}}\right)=1$ and $\left(\frac{d}{p_{s+1}}\right)=\cdots=\left(\frac{d}{p_{r}}\right)=0$. For later convenience we set $\alpha_{s+1}=\cdots=\alpha_{r}=1$. Applying Lemma 6.2 we see that

$$
R^{\prime}(K, n)=\frac{1}{w(d)^{r-1}} \sum_{\substack{K_{1}, \ldots, K_{r} \in H(d) \\ K_{1} \cdots K_{r}=K}} R^{\prime}\left(K_{1}, p_{1}^{\alpha_{1}}\right) \cdots R^{\prime}\left(K_{r}, p_{r}^{\alpha_{r}}\right) .
$$

Thus $R^{\prime}(K, n)>0$ if and only if there exist $K_{1}, \ldots, K_{r} \in H(d)$ such that $K_{1} \cdots K_{r}=K$ and $R^{\prime}\left(K_{i}, p_{i}^{\alpha_{i}}\right)>0(i=1, \ldots, r)$. Hence applying Lemma 6.1 we see that $R^{\prime}(K, n)>0$ if and only if there exist $K_{1}, \ldots, K_{r} \in H(d)$ such that $K_{1} \cdots K_{r}=K$ and $K_{i}=P_{i}^{\alpha_{i}}(i=1, \ldots, r)$, where $P_{i} \in H(d)$ can represent p_{i} $(i=1, \ldots, r)$.

Now suppose $K=P_{1}^{\alpha_{1}} \cdots P_{s}^{\alpha_{s}} P_{s+1} \cdots P_{r}$, where P_{1}, \ldots, P_{r} can represent p_{1}, \ldots, p_{r} respectively, and

$$
P_{1} \neq P_{1}^{-1}, \ldots, P_{k} \neq P_{k}^{-1}, P_{k+1}=P_{k+1}^{-1}, \ldots, P_{s}=P_{s}^{-1} .
$$

From Lemma 6.1 we know that

$$
R^{\prime}\left(P_{i}^{\alpha_{i}}, p_{i}^{\alpha_{i}}\right)= \begin{cases}w(d) & \text { if } 1 \leqslant i \leqslant k \text { or } s<i \leqslant r \\ 2 w(d) & \text { if } k<i \leqslant s .\end{cases}
$$

Thus

$$
R^{\prime}\left(P_{1}^{\alpha_{1}}, p_{1}^{\alpha_{1}}\right) \cdots R^{\prime}\left(P_{r}^{\alpha_{r}}, p_{r}^{\alpha_{r}}\right)=2^{s-k} w(d)^{r} .
$$

Since $P_{j}=P_{j}^{-1}$ for $k<j \leqslant r$, by the above and Lemma 6.2 we have

$$
\begin{aligned}
& R^{\prime}(K, n) w(d)^{r-1}=\sum_{\substack{K_{1}, \ldots, K_{r} \in H(d) \\
K_{1} \cdots K_{r}=K}} R^{\prime}\left(K_{1}, p_{1}^{\alpha_{1}}\right) \cdots R^{\prime}\left(K_{r}, p_{r}^{\alpha_{r}}\right) \\
& =\sum_{\substack{K_{1} \cdots K_{r}=K \\
K_{1}=P_{1}^{ \pm \alpha_{1}}, \ldots, K_{k}=P_{k}^{ \pm \alpha_{k}} \\
K_{k+1}=P_{k+1}^{\alpha_{k+1}}, \ldots, K_{r}=P_{r}^{\alpha_{r}}}} R^{\prime}\left(K_{1}, p_{1}^{\alpha_{1}}\right) \cdots R^{\prime}\left(K_{r}, p_{r}^{\alpha_{r}}\right) \\
& =\sum_{\substack{K_{1} \ldots K_{r}=K \\
K_{1}=P_{1}^{ \pm \alpha_{1}, \ldots, K_{k}=P_{k}^{ \pm \alpha_{k}}} \\
K_{k+1}=P_{k+1}^{\alpha_{k}+1}, \ldots, K_{r}=P_{r}^{\alpha_{r}}}} 2^{s-k} w(d)^{r} \\
& =\sum_{\substack{K_{1}=P_{1}^{ \pm \alpha_{1}}, \ldots, K_{k}=P^{ \pm \alpha_{k}} \\
K_{1} \cdots K_{k}=P_{1}^{\alpha_{1}} \ldots P_{k}^{\alpha_{k}}}} 2^{s-k} w(d)^{r} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
R^{\prime}(K, n)= & 2^{s-k} w(d) \mid\left\{\left\langle\varepsilon_{1}, \ldots, \varepsilon_{k}\right\rangle: \varepsilon_{1}, \ldots, \varepsilon_{k} \in\{1,-1\},\right. \\
& \left.P_{1}^{\varepsilon_{1} \alpha_{1}} \cdots P_{k}^{\varepsilon_{k} \alpha_{k}}=P_{1}^{\alpha_{1}} \cdots P_{k}^{\alpha_{k}}\right\} \mid \\
= & 2^{s-k} w(d)\left|\left\{J \subseteq\{1,2, \ldots, k\}: \prod_{j \in J} P_{j}^{-\alpha_{j}}=\prod_{j \in J} P_{j}^{\alpha_{j}}\right\}\right| \\
= & 2^{s-k} w(d) \varepsilon(K, n) .
\end{aligned}
$$

This completes the proof.
Corollary 6.1. Let d be a discriminant with conductor f. Let $n \in \mathbb{N}$ with $(n, f)=1$. Suppose $n=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} p_{s+1} \cdots p_{r}\left(\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}\right)$, where p_{1}, \ldots, p_{r} are distinct primes such that $\left(\frac{d}{p_{1}}\right)=\cdots=\left(\frac{d}{p_{s}}\right)=1$ and $\left(\frac{d}{p_{s+1}}\right)=\cdots=\left(\frac{d}{p_{r}}\right)=$ 0. Assume that p_{i} is represented by $P_{i} \in H(d)(i=1, \ldots, s)$. Let I be the identity in $H(d)$ and $k=\left|\left\{i \in\{1,2, \ldots, s\}: P_{i}^{2} \neq I\right\}\right|$. Then there are at most 2^{k} classes $K \in H(d)$ such that $R^{\prime}(K, n)>0$.

As $\varepsilon(K, n) \leqslant 2^{k}$, by Theorem 6.1 and [SW1, (5.1)] we have:
Corollary 6.2. Let d be a discriminant with conductor f. Let $K \in H(d)$ and $n \in \mathbb{N}$ with $(n, f)=1$. Then $R^{\prime}(K, n) \leqslant 2^{s} w(d)$, where s is the number of distinct prime divisors p of n such that $\left(\frac{d}{p}\right)=1$.

From Theorem 6.1 we deduce the following result.
Theorem 6.2. Let d be a discriminant such that $H(d)$ is cyclic with generator A. Let f be the conductor of d. Let $h(d)=h \equiv 1(\bmod 2)$ and $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{N}$. Let p_{1}, \ldots, p_{r} be distinct primes such that $\left(\frac{d}{p_{1}}\right)=\cdots=\left(\frac{d}{p_{s}}\right)=1, p_{s+1} \mid d$, $p_{s+1} \nmid f, \ldots, p_{r} \mid d, p_{r} \nmid f$. Suppose that p_{i} is represented by $A^{c_{i}}$ and that for $i \in\{1,2, \ldots, s\}, p_{i}$ is not represented by the identity in $H(d)\left(\right.$ that is $\left.h \nmid c_{i}\right)$ if and only if $i \leqslant k$. Then

$$
\begin{aligned}
& R^{\prime}\left(A^{c_{1} \alpha_{1}+\cdots+c_{k} \alpha_{k}}, p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}} p_{s+1} \cdots p_{r}\right) \\
& =2^{s-k} w(d)\left|\left\{J \subseteq\{1,2, \ldots, k\}: \sum_{j \in J} c_{j} \alpha_{j} \equiv 0(\bmod h)\right\}\right|
\end{aligned}
$$

Lemma 6.3. Let d be a discriminant with conductor f. Let p be a prime such that $p \nmid f$. Let $K \in H(d)$ and $t \in \mathbb{N}$. Let I be the identity in $H(d)$.
(i) If $2 \mid t$, then

$$
R\left(K, p^{t}\right)>0 \Longleftrightarrow \begin{cases}K=I & \text { if }\left(\frac{d}{p}\right)=0,-1 \\ K=A^{\beta} \text { for some } \beta \in\{0, \pm 2, \ldots, \pm t\} & \text { if }\left(\frac{d}{p}\right)=1,\end{cases}
$$

where $A \in H(d)$ is chosen so that p is represented by A.
(ii) If $2 \nmid t$, then

$$
R\left(K, p^{t}\right)>0 \Longleftrightarrow \begin{cases}K=A & \text { if }\left(\frac{d}{p}\right)=0 \\ K=A^{\beta} \text { for some } \beta \in\{ \pm 1, \pm 3, \ldots, \pm t\}, & \text { if }\left(\frac{d}{p}\right)=1\end{cases}
$$

where $A \in H(d)$ is chosen so that p is represented by A.
Proof. If $\left(\frac{d}{p}\right)=0,-1$, the result follows from [SW1, Theorem 5.1]. Now we assume $\left(\frac{d}{p}\right)=1$ so that p is represented by some class $A \in H(d)$. From [SW1, Lemma 5.1] we have $R\left(K, p^{t}\right)=\sum_{i=0}^{[t / 2]} R^{\prime}\left(K, p^{t-2 i}\right)$, where [•] is the greatest integer function. Thus $R\left(K, p^{t}\right)>0$ if and only if for some $i \in\{0,1, \ldots,[t / 2]\}$ we have $R^{\prime}\left(K, p^{t-2 i}\right)>0$. This together with Lemma 6.1 (iii) yields the result in the case $\left(\frac{d}{p}\right)=1$.
Theorem 6.3. Let d be a discriminant with conductor f. Let $K \in H(d)$ and $n \in \mathbb{N}$ with $n>1$ and $(n, f)=1$. Then $R(K, n)>0$ if and only if $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ and $K=P_{1}^{\beta_{1}} \cdots P_{s}^{\beta_{s}} P_{s+1} \cdots P_{m}(m \leq r)$, where $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{N}$ and p_{1}, \ldots, p_{r} are distinct primes such that

$$
\begin{align*}
& \left(\frac{d}{p_{1}}\right)=\cdots=\left(\frac{d}{p_{s}}\right)=1, p_{i} \mid d, 2 \nmid \alpha_{i} \quad \text { for } s<i \leqslant m, \tag{6.1}\\
& \left(\frac{d}{p_{i}}\right) \in\{0,-1\}, 2 \mid \alpha_{i} \quad \text { for } m<i \leqslant r,
\end{align*}
$$

$P_{i} \in H(d)$ is chosen so that p_{i} is represented by $P_{i}(1 \leqslant i \leqslant m)$ and $\beta_{i} \in$ $\left\{ \pm \alpha_{i}, \pm\left(\alpha_{i}-2\right), \ldots, \pm\left(\alpha_{i}-2\left[\alpha_{i} / 2\right]\right)\right\}$ for $1 \leqslant i \leqslant s$.

Proof. Let p be a prime divisor of n and $p^{\alpha} \| n$. If $\left(\frac{d}{p}\right)=-1$ and $2 \nmid \alpha$, by Lemma 6.3 we have $R\left(M, p^{\alpha}\right)=0$ for any $M \in H(d)$. Thus, using Lemma 6.2 we see that

$$
R(K, n)=\frac{1}{w(d)} \sum_{\substack{K_{1}, K_{2} \in H(d) \\ K_{1} K_{2}=K}} R\left(K_{1}, p^{\alpha}\right) R\left(K_{2}, n / p^{\alpha}\right)=0 .
$$

Now assume $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, where p_{1}, \ldots, p_{r} are distinct primes such that (6.1) holds. For $i=1, \ldots, m$ suppose that p_{i} is represented by $P_{i} \in H(d)$. By Lemma 6.2 we have

$$
R(K, n)=\frac{1}{w(d)^{r-1}} \sum_{\substack{K_{1}, \ldots, K_{r} \in H(d) \\ K_{1} \cdots K_{r}=K}} R\left(K_{1}, p_{1}^{\alpha_{1}}\right) \cdots R\left(K_{r}, p_{r}^{\alpha_{r}}\right) .
$$

Thus $R(K, n)>0$ if and only if there are $K_{1}, \ldots, K_{r} \in H(d)$ such that $K_{1} \cdots K_{r}=K$ and $R\left(K_{i}, p_{i}^{\alpha_{i}}\right)>0$ for $i=1, \ldots, r$.

For $i \in\{m+1, \ldots, r\}$, from Lemma 6.3(i) we know that $R\left(K_{i}, p_{i}^{\alpha_{i}}\right)>0$ if and only if K_{i} is the identity in $H(d)$. For $i \in\{s+1, \ldots, m\}$, by Lemma 6.3 we see that $R\left(K_{i}, p_{i}^{\alpha_{i}}\right)>0$ if and only if $K_{i}=P_{i}$. Thus $R(K, n)>0$ if and only if there are $K_{1}, \ldots, K_{s} \in H(d)$ such that $K_{1} \cdots K_{s} P_{s+1} \cdots P_{m}=K$ and $R\left(K_{i}, p_{i}^{\alpha_{i}}\right)>0$ for every $i \in\{1, \ldots, s\}$. By appealing to Lemma 6.3 again we see that $R(K, n)>0$ if and only if $K=P_{1}^{\beta_{1}} \cdots P_{s}^{\beta_{s}} P_{s+1} \cdots P_{m}$ and $\beta_{i} \in\left\{ \pm \alpha_{i}, \pm\left(\alpha_{i}-2\right), \ldots, \pm\left(\alpha_{i}-2\left[\alpha_{i} / 2\right]\right)\right\}$ for $i=1, \ldots, s$. This proves the theorem.

From Theorem 6.3 and [SW1, (5.1)] we deduce:
Theorem 6.4. Let d be a discriminant with conductor f. Let $K \in H(d)$ and $n \in \mathbb{N}$ with $(n, f)=1$. Then there are at most $\prod_{\left(\frac{d}{p}\right)=1}\left(1+\operatorname{ord}_{p} n\right)$ classes $K \in H(d)$ such that $R(K, n)>0$, where in the product p runs over all distinct prime divisors of n satisfying $\left(\frac{d}{p}\right)=1$.

Let $a, b, n \in \mathbb{N}$ with $(a, b)=1$ and $4 \nmid a+b$. By Theorem 2.1 we have

$$
4 t_{n}(a, b)= \begin{cases}R\left(\left[2 a, 2 a, \frac{a+b}{2}\right], 4 n+\frac{a+b}{2}\right) & \text { if } 2 \| a+b, \\ R([4 a, 4 a, a+b], 8 n+a+b) & \text { if } 2 \nmid a+b .\end{cases}
$$

Thus we may use Lemma 6.3 and Theorem 6.3 to give a criterion for $t_{n}(a, b)>0$ provided $\left(\frac{8 n+a+b}{(2, a+b)}, f(-4 a b)\right)=1$.

References

[B] B.C. Berndt, Ramanujan's Notebooks (Part III), Springer, New York, Berlin, 1991
[SW1] Z.H. Sun and K.S. Williams, On the number of representations of n by $a x^{2}+b x y+c y^{2}$, Acta Arith. 122 (2006), 101-171.
[SW2] Z.H. Sun and K.S. Williams, Ramanujan identities and Euler products for a type of Dirichlet series, Acta Arith. 122 (2006), 349-393.
[W] K.S. Williams, Some Lambert series expansions of products of theta functions, Ramanujan J. 3 (1999), 367-384.

