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1.Introduction.
Let p be an odd prime. In 1988, using the formula for the sum

∑
k≡r (mod 8)

(
n
k

)
the

author proved that (cf.[7], Theorem 2.6)

∑

16k< p
2

2k

k
≡ 4(−1)

p−1
2

∑

16k6 p+1
4

(−1)k−1

2k − 1
(mod p)

and
∑

16k< p
2

1
k · 2k

≡ −4
∑

1+(−1)
p−1
2

2 6k< p
8

1

4k − (−1)
p−1
2

(mod p).

In 1995, using a similar method Zhi-Wei Sun [9] proved the author’s conjecture

∑

16k< p
2

1
k · 2k

≡
∑

16k< 3p
4

(−1)k−1

k
(mod p).

Later, Zun Shan and Edward T.H. Wang [5] gave a simple proof of the above congruence.
In [9] and [10], Zhi-Wei Sun also pointed out another congruence

∑

16k< p
2

3k

k
≡

∑

16k< p
6

(−1)k

k
(mod p).

In this paper, by using the formulas for Fibonacci quotient and Pell quotient we obtain
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the following five congruences:

∑

16k< p
2

2k

k
≡ 2

∑
p
4 <k< p

2

(−1)k−1

k
(mod p), (1.1)

∑

16k< p
2

5k

k
≡ 2

∑
p
5 <k< p

2

(−1)k−1

k
(mod p), (1.2)

∑

16k< p
2

2k

k
≡ −

∑
p
8 <k< 3p

8

1
k

(mod p), (1.3)

∑

16k< p
2

1
k · 2k

≡ −
∑

p
4 <k< 3p

8

1
k

(mod p), (1.4)

∑

16k< p
2

3k

k
≡ −

∑
p
12 <k< p

6

1
k

(mod p), (1.5)

where p > 5 is a prime.

2. Basic Lemmas.
The Lucas sequences {un(a, b)} and {vn(a, b)} are defined as follows:

u0(a, b) = 0, u1(a, b) = 1, un+1(a, b) = bun(a, b)− aun−1(a, b) (n ≥ 1),

v0(a, b) = 2, v1(a, b) = b, vn+1(a, b) = bvn(a, b)− avn−1(a, b) (n ≥ 1).

It is well known that

un(a, b) =
1√

b2 − 4a

{(b +
√

b2 − 4a

2

)n

−
(b−√b2 − 4a

2

)n
}

(b2 − 4a 6= 0)

and

vn(a, b) =
(b +

√
b2 − 4a

2

)n

+
(b−√b2 − 4a

2

)n

.

Let p be an odd prime, and let m be an integer with m 6≡ 0 (mod p). It is evident that

2
p−1∑

k=1
2-k

(
p

k

)
(
√

m)k = (1 +
√

m)p − (1−√m)p − 2(
√

m)p

and

2
p−1∑

k=1
2|k

(
p

k

)
(
√

m)k = (1 +
√

m)p + (1−√m)p − 2.

Since (
p

k

)
=

p

k

(
p− 1
k − 1

)
≡ (−1)k−1

k
p (mod p2),

by the above one can easily prove
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Lemma 1([7], Lemma 2.4). Suppose that p is an odd prime and that m is an integer
such that p - m. Then

(i)
(p−1)/2∑

k=1

1
k ·mk

≡ mp−1 − 1
p

− 2 ·
(

m
p

)
up(1−m, 2)− 1

p
(mod p),

(ii)
(p−1)/2∑

k=1

mk

k
≡ 2− vp(1−m, 2)

p
(mod p),

where
(

m
p

)
is the Legendre symbol.

For any odd prime p and integer m set qp(m) = mp−1−1
p . Using Lemma 1 we can prove

Proposition 1. Let m be an integer, and p be an odd prime such that p - m(m−1). Then

up−( m
p )(1−m, 2)

p
≡

(m− 2)
(

m
p

)−m

4m

( (p−1)/2∑

k=1

mk

k
+ qp(m− 1)

)

≡
(m− 2)

(
m
p

)−m

4
( (p−1)/2∑

k=1

1
k ·mk

+ qp(m− 1)− qp(m)
)

(mod p).

Proof. Set un = un(1 −m, 2) and vn = vn(1 −m, 2). From [1],[4] and [6, Lemma 1.7]
we know that

v2
n − 4mu2

n = 4(1−m)n, vn = 2un+1 − 2un, un =
1

2m
(vn+1 − vn)

and
up−( m

p ) ≡ up −
(m

p

) ≡ 0 (mod p).

Thus,

v2
p−( m

p ) ≡ 4(1−m)p−
(

m
p

)
(mod p2)

and hence
vp−( m

p ) ≡ ±2
(1−m

p

)
(1−m)(p−( m

p ))/2 (mod p2).

If
(

m
p

)
= 1 then vp−1 = 2up − 2up−1 ≡ 2 (mod p). Hence, by the above we get

vp−1 ≡ 2(1−m)(p−1)/2
(1−m

p

) ≡ 2 + qp(m− 1)p (mod p2). (2.1)

Now applying Lemma 1 we find

up−1

p
=

1
2m

· vp − vp−1

p
=

1
2m

(vp − 2
p

− vp−1 − 2
p

)

≡ 1
2m

(
−

(p−1)/2∑

k=1

mk

k
− qp(m− 1)

)
(mod p)
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and

up−1

p
=

2up − vp−1

2p
=

up − 1
p

+
1
2
· 2− vp−1

p

≡ 1
2

(
qp(m)−

(p−1)/2∑

k=1

1
k ·mk

− qp(m− 1)
)

(mod p).

This proves the result in the case
(

m
p

)
= 1.

If
(

m
p

)
= −1 then

vp+1 = 2up+1 − 2(1−m)up ≡ 2(1−m) (mod p).

So

vp+1 ≡ 2(1−m)
(1−m

p

)
(1−m)(p−1)/2 ≡ (1−m)(2 + qp(m− 1)p) (mod p2). (2.2)

Note that
up+1 =

1
2m

(vp+1 + (m− 1)vp) =
1
2
vp+1 + (1−m)up.

Applying (2.2) and Lemma 1, one can easily deduce the desired result. Hence the proof
is complete.

Corollary 1. Let p be an odd prime, and {Pn} denote the Pell sequence given by P0 =
0, P1 = 1 and Pn+1 = 2Pn + Pn−1 (n ≥ 1). Then

(i)
(p−1)/2∑

k=1

2k

k
≡ −4

P
p−

(
2
p

)

p
(mod p).

(ii)
(p−1)/2∑

k=1

1
k · 2k

≡ −2
P

p−
(

2
p

)

p
+ qp(2) (mod p).

Proof. Taking m = 2 in Proposition 1 gives the result.

Corollary 2. Let p > 3 be a prime, S0 = 0, S1 = 1 and Sn+1 = 4Sn − Sn−1 (n ≥ 1).
Then

(i)
(p−1)/2∑

k=1

3k

k
≡ −3

(3
p

)S
p−

(
3
p

)

p
− qp(2) (mod p).

(ii)
(p−1)/2∑

k=1

1
k · 3k

≡ −(3
p

)S
p−

(
3
p

)

p
− qp(2) + qp(3) (mod p).

Proof. Suppose a and b are integers. From [4] we know that

u2n(a, b) = un(a, b)vn(a, b)
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and

u
p−( b2−4a

p )
(a, b) ≡ up(a, b)− (b2 − 4a

p

) ≡ 0 (mod p).

Thus,

vp−( 3
p )(−2, 2) =

{
2up(−2, 2)− 2up−1(−2, 2) ≡ 2 (mod p) if

(
3
p

)
= 1,

2up+1(−2, 2) + 4up(−2, 2) ≡ −4 (mod p) if
(

3
p

)
= −1

≡ 3
(3
p

)− 1 (mod p).

Observing that Sn = un(1, 4) = 2−nu2n(−2, 2) we get

Sp−( 3
p )/p = 2

(
3
p

)
−pvp−( 3

p )(−2, 2)up−( 3
p )(−2, 2)/p

≡ 2
(

3
p

)
−1

(
3
(3
p

)− 1
)
up−( 3

p )(−2, 2)/p

=
1
2
(
1 + 3

(3
p

))
up−( 3

p )(−2, 2)/p (mod p).

This together with the case m = 3 of Proposition 1 gives the result.

Remark 1. The sequence {Sn} was first introduced by my brother Zhi-Wei Sun, who
gave the formula for the sum

∑
k≡r (mod 12)

(
n
k

)
in terms of {Sn} (cf.[10]).

Corollary 3. Let p > 5 be a prime, and {Fn} denote the Fibonacci sequence. Then

(i)
(p−1)/2∑

k=1

5k

k
≡ −5

F
p−

(
5
p

)

p
− 2qp(2) (mod p).

(ii)
(p−1)/2∑

k=1

1
k · 5k

≡ −
F

p−
(

5
p

)

p
+ qp(5)− 2qp(2) (mod p).

Proof. It is easily seen that un(−4, 2) = 2n−1Fn. So we have

F
p−

(
5
p

)

p
= 21−p+

(
5
p

) u
p−

(
5
p

)(−4, 2)

p
≡ 2

(
5
p

) u
p−

(
5
p

)(−4, 2)

p
(mod p).

Combining this with the case m = 5 of Proposition 1 yields the result.
Let {Bn} and {Bn(x)} be the Bernoulli numbers and Bernoulli polynomials given by

B0 = 1,

n−1∑

k=0

(
n

k

)
Bk = 0 (n ≥ 2)

and

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k.

It is well known that (cf.[3])
n−1∑
x=0

xm =
1

m + 1
(Bm+1(n)−Bm+1) .
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Lemma 2. Let p be an odd prime, and let m be a positive integer such that p - m. If
s ∈ {1, 2, . . . ,m− 1} then

∑

16k6[ sp
m ]

1
k
≡ −

(
Bp−1

(
{sp

m
}
)
−Bp−1

)
(mod p),

where [x] is the greatest integer not exceeding x and {x} = x− [x].

Proof. Clearly,

∑

16k6[ sp
m ]

1
k
≡

∑

16k6[ sp
m ]

kp−2 =
1

p− 1

(
Bp−1

(
[
sp

m
] + 1

)
−Bp−1

)

=
1

p− 1

(
Bp−1

(sp

m
+ 1− {sp

m
}
)
−Bp−1

)
(mod p).

For any rational p-integers x and y it is evident that (cf.[3])

pBk(x) =
k∑

r=0

(
k

r

)
pBrx

k−r ≡ 0 (mod p) for k = 0, 1, . . . , p− 2

and so

Bp−1(x + py)−Bp−1(x) =
p−2∑

k=0

(
p− 1

k

)
Bk(x)(py)p−1−k ≡ 0 (mod p).

Hence, by the above and the relation Bn(1− x) = (−1)nBn(x) (cf.[3]) we get

∑

16k6[ sp
m ]

1
k
≡ 1

p− 1

(
Bp−1

(
1− {sp

m
})−Bp−1

)
≡ −

(
Bp−1

({sp

m
})−Bp−1

)
(mod p).

This proves the lemma.

3. Proof of (1.1)–(1.5).
In [8], using the formula for the sum

∑
k≡r (mod 8)

(
n
k

)
the author proved that

P
p−

(
2
p

)

p
≡ 1

2

∑
p
4 <k< p

2

(−1)k

k
(mod p) (3.1)

and
P

p−
(

2
p

)

p
≡ 1

4

∑
p
8 <k< 3p

8

1
k

(mod p). (3.2)

Here, (3.1) was found by Zhi-Wei Sun[10], and (3.2) was also given by H.C.Williams [12].
Now, putting (3.1) and (3.2) together with Corollary 1(i) proves (1.1) and (1.3).
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To prove (1.2), we note that H.C.Williams (cf.[11]) has shown that

F
p−

(
5
p

)

p
≡ −2

5

p−1−[p/5]∑

k=1

(−1)k−1

k
(mod p).

Since Eisenstein it is well known that (cf.[6])

(p−1)/2∑

k=1

(−1)k−1

k
≡ 1

2

p−1∑

k=1

(−1)k−1

k
≡ qp(2) (mod p).

Thus, by William’s result,

F
p−

(
5
p

)

p
≡ −2

5

(
2qp(2)−

[p/5]∑

k=1

(−1)k−1

k

)

≡ −2
5

(
qp(2) +

∑
p
5 <k< p

2

(−1)k−1

k

)
(mod p).

Hence, by Corollary 3(i) we have

∑

16k< p
2

5k

k
≡ −5

F
p−

(
5
p

)

p
− 2qp(2) ≡ 2

∑
p
5 <k< p

2

(−1)k−1

k
(mod p).

This proves (1.2).
Now consider (1.4). From [2] we know that

Bp−1({p

4
})−Bp−1 ≡ 3qp(2) (mod p)

and

Bp−1({3p

8
})−Bp−1 ≡ −2

P
p−

(
2
p

)

p
+ 4qp(2) (mod p).

Thus, by using Lemma 2 we obtain

−
∑

p
4 <k< 3p

8

1
k

=
∑

16k< p
4

1
k
−

∑

16k< 3p
8

1
k

≡ −(Bp−1({p

4
})−Bp−1) + Bp−1({3p

8
})−Bp−1

≡ −3qp(2) + 4qp(2)− 2
P

p−
(

2
p

)

p
(mod p).

This together with Corollary 1(ii) proves (1.4).
Finally we consider (1.5). By [2],

Bp−1({p

6
})−Bp−1 ≡ 2qp(2) +

3
2
qp(3) (mod p)
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and

Bp−1({ p

12
})−Bp−1 ≡ 3

(3
p

)S
p−

(
3
p

)

p
+ 3qp(2) +

3
2
qp(3) (mod p).

Thus, by Lemma 2 and Corollary 2(i),

−
∑

p
12 <k< p

6

1
k
≡ (Bp−1({p

6
})−Bp−1)− (Bp−1({ p

12
})−Bp−1)

≡ 2qp(2) +
3
2
qp(3)− 3qp(2)− 3

2
qp(3)− 3

(3
p

)S
p−

(
3
p

)

p

≡
∑

16k< p
2

3k

k
(mod p).

This proves (1.5) and the proof is complete.

Remark 2. The congruences (1.1)–(1.3) can also be proved by using the method in the
proof of (1.4) or (1.5).
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