The Fibonacci Quarterly 40(2002), no.4, 345-351.

FIVE CONGRUENCES FOR PRIMES

Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R.China
E-mail: hyzhsun@public.hy.js.cn

1.Introduction.

Let p be an odd prime. In 1988, using the formula for the sum $\sum_{k \equiv r(\bmod 8)}\binom{n}{k}$ the author proved that (cf.[7], Theorem 2.6)

$$
\sum_{1 \leqslant k<\frac{p}{2}} \frac{2^{k}}{k} \equiv 4(-1)^{\frac{p-1}{2}} \sum_{1 \leqslant k \leqslant \frac{p+1}{4}} \frac{(-1)^{k-1}}{2 k-1}(\bmod p)
$$

and

$$
\sum_{1 \leqslant k<\frac{p}{2}} \frac{1}{k \cdot 2^{k}} \equiv-4 \sum_{\frac{1+(-1)^{\frac{p-1}{2}}}{2} \leqslant k<\frac{p}{8}} \frac{1}{4 k-(-1)^{\frac{p-1}{2}}}(\bmod p) .
$$

In 1995, using a similar method Zhi-Wei Sun [9] proved the author's conjecture

$$
\sum_{1 \leqslant k<\frac{p}{2}} \frac{1}{k \cdot 2^{k}} \equiv \sum_{1 \leqslant k<\frac{3 p}{4}} \frac{(-1)^{k-1}}{k}(\bmod p) .
$$

Later, Zun Shan and Edward T.H. Wang [5] gave a simple proof of the above congruence. In [9] and [10], Zhi-Wei Sun also pointed out another congruence

$$
\sum_{1 \leqslant k<\frac{p}{2}} \frac{3^{k}}{k} \equiv \sum_{1 \leqslant k<\frac{p}{6}} \frac{(-1)^{k}}{k}(\bmod p)
$$

In this paper, by using the formulas for Fibonacci quotient and Pell quotient we obtain
the following five congruences:

$$
\begin{align*}
& \sum_{1 \leqslant k<\frac{p}{2}} \frac{2^{k}}{k} \equiv 2 \sum_{\frac{p}{4}<k<\frac{p}{2}} \frac{(-1)^{k-1}}{k}(\bmod p), \tag{1.1}\\
& \sum_{1 \leqslant k<\frac{p}{2}} \frac{5^{k}}{k} \equiv 2 \sum_{\frac{p}{5}<k<\frac{p}{2}} \frac{(-1)^{k-1}}{k}(\bmod p), \tag{1.2}\\
& \sum_{1 \leqslant k<\frac{p}{2}} \frac{2^{k}}{k} \equiv-\sum_{\frac{p}{8}<k<\frac{3 p}{8}} \frac{1}{k}(\bmod p), \tag{1.3}\\
& \sum_{1 \leqslant k<\frac{p}{2}} \frac{1}{k \cdot 2^{k}} \equiv-\sum_{\frac{p}{4}<k<\frac{3 p}{8}} \frac{1}{k}(\bmod p), \tag{1.4}\\
& \sum_{1 \leqslant k<\frac{p}{2}} \frac{3^{k}}{k} \equiv-\sum_{\frac{p}{12}<k<\frac{p}{6}} \frac{1}{k}(\bmod p), \tag{1.5}
\end{align*}
$$

where $p>5$ is a prime.

2. Basic Lemmas.

The Lucas sequences $\left\{u_{n}(a, b)\right\}$ and $\left\{v_{n}(a, b)\right\}$ are defined as follows:

$$
\begin{aligned}
& u_{0}(a, b)=0, u_{1}(a, b)=1, u_{n+1}(a, b)=b u_{n}(a, b)-a u_{n-1}(a, b) \quad(n \geq 1) \\
& v_{0}(a, b)=2, v_{1}(a, b)=b, v_{n+1}(a, b)=b v_{n}(a, b)-a v_{n-1}(a, b) \quad(n \geq 1)
\end{aligned}
$$

It is well known that

$$
\begin{gathered}
u_{n}(a, b)=\frac{1}{\sqrt{b^{2}-4 a}}\left\{\left(\frac{b+\sqrt{b^{2}-4 a}}{2}\right)^{n}-\left(\frac{b-\sqrt{b^{2}-4 a}}{2}\right)^{n}\right\} \\
\left(b^{2}-4 a \neq 0\right)
\end{gathered}
$$

and

$$
v_{n}(a, b)=\left(\frac{b+\sqrt{b^{2}-4 a}}{2}\right)^{n}+\left(\frac{b-\sqrt{b^{2}-4 a}}{2}\right)^{n}
$$

Let p be an odd prime, and let m be an integer with $m \not \equiv 0(\bmod p)$. It is evident that

$$
2 \sum_{\substack{k=1 \\ 2 \nmid k}}^{p-1}\binom{p}{k}(\sqrt{m})^{k}=(1+\sqrt{m})^{p}-(1-\sqrt{m})^{p}-2(\sqrt{m})^{p}
$$

and

$$
2 \sum_{\substack{k=1 \\ 2 \mid k}}^{p-1}\binom{p}{k}(\sqrt{m})^{k}=(1+\sqrt{m})^{p}+(1-\sqrt{m})^{p}-2
$$

Since

$$
\binom{p}{k}=\frac{p}{k}\binom{p-1}{k-1} \equiv \frac{(-1)^{k-1}}{k} p\left(\bmod p^{2}\right),
$$

by the above one can easily prove

Lemma 1([7], Lemma 2.4). Suppose that p is an odd prime and that m is an integer such that $p \nmid m$. Then
(i) $\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot m^{k}} \equiv \frac{m^{p-1}-1}{p}-2 \cdot \frac{\left(\frac{m}{p}\right) u_{p}(1-m, 2)-1}{p}(\bmod p)$,
(ii) $\sum_{k=1}^{(p-1) / 2} \frac{m^{k}}{k} \equiv \frac{2-v_{p}(1-m, 2)}{p}(\bmod p)$,
where $\left(\frac{m}{p}\right)$ is the Legendre symbol.
For any odd prime p and integer m set $q_{p}(m)=\frac{m^{p-1}-1}{p}$. Using Lemma 1 we can prove Proposition 1. Let m be an integer, and p be an odd prime such that $p \nmid m(m-1)$. Then

$$
\begin{aligned}
\frac{u_{p-\left(\frac{m}{p}\right)}(1-m, 2)}{p} & \equiv \frac{(m-2)\left(\frac{m}{p}\right)-m}{4 m}\left(\sum_{k=1}^{(p-1) / 2} \frac{m^{k}}{k}+q_{p}(m-1)\right) \\
& \equiv \frac{(m-2)\left(\frac{m}{p}\right)-m}{4}\left(\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot m^{k}}+q_{p}(m-1)-q_{p}(m)\right)(\bmod p)
\end{aligned}
$$

Proof. Set $u_{n}=u_{n}(1-m, 2)$ and $v_{n}=v_{n}(1-m, 2)$. From [1],[4] and [6, Lemma 1.7] we know that

$$
v_{n}^{2}-4 m u_{n}^{2}=4(1-m)^{n}, v_{n}=2 u_{n+1}-2 u_{n}, u_{n}=\frac{1}{2 m}\left(v_{n+1}-v_{n}\right)
$$

and

$$
u_{p-\left(\frac{m}{p}\right)} \equiv u_{p}-\left(\frac{m}{p}\right) \equiv 0(\bmod p) .
$$

Thus,

$$
v_{p-\left(\frac{m}{p}\right)}^{2} \equiv 4(1-m)^{p-\left(\frac{m}{p}\right)}\left(\bmod p^{2}\right)
$$

and hence

$$
v_{p-\left(\frac{m}{p}\right)} \equiv \pm 2\left(\frac{1-m}{p}\right)(1-m)^{\left(p-\left(\frac{m}{p}\right)\right) / 2}\left(\bmod p^{2}\right)
$$

If $\left(\frac{m}{p}\right)=1$ then $v_{p-1}=2 u_{p}-2 u_{p-1} \equiv 2(\bmod p)$. Hence, by the above we get

$$
\begin{equation*}
v_{p-1} \equiv 2(1-m)^{(p-1) / 2}\left(\frac{1-m}{p}\right) \equiv 2+q_{p}(m-1) p\left(\bmod p^{2}\right) \tag{2.1}
\end{equation*}
$$

Now applying Lemma 1 we find

$$
\begin{aligned}
& \frac{u_{p-1}}{p}=\frac{1}{2 m} \cdot \frac{v_{p}-v_{p-1}}{p}=\frac{1}{2 m}\left(\frac{v_{p}-2}{p}-\frac{v_{p-1}-2}{p}\right) \\
& \equiv \frac{1}{2 m}\left(-\sum_{k=1}^{(p-1) / 2} \frac{m^{k}}{k}-q_{p}(m-1)\right)(\bmod p) \\
& 3
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{u_{p-1}}{p} & =\frac{2 u_{p}-v_{p-1}}{2 p}=\frac{u_{p}-1}{p}+\frac{1}{2} \cdot \frac{2-v_{p-1}}{p} \\
& \equiv \frac{1}{2}\left(q_{p}(m)-\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot m^{k}}-q_{p}(m-1)\right)(\bmod p)
\end{aligned}
$$

This proves the result in the case $\left(\frac{m}{p}\right)=1$.
If $\left(\frac{m}{p}\right)=-1$ then

$$
v_{p+1}=2 u_{p+1}-2(1-m) u_{p} \equiv 2(1-m)(\bmod p)
$$

So

$$
\begin{equation*}
v_{p+1} \equiv 2(1-m)\left(\frac{1-m}{p}\right)(1-m)^{(p-1) / 2} \equiv(1-m)\left(2+q_{p}(m-1) p\right)\left(\bmod p^{2}\right) \tag{2.2}
\end{equation*}
$$

Note that

$$
u_{p+1}=\frac{1}{2 m}\left(v_{p+1}+(m-1) v_{p}\right)=\frac{1}{2} v_{p+1}+(1-m) u_{p}
$$

Applying (2.2) and Lemma 1, one can easily deduce the desired result. Hence the proof is complete.

Corollary 1. Let p be an odd prime, and $\left\{P_{n}\right\}$ denote the Pell sequence given by $P_{0}=$ $0, P_{1}=1$ and $P_{n+1}=2 P_{n}+P_{n-1}(n \geq 1)$. Then
(i) $\sum_{k=1}^{(p-1) / 2} \frac{2^{k}}{k} \equiv-4 \frac{P_{p-\left(\frac{2}{p}\right)}}{p}(\bmod p)$.
(ii) $\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot 2^{k}} \equiv-2 \frac{P_{p-\left(\frac{2}{p}\right)}}{p}+q_{p}(2)(\bmod p)$.

Proof. Taking $m=2$ in Proposition 1 gives the result.
Corollary 2. Let $p>3$ be a prime, $S_{0}=0, S_{1}=1$ and $S_{n+1}=4 S_{n}-S_{n-1}(n \geq 1)$. Then

$$
\begin{align*}
& \text { (i) } \sum_{k=1}^{(p-1) / 2} \frac{3^{k}}{k} \equiv-3\left(\frac{3}{p}\right) \frac{S_{p-\left(\frac{3}{p}\right)}}{p}-q_{p}(2)(\bmod p) . \tag{i}\\
& \text { (ii) } \sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot 3^{k}} \equiv-\left(\frac{3}{p}\right) \frac{S_{p-\left(\frac{3}{p}\right)}^{p}-q_{p}(2)+q_{p}(3)(\bmod p) .}{} .
\end{align*}
$$

Proof. Suppose a and b are integers. From [4] we know that

$$
u_{2 n}(a, b)=u_{n}(a, b) v_{n}(a, b)
$$

and

$$
u_{p-\left(\frac{b^{2}-4 a}{p}\right)}(a, b) \equiv u_{p}(a, b)-\left(\frac{b^{2}-4 a}{p}\right) \equiv 0(\bmod p)
$$

Thus,

$$
\begin{aligned}
v_{p-\left(\frac{3}{p}\right)}(-2,2) & = \begin{cases}2 u_{p}(-2,2)-2 u_{p-1}(-2,2) \equiv 2(\bmod p) & \text { if } \quad\left(\frac{3}{p}\right)=1 \\
2 u_{p+1}(-2,2)+4 u_{p}(-2,2) \equiv-4(\bmod p) & \text { if }\left(\frac{3}{p}\right)=-1\end{cases} \\
& \equiv 3\left(\frac{3}{p}\right)-1(\bmod p) .
\end{aligned}
$$

Observing that $S_{n}=u_{n}(1,4)=2^{-n} u_{2 n}(-2,2)$ we get

$$
\begin{aligned}
S_{p-\left(\frac{3}{p}\right)} / p & =2^{\left(\frac{3}{p}\right)-p} v_{p-\left(\frac{3}{p}\right)}(-2,2) u_{p-\left(\frac{3}{p}\right)}(-2,2) / p \\
& \equiv 2^{\left(\frac{3}{p}\right)-1}\left(3\left(\frac{3}{p}\right)-1\right) u_{p-\left(\frac{3}{p}\right)}(-2,2) / p \\
& =\frac{1}{2}\left(1+3\left(\frac{3}{p}\right)\right) u_{p-\left(\frac{3}{p}\right)}(-2,2) / p(\bmod p) .
\end{aligned}
$$

This together with the case $m=3$ of Proposition 1 gives the result.
Remark 1. The sequence $\left\{S_{n}\right\}$ was first introduced by my brother Zhi-Wei Sun, who gave the formula for the sum $\sum_{k \equiv r(\bmod 12)}\binom{n}{k}$ in terms of $\left\{S_{n}\right\}$ (cf.[10]).

Corollary 3. Let $p>5$ be a prime, and $\left\{F_{n}\right\}$ denote the Fibonacci sequence. Then
(i) $\sum_{k=1}^{(p-1) / 2} \frac{5^{k}}{k} \equiv-5 \frac{F_{p-\left(\frac{5}{p}\right)}}{p}-2 q_{p}(2)(\bmod p)$.
(ii) $\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot 5^{k}} \equiv-\frac{F_{p-\left(\frac{5}{p}\right)}}{p}+q_{p}(5)-2 q_{p}(2)(\bmod p)$.

Proof. It is easily seen that $u_{n}(-4,2)=2^{n-1} F_{n}$. So we have

$$
\frac{F_{p-\left(\frac{5}{p}\right)}}{p}=2^{1-p+\left(\frac{5}{p}\right)} \frac{u_{p-\left(\frac{5}{p}\right)}(-4,2)}{p} \equiv 2^{\left(\frac{5}{p}\right)} \frac{u_{p-\left(\frac{5}{p}\right)}(-4,2)}{p}(\bmod p)
$$

Combining this with the case $m=5$ of Proposition 1 yields the result.
Let $\left\{B_{n}\right\}$ and $\left\{B_{n}(x)\right\}$ be the Bernoulli numbers and Bernoulli polynomials given by

$$
B_{0}=1, \quad \sum_{k=0}^{n-1}\binom{n}{k} B_{k}=0 \quad(n \geq 2)
$$

and

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}
$$

It is well known that (cf.[3])

$$
\sum_{x=0}^{n-1} x^{m}=\frac{1}{m+1}\left(B_{m+1}(n)-B_{m+1}\right)
$$

Lemma 2. Let p be an odd prime, and let m be a positive integer such that $p \nmid m$. If $s \in\{1,2, \ldots, m-1\}$ then

$$
\sum_{1 \leqslant k \leqslant\left[\frac{s p}{m}\right]} \frac{1}{k} \equiv-\left(B_{p-1}\left(\left\{\frac{s p}{m}\right\}\right)-B_{p-1}\right)(\bmod p)
$$

where $[x]$ is the greatest integer not exceeding x and $\{x\}=x-[x]$.
Proof. Clearly,

$$
\begin{aligned}
\sum_{1 \leqslant k \leqslant\left[\frac{s p}{m}\right]} \frac{1}{k} & \equiv \sum_{1 \leqslant k \leqslant\left[\frac{s p}{m}\right]} k^{p-2}=\frac{1}{p-1}\left(B_{p-1}\left(\left[\frac{s p}{m}\right]+1\right)-B_{p-1}\right) \\
& =\frac{1}{p-1}\left(B_{p-1}\left(\frac{s p}{m}+1-\left\{\frac{s p}{m}\right\}\right)-B_{p-1}\right)(\bmod p) .
\end{aligned}
$$

For any rational p-integers x and y it is evident that (cf.[3])

$$
p B_{k}(x)=\sum_{r=0}^{k}\binom{k}{r} p B_{r} x^{k-r} \equiv 0(\bmod p) \quad \text { for } \quad k=0,1, \ldots, p-2
$$

and so

$$
B_{p-1}(x+p y)-B_{p-1}(x)=\sum_{k=0}^{p-2}\binom{p-1}{k} B_{k}(x)(p y)^{p-1-k} \equiv 0(\bmod p)
$$

Hence, by the above and the relation $B_{n}(1-x)=(-1)^{n} B_{n}(x)$ (cf.[3]) we get

$$
\sum_{\left.1 \leqslant k \leqslant \frac{s p}{m}\right]} \frac{1}{k} \equiv \frac{1}{p-1}\left(B_{p-1}\left(1-\left\{\frac{s p}{m}\right\}\right)-B_{p-1}\right) \equiv-\left(B_{p-1}\left(\left\{\frac{s p}{m}\right\}\right)-B_{p-1}\right)(\bmod p)
$$

This proves the lemma.
3. Proof of (1.1)-(1.5).

In [8], using the formula for the sum $\sum_{k \equiv r(\bmod 8)}\binom{n}{k}$ the author proved that

$$
\begin{equation*}
\frac{P_{p-\left(\frac{2}{p}\right)}}{p} \equiv \frac{1}{2} \sum_{\frac{p}{4}<k<\frac{p}{2}} \frac{(-1)^{k}}{k}(\bmod p) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{p-\left(\frac{2}{p}\right)}}{p} \equiv \frac{1}{4} \sum_{\frac{p}{8}<k<\frac{3 p}{8}} \frac{1}{k}(\bmod p) \tag{3.2}
\end{equation*}
$$

Here, (3.1) was found by Zhi-Wei Sun[10], and (3.2) was also given by H.C.Williams [12].
Now, putting (3.1) and (3.2) together with Corollary 1(i) proves (1.1) and (1.3).

To prove (1.2), we note that H.C.Williams (cf.[11]) has shown that

$$
\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv-\frac{2}{5} \sum_{k=1}^{p-1-[p / 5]} \frac{(-1)^{k-1}}{k}(\bmod p)
$$

Since Eisenstein it is well known that (cf.[6])

$$
\sum_{k=1}^{(p-1) / 2} \frac{(-1)^{k-1}}{k} \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} \equiv q_{p}(2)(\bmod p)
$$

Thus, by William's result,

$$
\begin{aligned}
\frac{F_{p-\left(\frac{5}{p}\right)}}{p} & \equiv-\frac{2}{5}\left(2 q_{p}(2)-\sum_{k=1}^{[p / 5]} \frac{(-1)^{k-1}}{k}\right) \\
& \equiv-\frac{2}{5}\left(q_{p}(2)+\sum_{\frac{p}{5}<k<\frac{p}{2}} \frac{(-1)^{k-1}}{k}\right)(\bmod p) .
\end{aligned}
$$

Hence, by Corollary 3(i) we have

$$
\sum_{1 \leqslant k<\frac{p}{2}} \frac{5^{k}}{k} \equiv-5 \frac{F_{p-\left(\frac{5}{p}\right)}}{p}-2 q_{p}(2) \equiv 2 \sum_{\frac{p}{5}<k<\frac{p}{2}} \frac{(-1)^{k-1}}{k}(\bmod p) .
$$

This proves (1.2).
Now consider (1.4). From [2] we know that

$$
B_{p-1}\left(\left\{\frac{p}{4}\right\}\right)-B_{p-1} \equiv 3 q_{p}(2) \quad(\bmod p)
$$

and

$$
B_{p-1}\left(\left\{\frac{3 p}{8}\right\}\right)-B_{p-1} \equiv-2 \frac{P_{p-\left(\frac{2}{p}\right)}}{p}+4 q_{p}(2) \quad(\bmod p)
$$

Thus, by using Lemma 2 we obtain

$$
\begin{aligned}
-\sum_{\frac{p}{4}<k<\frac{3 p}{8}} \frac{1}{k} & =\sum_{1 \leqslant k<\frac{p}{4}} \frac{1}{k}-\sum_{1 \leqslant k<\frac{3 p}{8}} \frac{1}{k} \\
& \equiv-\left(B_{p-1}\left(\left\{\frac{p}{4}\right\}\right)-B_{p-1}\right)+B_{p-1}\left(\left\{\frac{3 p}{8}\right\}\right)-B_{p-1} \\
& \equiv-3 q_{p}(2)+4 q_{p}(2)-2 \frac{P_{p-\left(\frac{2}{p}\right)}^{p}(\bmod p) .}{}
\end{aligned}
$$

This together with Corollary 1(ii) proves (1.4).
Finally we consider (1.5). By [2],

$$
B_{p-1}\left(\left\{\frac{p}{6}\right\}\right)-B_{p-1} \equiv \underset{7}{2 q_{p}(2)+\frac{3}{2} q_{p}(3)(\bmod p)}
$$

and

$$
B_{p-1}\left(\left\{\frac{p}{12}\right\}\right)-B_{p-1} \equiv 3\left(\frac{3}{p}\right) \frac{S_{p-\left(\frac{3}{p}\right)}}{p}+3 q_{p}(2)+\frac{3}{2} q_{p}(3)(\bmod p)
$$

Thus, by Lemma 2 and Corollary 2(i),

$$
\begin{aligned}
-\sum_{\frac{p}{12}<k<\frac{p}{6}} \frac{1}{k} & \equiv\left(B_{p-1}\left(\left\{\frac{p}{6}\right\}\right)-B_{p-1}\right)-\left(B_{p-1}\left(\left\{\frac{p}{12}\right\}\right)-B_{p-1}\right) \\
& \equiv 2 q_{p}(2)+\frac{3}{2} q_{p}(3)-3 q_{p}(2)-\frac{3}{2} q_{p}(3)-3\left(\frac{3}{p}\right) \frac{S_{p-\left(\frac{3}{p}\right)}}{p} \\
& \equiv \sum_{1 \leqslant k<\frac{p}{2}} \frac{3^{k}}{k}(\bmod p) .
\end{aligned}
$$

This proves (1.5) and the proof is complete.
Remark 2. The congruences (1.1)-(1.3) can also be proved by using the method in the proof of (1.4) or (1.5).

References

1. L.E.Dickson, History of the Theory of Numbers, Vol.I, Chelsea, New York, 1952, pp. 393-407.
2. A.Granville and Zhiwei Sun, Values of Bernoulli polynomials, Pacific J. Math. 172 (1996), 117-137.
3. K.Ireland and M.Rosen, A Classical Introduction to Modern Number Theory, Springer, New York, 1982, pp. 228-248.
4. P.Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, Berlin, 1989, pp. 44-50.
5. Z. Shan and E.T.H. Wang, A simple proof of a curious congruence by Sun, Proc. Amer. Math. Soc. 127 (1999), no. 5, 1289-1291.
6. Z.H.Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r \\(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory I, J. Nanjing Univ. Math. Biquarterly 9 (1992), 227-240, MR94a:11026.
7. Z.H.Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r \\(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory II, J. Nanjing Univ. Math. Biquarterly 10 (1993), 105-118, MR94j:11021.
8. Z.H.Sun, Combinatorial sum $\sum_{k \equiv r(\bmod m)}\binom{n}{k}$ and its applications in number theory III, J. Nanjing Univ. Math. Biquarterly 12 (1995), 90-102, MR96g:11017.
9. Z.W.Sun, A congruence for primes, Proc. Amer. Math. Soc. 123 (1995), 1341-1346.
10. Z.W.Sun, On the sum $\sum_{k \equiv r(\bmod m)}\binom{n}{k}$ and related congruences, Israel J. Math. 128(2002), 135-156.
11. H.C.Williams, A note on the Fibonacci quotient $F_{p-\varepsilon} / p$, Canad. Math. Bull. 25 (1982), 366-370.
12. H.C.Williams, Some formulas concerning the fundamental unit of a real quadratic field, Discrete Math. 92 (1991), 431-440.

AMS Classification Numbers: 11A07, 11B39, 11B68

